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1. BROWNIAN MOTION

Various processes in nature are often modeled by stochastic differential equations of the
form

dx = b(x,t)dt + o(x, t)dw,

where the function b(x,t) is called the drift field, the matrix function o(x,t) is called the
diffusion matrix, and the factor dw is the increment of the stochastic process called the
Brownian motion. The goal of this section is to understand what the Brownian motion is.

1.1. Definition of Brownian Motion.

Definition 1. A stochastic process (in the strict sense) is a function v(w,t) of two argu-
ments, where w € §, (2, B, P) is a probability space, and t € R, such that

e for each w, v(w,t) is a function of t, and
e for each t, v(w,t) is a random variable.
Definition 2. Brownian motion (in mathematical terminology) is a stochastic process
w(w,t), w € N, 0 <t < oo, that satisfies the following four axioms:
(1) w(w,0) =0 for all w.
(2) For almost all w, w(w,t) is a continuous function of t.
(3) For each 0 < s <t, w(w,t) —w(w,s) is a Gaussian random variable with mean 0

and variance t — s.
(4) w(w,t) has independent increments, i.e., if

0<t1 <ta<...<t,
then
w(w, t;) —w(w,ti—1) for i=2,...,n are independent.

Remark What is called the Brownian motion in mathematics is called the Wiener process
in physics. What is called the Brownian motion in physics is called the Ornstein-Uhlenbeck
process in mathematics.

Here is an equivalent definition of Brownian motion.
Definition 3. A process w(w,t) on a probability space (Q, B, P) is called a Brownian
motion if

(1) Sample paths w(w,t) are continuous functions of t for almost all w € ).
(2) Forany k >1 and 0 <t; <...<tyg, the random vector (w(w,t1),...,w(w,tx)) is
Gaussian with mean 0 and covariance matrix

B(ti,tj) = E[w(ti), w(tj)] = min{ti,tj} =t; \Ntj, 1<4,5<k.
Definition 4. A d-dimensional Brownian motion is defined as the vector process
w(t) = (w1(t), ... wq(t)),

where wi(t), 1 < k < d are independent Brownian motions.
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1.2. Existence of Brownian motion. The question about the existence of the Brownian
motion is not trivial. For example, if we upgrade axiom 2 in Definition 2 to require
differentiability, such a process simply would not exist.

The original construction of Brownian motion (the Wiener process) was done by Norbert
Wiener (1894 — 1964). He has shown that the Fourier series

where ai, k£ = 0,1,2,..., are independent Gaussian random variables with mean 0 and
variance 1, converges, and its sum satisfies Definition 2 for 0 <t < 1.

In [2], the existence of Brownian motion follows from Kolmogorov’s theorem about the
existence of stochastic processes with covariance satisfying certain conditions.

Exercise A simple construction of the Brownian motion can be done as follows. Consider
a random walk on a mesh in the (z,t)-space, t > 0, 2 € R in which the time-step k and
the space step h are related to the time step k via k = h2. Start at the origin at time 0.
At any discrete moment of time ¢t = k, 2k, 3k, ..., take a step to left or to the right with
probability 1/2. Let k and h tend to zero in such a manner that the relationship k& = h? is
maintained. Apply the Central Limit Theorem and obtain the Brownian motion.

Two constructions of Brownian Motion are discussed in Appendix A.

1.3. Elementary properties of Brownian motion.

e The covariance function of the Brownian motion is
(2)  Elw(t)w(tz)] = min{ty, t2} =11 At
Indeed, suppose to > t;. Then
Elw(t)w(t2)] = Elw(t)w(ty) + w(t)(w(ts) — w(ty)]
= Elw(t)w(t)] + Elw(t)(w(tz) — w(t1))] = t1.
e Nowhere differentiability with probability 1. Consider the random

w(w,t+ At) — w(w, t)
At '

It is Gaussian with mean 0 and variance (At)~!, which tends to infinity as At — 0.
Hence w(w, t) is differentiable nowhere with probability 1.

e White noise. Despite the regular derivative of a Brownian motion does not exist,
one can consider its derivative in the sense of distributions. This derivative n(w,t)
is called white noise and is defined by the property

/t : n(w, t)dt = w(w, ta) — w(w,t1).

1
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e Scaling and Symmetry. If w(t) is a Brownian motion then so are the processes

defined by
() = ——w(ct) it tant
x(t) := —=w(ct) for any positive constant c,
NG y P
y(t) = —w(t).
e Time inversion. Let w(t) be a Brownian motion. Then so is the process defined
by

tw(lft), 0<t< oo,

(3) 2l =1, f o,

e Invariance under rotations and reflections (orthogonal transformations).
Let w(t) be a d-dimensional Brownian motion, and 7" be a d x d orthogonal matrix
(i.e., TT = T~1). Then the process

x(t) = Tw(t)
is also a d-dimensional Brownian motion.

1.4. A brief introduction into the Wiener measure. When we need to average some function of Brownian motion, the
measure to be taken is the Wiener measure. Therefore, we need to specify the measurable space where the Wiener measure
will be defined, i.e., the set of outcomes 2 and the o-algebra on Q.

The set of outcomes will be the set of continuous functions y(t) satisfying y(0) = 0. The o-algebra will contain all
cylinder sets of the form

(4) C = {f(t) is continuous | a < f(s) < b},

where a, b, and s are parameters defining C.
The Wiener measure of each cylinder set (4) is defined so that it is equal to the probability that a Brownian motion
w(w, t) passes through the window [a, b) at time s:

b g—e?/2s
P(C) = ; ﬁdm’.
The Wiener measure of the intersection of two cylinders
C1 = {f(t) is continuous | a1 < f(s1) < b1} and Cy = {f(t) is continuous | az < f(s2) < bz}
is defined so that it is equal to the probability that a Brownian motion w(w,t) passes through both windows:
a1 < w(w,s1) < by, and as < w(w,s2) < ba.

