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Introduction

Quantum Chemistry

Why quantum chemistry?

@ Systems at scales
small-enough to be governed
by quantum mechanics

@ Scale of a few Angstéms
~1070m

Figure: source:
https://en.wiktionary.org/wiki/atom



Introduction

Ab-Initio Quantum Chemistry

"From First Principles”: given atoms in molecule, can calculate
macroscopic properties using only quantum mechanics

@ Chemistry = molecules, bonding
@ Materials Science — solids, material properties

@ Biology = interaction of protiens



Introduction

Density Functional Theory to Molecular Dynamics
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Introduction

Many-Body Problems

Given many interacting particles, derive salient properties of system

@ Classical problems — position and momenta given exactly

@ Quantum problems — wave-function

Many questions to ask, and lots of solutions (Perturbation Theory,
Quantum Monte Carlo, DFT, etc.)

Electronic structure: understand motion of electrons in molecule )




Basics of Quantum Mechanics

Wave Functions

Position and momenta not known exactly, but determined by
wave function denoted W(x)

Assume W(x) € L2(R3)

@ Wave function of system with N particles is
l|’(X1,X27 - ,XN) eH

x = (r,0), o is spin

Normalized: ||W|y=1



Basics of Quantum Mechanics

Wave Functions

@ Probabilistic intuition:
\\Il(xl, ce 7X/\/)’zdxl e dXN

Probability of finding particle 1 in volume |x; + dxi|, particle 2
in volume |x2 + dxz|, etc.



Basics of Quantum Mechanics

Operators and Measurements

In a quantum system,

@ Observables are self-adjoint operators on the state space,
A:H —H, (Ax,y) = (x,Ay)
e Eigenvalues of A are real

@ Result of measurement is eigenvalue of operator

Why?
@ Measurement inherently affects a quantum system

@ "Quantum” in quantum mechanics: measurements are only
eigenvalues of operators



Basics of Quantum Mechanics

Operators and Measurements

"A measurement always causes
the system to jump into an
eigenstate of the dynamical
variable that is being measured,
the eigenvalue this eigenstate
belongs to being the result of
that measurement” - Paul Dirac

Figure: Source https://en.
wikipedia.org/wiki/Paul_Dirac


https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Paul_Dirac

Basics of Quantum Mechanics

Operators

QM Operators
@ Momentum operator p = —ihV = piy(x) = —iAV(x)

e Position operator & = (Xt)(x) = x1(x)
o Kinetic energy operator T = P p=FLV?




Basics of Quantum Mechanics
Notation

Given A : H — ‘H, self-adjoint

Bra-Ket Notation

A

Quantum state |x) € H, observable (operator) A
o (Ax,x) = (x, Ax) := (x| A|x)
° (x,y) = (xly)




Basics of Quantum Mechanics

Probabilistic Interpretation, Revisited

Expected Value

The expected value of operator A in a state |x) is defined as

(A), = (x]Alx)

Assume A, self-adjoint, has a complete set of eigenstate |&7)
@ Any state |x) can be written as a superposition of eigenstates

) => 1))
J
@ The expected value of that state is

(A), = (x|AJx)
— . x| 2
=% A |wlsp |

/" Outcome Proba bility



Basics of Quantum Mechanics

Hamiltonian

@ One important operator: Hamiltonian, H represents the total

energy of a system

H= T + Vv

~—~
Kinetic  Potential

@ Two parts:

One particle, mass m,

a2 22
y_ P PV

2m 2m

p=—ihV

p momentum operator



Basics of Quantum Mechanics

Time-independent Schrodinger Equation

The Time-indepedent Schrédinger Equation

Given Hamiltonian operator H

Hw) = E|w)

@ Energy of the system A = Eigenvalue problem
@ Smallest eigenvalue Ej is the ground-state energy

o Ground-state is important: e 75 /7



Basics of Quantum Mechanics
Variational Form for Ground-state Energy

Variational Form

@ Quantum Mechanics — Variational Principle
o Applied Mathematics — Rayleigh Quotient



DFT Hamiltonian and approximations

Electron Problem
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Figure: Source: [9]



DFT Hamiltonian and approximations

Quantum Many-body Hamiltonian

The Hamiltonian for a Quantum system with M nuclei at positions
{R;} and N electrons at positions {r;} is:

Many-Body Hamiltonian

b ﬁ/’:rﬁv? % Z:Zie? L RV?
= 2M; 2,4 [Ri—Rj| & 2m
i#j
P 1
i=1 j=1 |Rl—rJ| |I’,—I'J|
1751

e M; is mass of it" nucleus, and m is mass of electron
@ h is the reduced Planck constant

@ Z; is charge of i*" nucleus, e is charge of electron



DFT Hamiltonian and approximations

Quantum Many-Body Hamiltonian

Many-Body Hamiltonian

i M KVE, 1 ﬁ/’: ZZ;e? 2"’: V2
= 2m 2 .~ IR, — Rj| £~ 2m
ij<M i=1
i#j — v
Kinetic energy nuclei Kinetic energy electrons
lon-ion interaction
€2 1 N €2
ZZ‘Rl_H 72’ —
i=1j=1"" J ij<N J
i#j

lon-electron interaction

—_— —————
Electron-electron interaction




DFT Hamiltonian and approximations

Quantum vs Classical Many-Body

Classical system with N particles: momenta and position are
known exactly
Quantum system with 10 particles

@ Discretize wave function with just 100 points in each x,y, z
coordinate (1003 = 10° points)

@ 10° points for each coordinate = (10°)!0 = 10°0 dimensions

@ Need to approximate



DFT Hamiltonian and approximations

Born-Oppenheimer Approximation

Nuclei are significantly more massive than electrons

Regard nuclei positions {R;} as fixed. Born-Oppenheimer
(B-O) Approximation

Constant lon-ion interaction

1 ﬁ”: ZZe .

l,j<l\/l
i#j

@ Nuclear kinetic energy




DFT Hamiltonian and approximations

Born-Oppenheimer Approximation

Many-Body Hamiltonian Under B-O Approximation

. Nopv2 M N 72
H==2 2n;’_ZZ|R,

i=1 i=1 j=1

Z

ij<N
1751

]r, _rJ’

@ We can add constant Ej; before or after solving

@ This approximation isn’t enough to make Schrodinger’s
Equation tractable



DFT Hamiltonian and approximations

Many-Body Hamiltonian Under B-O Approximation

=T+ Ven+vee+EII

We can write



DFT Hamiltonian and approximations

Independent-electron Approximation

@ The electron-electron
interaction term >_ ﬁ is
tricky

@ "The role of correlation
among electrons stands out
as definining the great
questions and challenges of
the field of electronic

structure today” - Richard Figure: Richard Martin, American
Martin Condensed Matter Theorist




DFT Hamiltonian and approximations

Independent-electron Approximation

@ Electron-electron interactions are difficult
o What if we ignored them?

i=1 i=1j=1
_ —ZN: (WE}. —fj Z;e? )
=1 2m i ’R,‘ — rj\

Now Schrédinger's Equation becomes:

. N|{av: M 72
Aw = — Yo ’ v
j_zl 2m ; ’R, — I’j|

HJ



DFT Hamiltonian and approximations

Independent-