Assume s1 < s2. Taking into account that the increments of a Brownian motion are independent Gaussian random variables,
we calculate
—22/2s; by = (y—2)2/2(s3—s1)

dx
V21, as \/2m(s2 — s1)

The notation for the Wiener measure is dW. Thus, the solution of the heat equation (?7?) can be written as

b1 e
P(ClﬁCQ):/ dy.
ay

u(z,t) = /¢(l + w(w, t))dW.

Example 1  Compute [ FdW where F(w) = fol w*(w, s)ds.

/‘FdW:/\dVV/O1 w4(w,s)ds:/01 ds/qu;4(w,s)

1 oo 467052/25 T,
= ds/ T ———dx = 3s%ds = 1.
/0 — o V27s 0
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1.5. Markov property of Brownian motion.

Definition 5. A stochastic process ((t) on [0,T] is called a Markov process if for any sequences 0 < tg < ... < tp, <T
and o, T1, ..., Tn, its transition probability distribution function has the property

P(C(tn) < ZTn ‘ g(tn—l) < Tp—1,-- -7<(t0) < xO) = P(C(tn) < ZTn | C(tn—l) < xn—l)-

The transition probability density function, defined by

17}
D(Tn,tn | Tn1,tn—1;-..;%0,t0) = aT]P(C(tn) <Zn | C(tn-1) < Tn_1,...,¢(to) < xo)

then satisfies
(5) P(Tn,tn | Tn-1,tn—1;...;%0,t0) = P(Tn,tn | Tn-1,tn-1).
For any three times t > 7 > s and any three points x,y, z we can write the identities
p(y, 2,7 | z,8) =p(y,t | z,752,8)p(2, 7 | ,5) =p(y, t | z,7)p(z, 7 | @,s).

The last equality is a consequence of the Markov property. This identity implies the Chapman-Kolmogorov equation:
©  ptles = [ptinr | esds = [ ot ] 5npr | ods
Theorem 1. The Brownian motion is a Markov process.

Proof. Take any sequences 0 =t < ... <t, <T and g =0, z1, ..., , and consider the joint pdf of the vector
w= (w(t1),w(t2),...,w(tn)).
It is given by
(zp—zp_1)°
no| &P {_ 20t —tk—1)
(7) p(z1,t1;22, 25 5 Tn, ty) = H

it V2 (te — th—1)

Recall that
p(w1,t15T2,t2;. . .5 Tn, tn)
p(z1,t1; w2, t2;. . 3 Tn—1,tn—1)

P(@n,tn | Tno1,tn-1;.. 51, t1) =
Using Eq. (7) we get

{ (@p—zp—1)? }
expl — ok T Th—1)_

n 2t —tp—1)

2k k) 2

k=1 V2t =t _1) exp{_%}
n—tn_
Ty, t Tpn—1,tn—15...;T1,t1) = =
P(Tnstn | Tno1,tn-1; w1, t1) o (w12 27 (tn — tn_1)
n—1 2(tg —tk—1)
k=1 V2 (b=t —1)
:p(-'LWutn ‘ -'L'nfhtnfl)*
Hence, the Brownian motion is a Markov process. O

2. AN INTRODUCTION TO SDES.

Here we follow the discussion found in [1, 1]. Consider a stochastic process z(w,t) = z(t)
obeying the following evolution law:

() dz(t) = b(x(t),t)dt + o(z(t), t)dw,

where w is the standard Brownian motion and the functions b and ¢ are smooth.
This evolution law is called a stochastic differential equation (SDE). If o(z(t),t) = 0,
Eq. (8) becomes an ordinary differential equation (ODE)

) % -
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Suppose z(0) = zo. Eq. (9) is equivalent to the following integral equation

(10)  x(t) = =0 —i—/o b(x(s), s)ds.

A solution of an ODE is a function satisfying the ODE. If the ODE is complemented
with an initial condition, then the solution to the corresponding initial-value problem is a
function satisfying the given initial condition.

Now we will discuss the meaning of SDE (8). Similarly to Eq. (11) we can write

t t
(11) x(t):x0+/0 b(a:(s),s)ds+/0 o(x(s), s)dw(s)

2.1. Ito’s and Stratonovich’s stochastic integrals. First assume that the function o
is independent of z, i.e., o(x,t) = o(t). We partition the interval [0,¢] into tg =0 < t; <
ty < ...<t, =t and denote the fineness of the partition by A:

A = max |t; — t;—1]|.
1<i<n

Then we define

t n—1
| oouts) = lim 3 oiwitin) - wit)
0 A0 =0
where o; is chosen so that it approximates o(t) on the subinterval [t;, t;+1].
The case where o depends on z is much more difficult. We can proceed as before and
write

/0 o(a(s), s)duw(s) = lim Zm w(tigr) — wity),

7-—>0 i=1

however, the value of this limit will depend on how we choose o; approximating o(x(t),t) on
the interval [t;, t;+1]. There are two common choices. We will give their general definition.
Let f(w(t),t) be a smooth function depending on time and a Brownian Motion w(t). In
particular, f(w(t),t) can be chosen to coincide with o(z(t),t) where x(t) is a solution of
SDE (8), i.e., a stochastic process depending on w(t).

e The Ito stochastic integral is defined by the choice f; = f(t;), i.e., f is evaluated

at the left end of each subinterval:

/ f(w s)dw = hm Zf (w(tiy1) —w(t;)).

A*}Oz 0

e The Stratonovich stochastic integral is defined by the choice f; = f(t141/2),

where t; /9 = %(tZ +tiy1). ie., f is evaluated at the midpoint of each subinterval.
The Stratonovich stochastic integral is marked by o:

/ f(w(s),s) odw = lim Zf (tiz1/2)s tivry2)(w(tivn) —w(ti)).

A—)Oz 0
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An example in Appendix B demonstrates that Ito’s and Stratonovich’s stochastic integrals
are different. However, one always can convert Stratonovich’s stochastic integral to Ito’s
stochastic integral — see Wiki. From now on, we will work only with Ito’s stochastic
integrals and Ito’s stochastic differential equations.

2.2. Elementary properties of stochastic integral. Here we follow the discussions in [1, 5]. We will use a shorter
notation denoting f(w(t),t) by f(t,w) where w is the stochastic argument of the Brownian Motion.
We will a consider stochastic process f(t,w) on 0 <t < T satisfying the following conditions:

Condition (1): f(¢,w) is independent of the increments of the Brownian motion w(t,w) in the future, i.e., f(¢,w)
is independent of w(t + s, w) — w(t,w) for all s > 0. Such processes are called adapted to the Brownian filtration
Cor{:é'ition (2):
/T E[f*(s,w)]ds < oc.
0
Now we list some useful elementary properties. The first two properties are similar to those of the Riemann integral.

The other ones are specific for the Ito integral. Let f(¢,w) and g(t,w) be any functions satisfying conditions (1) and (2)
above.

(1) Linearity:

/0 (af(s,w>+bg<s,w))dw(s,w>:a‘/o f(s,w>dw(s,w>+b/0 95, w)duw(s, w).

(2) Additivity. Let 0 < Ty < T. Then

T

T Ty
[ rewauts.w) = [ fewduts o) + [ wduts.w).
0 0

T

(3) If f is a deterministic function, i.e., f(s,w) = f(s), then
/t f(s)dw(s,w) ~ N (0,/t fz(s)ds> .
0 0
(4) Forany 0 <7<t<T,
t
E ,w)d s =0;
[ fewiauts. o)

B[ [ rswdutsw)| [T 16 wautsw =] =

B [(/T F(s,w)duls, w)ﬂ = [T Bl wtas,

(5)
T T T
[ [ 1wt [T e = [7 B w0
0 0 0
2.3. Construction of the Ito integral. First note that for any constant random function f(w)

[ ruts) = 5@ w® - w@).

Therefore, it is easy to construct the Ito integral for any simple random function h(t,w) that assumes a finite number of
values. The integrals for simple functions can be extended to integrals for any functions satisfying conditions 1 and 2.

Theorem 2. For every function f(t,w) satisfying Conditions 1 and 2, there is a sequence of step functions f,(t,w)
satisfying Conditions 1 and 2 such that

T
(12) lim / [f(t, w) — fn(t,w)|?dt =0
n— oo 0
for almost all w € Q, and the limit
t
(13) I(t,w) := lim / frn(s,w)dw(s,w)
n-— oo 0

is uniform in T for almost all w € Q and is independent of the sequence fn(t,w) satisfying conditions 1 and 2.


https://en.wikipedia.org/wiki/Stratonovich_integral
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2.4. Existence and uniqueness of solutions of the Ito SDEs. Consider the SDE
(14) dx(t) = b(z(t), t)dt + o(x(t), t)dw, =x(0) ==zo € R, t€[0,T],

where w is the standard Brownian motion. We assume that the functions b and o satisfy the following conditions. There
exists a constant C such that

(15) oG, )l + llo(z, )| » < C(L+ |l2ll), for all = €R?, te€o,T],
where || - || p denotes the Frobenius matrix norm:
Al = \/tr(AT A),
and
(16) bz, ) = by, Ol + llo (@, ) = o(y, )l < Cllw —yl|, forall z,y R’ te[0,T].

The first condition says that b and o do not grow faster than linearly in z, and the second condition is an analogue of the
Lipschitz condition. In this case, Eq. (14) with E[||zo]|?] < oo has a unique solution such that

t
E [/ Hx(s)\|2ds] < oo forall te€[0,T].
0

From now on, we will autonomize SDEs to save some writing. If b and/or o explicitly depend on ¢, we introduce a
new independent variable s, declare that t is a new dependent variable, and add the equation dt = ds. This is called

“autonomization”. Therefore, the assumption that the SDE is autonomous does not lead to the loss of generality.

2.5. Notation common in probability books. It is common in the probability com-
munity to denote stochastic processes by capital letters with subscripts specifying their
time arguments:
(17)  dX; = b(Xy)dt + o(X;)dw, Xo==z, te[0,T], z R
Terminology:
e X, satisfying Eq. (17) is called a diffusion process;
e b(x) is called a drift;
e the matrix X(z) = o(z)o " (2) is called a diffusion matriz.
Exercise Show that b and ¥ satisfy:

X; — X,
(18) lim F [t | X, = } = b(z, s)
t—s t—s
. o T
(19) limE [[Xt XolX: = Xo] | X, :4 =X(z,s).
t—s t—s

2.6. The Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process models the
velocity of a heavy particle pushed around by light particles. The variable X; is the
velocity of the particle. For simplicity, we consider it in 1D:

(20) dX; =-—Xydt+V2Ddw, Xo=2z€R

where x is a fixed number, 7 is the friction coefficient, and D is the diffusion coefficient.

The exact solution of Eq. (20) can be written in the closed form involving a stochastic
integral. We proceed as we do when we solve a linear non-homogeneous first order ODE.
Switch the term —y.X; to the left-hand side and multiply the equation by the integrating
factor exp(vt). Then we get

d (e Xy) = V2De  dw.
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Suppose Xg = z. Integrating from 0 to ¢ we obtain:
t
eNX, —x = \/2D/ eV dws.
0
Hence the solution of Eq. (20) is

t
X, =xze Mt \/QD/ e~ 79 .
0

The solution X; is a Gaussian random variable with mean xe~7" and variance %(1 —e~ ),
The variance is found as follows. We partition the interval [0, ¢] into n equal subintervals
of length h = t/n and let n — oc:

t t
Var (\/QD / e‘f(”)de) —2De 2R [( / e”dws)ﬂ
0 0

n—1
=2De”*" lim E > e w((j + 1)h) — w(jh))?
=0

=2De~ 2"t /t e?5ds = 2D6_27ti (62% - 1)
0 2y
Py,
Y
As t — oo, the velocity X; of the particle becomes a Gaussian random variable with mean
0 and variance %.
Now let us calculate the covariance function of the Ornstein-Uhlenbeck process. Suppose

t> s.

Cov(Xs, X;) = E K\/@ /0 ’ eﬂ(S—T)dwT) (x/@ /0 te—W—T)dwTﬂ

s s t
= 2De V) | [(/ e”dw7> </ e’ dw, +/ e”dwTﬂ
0 0 s

D

_ 76—7(t+s) e2’ys -1
D e (¢ 1)

_ [_D] otrs) ¢ D aes)
Y 0

Note that as ¢ and s tend to infinity, the first term decays to zero. Then the covariance
function depends only on the difference ¢ — s and is given by

R(t—s) = 2677“*5'.
Y

The Ornstein-Uhlenbeck process (20) with the initial condition x ~ N (0, %) can serve
as a model for a colored noise.
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3. THE ITO CALCULUS

SDEs can be solved analytically only in special cases. Even if so, we often need not the
formula for the solution but the expected value of some function defined on the random
trajectories. This function can be the first passage time to a given region of the phase
space or the probability to reach first one given region rather than the other given region.
To answer such kind of questions, it is handy to be able to calculate the time evolution of
functions defined on trajectories. The Ito formula provides us with a tool to do it.

3.1. A derivation of the Ito formula. The most important result in the Ito calculus is
the Ito formula.

3.1.1. 1D case. For simplicity, we will start with the 1D case. Let x(t) be trajectory
obeying the ODE
dx
=b
prialdCol
Then any function f(xz(t),t) evolves in time according to

df of Jfdx Of of
e A T T Tl T
Now let z(t,w) be a trajectory of the SDE

One could naively write
0
f of a{ dt + 2L x)dt + o(X)dw)

af = 3 Ox
but this would be WRONG. This is because dw = O(v/dt) and (dw)? = O(dt). The
correct differential of f is given by Eq. (22) below.

Let us derive it. We want to find the differential, i.e., the part of the increment of the
order of dt or larger for a function f(X;,t), where dX; = b(X;)dt + o(X;)dw. We will write
a formal Taylor expansion of f(X;,t) and keep all terms of the order of dt or larger. To
save some space, the arguments (X;,t) in all derivatives will be omitted.

of .. of 16 f *f
X, 1=
dX¢+ D20t

—dX; =

10%f

f(Xt+dXt7t+dt) = f(Xt7t> 2 0x a9

L dt+ = (dt)*+

ot Oz 2 0t? '+

The term dw is O(\/dt). The term dXdt is O((dt)*?). The term (dw)? contained in
1
2

).
(dX;)? is O(dt). Hence we need to keep only the term f%(dXt)Q out of the second order
terms. Therefore,

AXpdt+= == (dX;) 2+

2
O g+ 9 gx, + L7

ot o 2W<dXt)2'

df<Xt7 ) -
Writing dX; explicitly we get:
(dX1)? = (b(Xy)dt + o(X¢)dw)(b(Xy)dt + o(X¢)dw)

= b%(Xy)(dt)* + 2b(Xy) o (Xy)dtdw + o2 (dw)* = o*(X¢)dt + o(dt).
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Hence,
_|9f of |1 0°f of
(22) df(Xt,t) = |:8t + b(Xt)a —|— (Xt)a 5 dt + U(Xt) 81‘dw
Note that Eq. (22) can be rewritten as
_|of of x4 L) 8
(23)  df(Xi,t) = [81& + Lf] dt + o(x )(%wa’ where L = b(Xt)ax +50 (Xt)axz.

L is called the infinitesimal generator of the process.

3.1.2. Multidimensional case. Now we turn to the multidimensional case is stated below.
We define the generator by

(24) L=bX) V+ %E(Xt) L VV,

where the symbol “:” means
= Z ZA”B” =tr (ATB>
i=1 j=1
and )
0
\YAY
( )is 8;1:1633]

In the coordinate form, L can be rewritten as

2

d
(25) L= Zb (Xt)5— Z 8%8%

Theorem 3. (Ito’s formula) Assume that b and o satisfy Eqs. (15) and (16) and
E[|| Xol?] < oo. Let f(z,t) be twice continuously differentiable in x in R? and continu-
ously differentiable in t on [0,T]. Then the process f(Xy,t) satisfies:

(26)
f(Xt,t):f(Xo,O)Jr/ot Eﬁ(éj’s)ds—l—/oth(Xs,s)ds—k/ot V (X, 5) o(X,)dws.
Eq. (26) is equivalent to
or

dXide,

d
of of
p X, t) = 2L
(28)  df(X,1) 8tdt+;8 Py
Ito’s formula is proven e.g. in [1].
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3.2. The geometric Brownian motion. The geometric Brownian motion is a stochastic
process satisfying the following SDE

(29) dXy = pXdt + o X dw,

where w is the standard Brownian motion, p (the percentage drift) and o (the percentage
volatility) are constants. The SDE (29) is used in mathematical finance to model the stock
prices in the Black-Scholes model.

Eq. (29) has an analytic solution that can be found as follows. Introduce the new

dependent variable Y; = log X;. Using Ito’s formula (22) and taking into account that

dy _ 1 &’y

X=% and T = —% we write the differential of Y;:

dy 1 d?Y dy o?
V= (pXi—— + -0* X} —— Xi—dw = p— — :

dY; <u th+2J th2>dt+a thdw (u 2>dt+adw
The right-hand side of the SDE for Y; is independent of ¥; and hence Y; is found just by
integration of the right-hand side:

0.2

Returning to X; = exp(Y;) we get the exact solution of Eq. (29):

(30) X, = Xge(”_L;)tJrawt.

We say that a random variable X is lognormal if its logarithm is Gaussian, i.e. if
log X ~ N(m,s?).
Exercise Check that if Y ~ N(m, s?) then

g2
Ele¥]=emT7, Var(eV) = (32’”“2(652 - 1),

and the pdf of X = €Y is given by

1 _ (o z—m)2
for (x) = e At

xV2ms?

Note that

2
nzlongN(Yw (u—02> t,agt>,

hence the geometric Brownian motion X; has a log-normal distribution. The mean and
the variance of X; are

E[Xt] = Xoe“t’ Var(Xt) — XgeQMt (60-2t _ 1) ‘
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3.3. Backward Kolmogorov equation. Imagine that we are interested in some quantity
f that depends on X; evolving according to the SDE

dXt = b(Xt)dt + O'(Xt)dw

Suppose that we want to find the expected value of f at a future time T given that at
the present time ¢, Xy = z. For example, you can think of f being an option price that
depends on the stock price X. We denote the expected value of f at time 7' conditioned
on X; = x by u(z,t). Let us find the time evolution of

u(e.t)i= BUf(Xr) | X =a) = [ {@n(y. Tle. )y,

In words, imagine that we start a stochastic process X at time ¢ at the point z. We stop
it at a fixed time 7. We want to find the expected value of f(X7). This expected value

u(z,t) depends on the initial time ¢ and the initial point x. Obviously, for the terminal
time ¢t = T we have: u(z,T) = f(z). Using Ito’s formula (26) we calculate

T
u( X7, T) — u(Xy, t) / 25U (Xs, s ds+/ Lu(Xs, s)ds + Vu(Xs,s)TJ(Xs)dws.
t t

Now we will take expected values of both parts of this equation conditioned on X; = =x.
Note that

Euw(Xr,T) | Xy =] =FE[f(X7) | X¢ = 2] = u(z,t)
and
Elu(X,t) | Xi = z] = u(z,t).
Hence the conditional expectation of the left-hand side is 0. Also note that by property

(4) in Section 2.2,
T
E [/ Vu(Xs,s)Ta(Xs)dws} = 0.
t

Therefore, for all z, ¢t and T" we have

Tro
/t [asu(a:, s) + Lu(x, s)} ds = 0.
Hence for all ¢ < T, u(x,t) satisfies the PDE with the final condition:

%u(x,t) + Lu(z,t) =0 wu(z,T) = f(z).
Re-defining u as
u(z,t) = E[f(Xy) | Xo=2x], ie., u(x,t)=umq(z,T —1),

we obtain that for 0 <¢ < T

(31) gtu(ac,t) = Lu(z,t), wu(z,0)= f(z).




Summer 2022 REU tutorials

Eq. (31) is called the Backward Kolmogorov Equation. It describes the time evolution
of expected values. Note that in the re-definition of u we used the fact that X; evolves
according to an autonomous SDE which is invariant with respect to a time shift.

3.4. The expected first passage time. Let A C R? be some region. The first passage
time to A is defined as

TA:inf{tZO ‘ XtEA}.
Let u(x,t) be the expected first passage time to A for the process X; starting at x, i.e.,
u(z,t) = Elra | Xi = x].

We calculate:
TA 8 TA TA T

WXy, 7a) —u(Xe, ) = / (X, 5)ds / Lu(X,, s)ds + / Vu(Xs, 5) o (Xy)dws.
t t t

Next, we take the expected values of the left- and right-hand side of this equation condi-
tioned on X; = z. Taking into account that

FElu(X:,,74) | Xe =2]|=FE[ra | Xy =2x] =u(x,t) and FEu(X:,t) | Xy =] =u(x,t)

we get for all ¢ and x

TA 8 TA
—u(x, s)ds +/ Lu(x, s)ds = 0.
¢ Os t
We also note that
aatu(a:,t) =1.

Finally, if 2 € A we have 74 = 0. Hence the mean first passage time u(z) satisfies the
following boundary value problem

(32) |Lu=-1, a¢ A, 2(94)=0|

Example 2 Let dX; = /28 1dw, Xy = z, i.e., a scaled one-dimensional
Brownian motion starting at the point z. Let us find the expected exit time
from the interval [—1,1]. As we have shown, the expected exit time u(z)
satisfies Eq. (32), which in our case becomes

Bl =1, —1<2<1, u(l)=u-1)=0.

Solving this equation we obtain
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3.5. The committor equation. Let A C R? and B C R be some regions. The commit-
tor function ¢(z) is defined as the probability that the process starting at the point z first
reaches B rather than A [0, 7]. Let us derive a boundary-value problem for the commitor.
It is clear that ¢(0A) = 0 and ¢(0B) = 1. For x € (AU B)° let us define the first passage
time to AU B, i.e.,

TAB:inf{tZO ’ X GAUB}.

We calculate:
TAB TAB T
4(Xryp) —a(Xo) = /0 Lq(Xs)ds + /0 Vq(Xs) "o (Xs)dws.

Take the expected values of the left- and right-hand side of this equation conditioned on
Xo =x. We get that for all x

TAB
q(z) — q(z) = /0 Lq(z)ds =0
Therefore, the solution of the boundary-value problem
Lqg=0, z€(AUB)‘, ¢(0A)=0, ¢0B)=1

is the committor function.

Example 3 Let dX; = —V/(z)dt + /28~ dw, Xy = z, i.e., a particle
moving according to the overdamped Langevin dynamics in the potential
force field V(z). In the 1D case, the committor equation can be solved
exactly. We have:
~V'(2)q'(x) + 871" () =0, a<z<b, gla) =0, ¢b)=1
Multiply this equation by Be #V(*). Then its left-hand side becomes a
complete differential:
(e_ﬁv(x)q'(x))/ =0.

Integrating this equation and taking the boundary conditions into account
we get
f;’f PV Wy

Qxr)="F7T"—"7"".
(=) [P eBvwdy

3.6. The generator of a Markov process. In Section 3.3, we fixed a function f and we
considered the expectation of f at time ¢ as a function of the initial point x and time ¢:

u(zx,t) = E[f(Xy) | Xo = x].

Now we fix the time ¢ and consider the same expectation as a map applied to the set
of continuous and bounded functions f(x), z € RY. Therefore, we define the family of
operators indexed by ¢:

(Pf)(@) = B | Xo=a)= [ 1wt | 2.0y,
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We will call the operator P; the transfer operator. It is analogous to the stochastic matrix
P in the discrete-time Markov chains.

The operator P; possesses the semigroup properties:
Py=1, Piys= P oP, forall t,s>0.

Indeed,

(Pof)(z) := E[f(Xo) | Xo = =] = f(x),
Hence P, is the identity. Recall the Chapman-Kolmogorov equation (Eq. (6)) expressing the Markov property. Using it, we
write:

(Pesat)@) = [ f@pt+s |0y = [ f@ay [ ot +s]z0p0t ] 2,0

rd
= [ depet 12.0) [ pt+s | 0f @y = (PP

Due to this, the operator P, is often referred to as the Markov semigroup.

Now consider the limit as ¢ | O:

t—0+ t

Assume that this limit exists. This limit is called the infinitesimal generator of the transfer
operator P; or the generator of the Markov process X;.
Recall that (P,f)(x) = u(z,t). Eq. (33) implies that
Ou Piysf — Pif

g
ot 550 s

This is the Backward Kolmogorov equation that we have obtained in Section 3.3. Matching
it with Eq. (31) we see that the operator L must be given by Eq. (24).

= LPf=Lu, u(z,0)= f(x).

3.7. The adjoint semigroup and the forward Kolmogorov equation. In Section 3.6
we considered the expected value of f(X;) conditioned on Xy = 2. Now we assume that
X does not start at  with probability 1 but the starting point is distributed according
to a pdf po(x). Then the expected value of f(X}) is

Bl (X)) = [ | Pf@hola)de.

Writing P, f explicitly and switching the order of integration we obtain
B = [ Pd@o(e)ds = [ peids [ dyf@put | 2.0
R R Rd

= [ dut) [ nolawiplyet | 2.0
Rd Rd

(34) = [ dutwP
Rd

In the original order of integration, we froze the pdf po(z) while evolved f(X;) in time.

After switching the order of integration, we froze f and evolved the pdf i in time. Finally,
we have defined the evolution operator for the pdf:

(35)  pula) = (Puo)(x) = /R o@)ply. | 2, 0)da
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The operator P} is adjoint to the transfer operator P;. Indeed, consider the inner product

(r.9) = [ T@g(a)da.
Then Eq. (34) shows that
Elf(Xy)] = (Pf, po) = (f, FY po)-

The infinitesimal generator for the adjoint semigroup P/ is defined by

It is easy to check that L and L* are adjoint, i.e., for all admissible f and g,

(37 (Lf.g9)=(f,L%).
Eqgs. (35) and (36) show that the time evolution of the probability density function is
given by
ou(z,t .
38) PO ), p(e.0) = pofa).

Eq. (38) is called the forward Kolmogorov equation or the Fokker-Planck equation.
Eq. (24) allows us to find the adjoint generator L* explicitly. Consider the process
governed by the SDE

dX, = b(X,)dt + o(X)dw, X(0)==xz, t>0, zeR%

For it, the generator is the differential operator given by
1
L=>b(z) - V+ 52(:5) : VV.

To find the adjoint generator L*, we consider the identity Eq. (37):

(Lf.9) = [ 697+ 5% V9 gds

_ /Rd f <—v - (gb) + %vv : (zg)> dx = (f,Lg).

Here we have integrated by parts the first term once and the second term twice. Hence,

(39) L'g=-V-(gb)+ %VV : (Zg)

Example 4 We will elaborate the procedure of obtaining L* in 2D. The
extension to higher dimensions in straightforward. Consider a 2D stochastic
process of the form

dX; = b1 (X, Yy)dt + 011(Xy, Yy)dwy + 012(Xy, Vi) dwe
dY; = ba(Xy, Yy)dt + 021(Xy, Yy)dwy + 022( Xy, Y3 )dwo
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In the vector notations it looks as

Xy b1 011 012 dun
d = dt .
<Yt> <52> " <U21 U22> <dw2>
The matrix ¥ = oo | is

2 2
5= Y11 Y12 _ of1 + 01y 011021 + 0120922
pr— P— 2 2 .
Y12 Yoo 011021 + 012092 051 + 05

The generator L applied to a function f is:
1
Lf = bla:cf + b2ayf + 5 [Ellaxxf + 2212aocyf + 2228yyf] .

The adjoint generator L* is found from the identity (Lf,g) = (f, L*g):
1
(Lf.g) = /2 [gblf)xf+9b23yf+ 29 [leaxxf+2212a:cyf+2228yyf]:| dxdy
R

= /R2 f {—ax(blg) — Oy(b2g) + % [0 (2119) + 205y(X129) + 3yy(2229)]} dxdy
= (f,L"g).

Hence

1
L*g = —0,(b1g) — 0y(bag) + 3 [022(2119) + 205y (X129) + Oy (X229)] -

3.8. The invariant pdf. Recall irreducible continuous-time Markov chains. The invariant
measure is the solution of 7L = 0 or, equivalently, L'7" = 0. 7 and 7 'are row and
column vectors respectively. If the invariant measure is normalizable, we normalize it so
that ) . m = 1 and call it the invariant distribution. For irreducible Markov chains with
a finite number of states, any probability distribution converges over time to the unique
invariant distribution 7, i.e., for any initial distribution pg, the solution of

dp

L 0) =
o~ Pl p(0) = po

converges to . Such Markov chains are called ergodic. The Markov Chain Monte Carlo
methods employ this property. Also recall that irreducibility of a continuous-time Markov
chain with a finite number of states implies that the eigenvalue 0 of L has multiplicity one.

Suppose that the equation L*f = 0 for a Markov process X; has a unique positive solu-
tion p up to a multiplicative constant, and this solution is normalizable so that f u(x)dz =
1, then p is the unique invariant pdf. In this case, for any initial pdf pg, the pdf .
converges to p as t — oo:

lim P} up = p.
t—00

Such Markov processes are also called ergodic.
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The unique invariant pdf u(x) satisfies the stationary forward Kolmogorov equation
(stationary Fokker-Planck equation):

(40) L*u =0, /]Rd p(x)de = 1.

Exercise (1) Show that the generator of the 1D Ornstein-Uhlenbeck process (20) is

given by
d d?
L=—vz—+D—.
Tz + dx?
(2) Integrating by parts, derive the expression for the adjoint generator

d d?g
Lfg=— D=2,
g dx(vwg)+- 7n?

(3) Solve the equation
(o.9]
L =0, / pdr =1

—00

and find that the invariant pdf for the 1D Ornstein-Uhlenbeck process is

(1) ple) =[5 0me 5

4. THE LANGEVIN DYNAMICS

4.1. The full Langevin dynamics. The Langevin equation models the dynamics of
heavy particles in the potential force field pushed around by light particles:

dg = Lt
m

(42)  dp=(-VV(q) — yp)dt + /2ymB1dw,

where (¢,p) € R?? are the positions and momenta of the heavy particles, v is the friction
coefficient, m is the mass of the heavy particles, and —VV'(q) is the potential force acting
on the heavy particles. Eq. (42) can be written in the form (17) by introducing

e [5]. = [ty |- o[ 3]

—~VV(q) —p
where [ is the d x d identity matrix.
Exercise (1) Show that the infinitesimal generator for Eq. (42) is given by

AL:;%-Vq—V@V-Vp+7(—pr+WMT4Ag.
(2) Derive the expression for the adjoint generator

L*g = _% ’ vqg + VqV . Vpg + (vp ) (pg) + mﬂilAPg) :
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(3) Solve the stationary Fokker-Planck equation and show that the invariant pdf is
given by
_ Il

1
(g, p) 7€ , where H(q,p) - +V{(q).

4.2. The overdamped Langevin dynamics. Suppose the friction coefficient v in Eq.
(42) is large and/or the mass m is small, i.e., my~! is small. We divide the equation for p
by ~v:

v tdp = v tmdv = (—y7IVV (q) — p)dt + v/ 2my B Ldw.
We use that assumption that m~~! is small and set the left-hand side of the SDE above
to 0. Then we replace p with m% in the right-hand side and multiply both sides by ~:

dq dw
my— = =VV(a) + V2myST o

or

23-1

my

mydq = —VV (q)dt + my dw(t)

Now we want to cancel out m~y. To do so, we rescale the time by introducing 7 = (m~y)~!t.
Then dt = m~ydr. Recall that if w(t) is a Brownian motion, then for any ¢ > 0, ¢~ /?w(ct)
is also a brownian motion, i.e., ¢!/?w(t) = w(ct). Hence
dw(t) = dw(m~yt) = (m’y)l/de(T).

Therefore, choosing the new time 7 and canceling my we get

dq = —-VV(q)dr + /287 dw(r).

For the overdamped Langevin dynamics, the generator L is given by
L=-VV.-V+3A.
The adjoint generator L* is
L*g=-V-(gVV)+ 3 tAg.
The invariant pdf is
1 v

u:Ee

APPENDIX A. CONSTRUCTION OF THE BROWNIAN MOTION

A.1. Construction of the Brownian motion via a refinement procedure. The
Brownian motion on 0 < ¢t < 1 can be constructed by a recursive refinement procedure
[3, 2]. Consider the following collection of sets

Dn:{;yogkgzn}

of dyadic points. At each refinement step, we will define a Gaussian random walk satisfying
the axioms of the Brownian Motion at the dyadic points (see Fig. 1).
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0 10 12 10

Z6

Z5; W

FIGURE 1. First six steps of construction a Brownian motion from Brown-
ian random walks by a refinement procedure. Here z1, ..., 2g are indepen-
dent Gaussian random variables such that z; € N(0,1), 22 € N(0,1/4),
23,24 € N(O, %), 25,26,27, 28 € N(O, Tl6)

Let {z0,2n,;} where n = 1,2,3,..., 7 = 1,2,...,2""1 be a collection of independent
Gaussian random variables with mean 0 and variance 1. Recall that

if z€N(0,1) then 2% e N(0,27%).
We start by constructing a Gaussian random walk on Dy by setting
Bp(0) =0 and By(1l) = zp.
Then we refine it to a Gaussian random walk By on D; by setting

_ Bo(1) + By(0) LA

B1(Do) = Bo(Do), Bi(1/2) 5 5
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Note that
20 21,1
B (1)) = — =
=242
Hence
1 1 1
By (1 — -4 _z
Var (B (1) = 1+ =

as desired. Let us show that the increments of Bj restricted to the dyadic set Dy =
{0,1/2,1} are independent, i.e., that By(1/2) — B1(0) and B(1) — B(1/2) are independent.
Indeed, a linear combination of independent Gaussian random variables 1 ~ N (m1,0%)
and g ~ N (mg, 03) is Gaussian: axy +bre ~ N(amy +bma, a?o3 +b%03) (check it!). Then
we calculate:

By (1) = Bi(0) = T+ ~ N (0,12),

Bi(1) - Bi(if2) =20 — 5 = 2L = 2 - B L N (0,119,
() (3= (3)]) -2

Since uncorrelated Gaussian random variables are independent, we conclude that By (1/2) —
B1(0) and B(1) — B(1/2) are independent.

Next, we refine By to a Gaussian random walk By on Dy by setting Bo(D;) = B1(D1)
and

B2 (1) = 3 1By () + Ba(0)] + 2L
Ba(31) = 5 1B1(1) + B ()] + 222
Then,
Var (Ba () = Var (1211 (46) + Br(O)] + 225 ) = 55 = ¢
Var (B2 (44) = Var (5 [B1(1) + B1 ()] + 222 )

= Var (; [B1(1) — By (L) + 2By (12)] + m)
3
T4

22
1[1 1 1
= |o44-| += .
4[2+2]+8

as desired. Show that the increments of Bj restricted to the dyadic set Dy = {0,1/4,1/2,3/4,1}
are independent. First show that Bs(272(k+1)) — B2(272k) and B2(272(1+1)) — B2(2721)
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for 0 < k <1 < 3 are independent. If k is even, i.e., k = 2p, we have:
Py _ p _1 ptl 227p+1_ P\ _
Bo (2-1-4) 32(2)—2[ —i—Bl ﬂ 2(2)—
p+1 p 22 p+1 1 1
B — B (= ~ 0,-- = 0, :
2[1(2> 1<2>]+2\/§ N<42 5) =V %1

If k£ is odd, i.e., kK = 2p + 1, we have:
p+1 p, 1 p+1 1 P p+1 22 p+1
By [m—=)-By (= B —~|B (%) +B =
(757) - (5ra) = () s [m ) m ()] -3
1 p+1 p Zop+1 11 1 1
—|Bi(— ) —=Bi ()] - == ~ S+ 2) = -).
2[ 1< 2 ) 1(2)] 2,2 N0 375) =N %3

Note that both % [Bl (ﬁ> — B ( )} and Z;% are independent Gaussian random vari-

ables with mean 0 and variance 1/8. If k£ = 2p and | = 2p + 1, using an argument similar
to the one used for showing that that By(1/2) — B1(0) and B(1) — B(1/2) are independent,

we show that
po1)_ (23) pHLN _p(p 1
By <2—|—4> By 5 and BQ( 5 By 2+4

are independent. If k and [ are such that floor(k/2) < floor(l/2), then the argument above
implies that Be(272(k+1)) — B2(272k) = 21 + 29 and Bo(272(I+1)) — B2(2721) = y1 + v,
where x1, 2, Y1, y2 are independent Gaussian random variables with mean 0 and variance
1/8. Therefore, Bo(272(k + 1)) — B2(272k) and B2(272(1 + 1)) — B2(27%) for 0 < k <
[ < 3 are independent. Finally, the increments over non-overlapping (no common interior
points) of By restricted to Dy are independent as they are sums of mutually independent
increments.
Continuing inductively, we define (i) : By, (Dp—1) = Bn—1(Dpn-1); (ii) for Dy\Dy—1

k 1 . 1 k k+1 Zn,k+1
n (2n1 + 2n> 9 <Bn—1 <2n1> + Bn-1 (2n1 )) + 2(n+1)/2?

where 2, +1 ~ N(0,1). It is shown in [3] that if one continues this refinement procedure
up to infinity, the resulting process satisfies the definition of Brownian motion. The first
six steps of this procedure are illustrated in Fig. 1.

A.2. Construction of the Brownian motion by a random walk. This construction
is left as an exercise.

Exercise Consider the mesh

{tj | t; =jh, h=2, 0

IA
S,
IN

=
—
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Let {z; }évzl be independent Gaussian random variables with mean 0 and variance 1. Con-
sider the Gaussian random walk By, (t) defined by

B (0) =0,
Bh(tj) = Bh(tjfl) + Zj\/ﬁ, j=1,...,N,
1 .
By(t) = [Bn(tj—1)(t; —t) + Bp(t;)(t — tj-1)], tj-1 <t <t;, j=1,...,N.

h
Prove that this random walk satisfies axioms (1)-(4) of Brownian motion at the points ¢,
j=01,...,N.

Exercise A simple construction of the Brownian motion can be done as follows. Consider
a random walk on a mesh in the (z,t)-space, t > 0, € R in which the time-step k and
the space step h are related to the time step k via k = h2. Start at the origin at time 0.
At any discrete moment of time t = k, 2k, 3k, ..., take a step to left or to the right with
probability 1/2. Let k and h tend to zero in such a manner that the relationship k& = h? is
maintained. Apply the Central Limit Theorem and obtain the Brownian motion.

The last exercise will be solved in Section 77 ahead.

APPENDIX B. AN EXAMPLE COMPARING ITO’S AND STRATONOVICH’S STOCHASTIC
INTEGRALS

Calculate f; wdw (the Ito stochastic integral) and ff wodw (the Stratonovich stochastic
integral). Let the partition be uniform, i.e.,

b—a

n

At =

We start with the Ito stochastic integral.
b
/a wdw = iiglozi:w(ti) o (tian) — wit:)]

= 1 lim [wQ(tiH) - w2(ti) — (w(tit1) — w(ti))Q]

E Y (w(tin) —w(t)?| = (tin —ti) =b—a.

% i
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Var (Z(w(tz‘-H) — w(ti))Q) = Z [E[( (tiv1) — w(ti))ﬂ — (E[(w(ti_l,_l) — w(ti))z])

2
.’I,'4€ T /2Atd$

< ZE tH—l (tZ))4] = \/%

b—a)? b—a)?
= 3n(At)? = 3n( 5 a) = 3(b—a) —0 as n — oo.
n n

Here we have used the fact that the fourth central moment of N'(u,0?) is 30%. Hence

/bwdw: w?(b) — w?(a) B b—a'

2 2

The expected value of this integral is zero. Indeed, w(t;) [w(t;+1) — w(t;)] is a product of two
independent Gaussian random variables with mean 0, hence F [w(t;) [w(tiy1) — w(t;)]] =0
for all i. Therefore,

E[/abwdw} =B

Now we will calculate the Stratonovich stochastic integral:

/ wodu = B 3 w1/ wltin) — u(t)

= lim » [w(tiy1/2) — w(ts) + w(t)][wtiv1) — w(tip12) +w(tip1y2) — w(ti)]

lim ‘ w(t;) [w(tiv1) —w(ti)]| = 0.

A—0
K3

A—0 ;
= iiglo ' (w(tiz1/2) — w(t;))?
+ iiglo Z tiv1/2) — w(ty))(w(tiv1) — w(tiy1/2))

+ lim w(ti) [w(ti“) — w(ti)] .
A—0 -
The first limit can be evaluated by finding its mean (b—a)/2 and showing that its variance
tends to zero as n — oo. The second limit is zero as it is the sum of products of independent
Gaussian random variables with mean zero and vanishing variance as as n — oo. The third

limit is the Ito stochastic integral that we have just evaluated. Hence,

/b“"’dw= boa  wb)—wia) b-a _wi(b)-wi(e)

2 2 2 2

b b
/wodw;«é/wdw.

As you see,
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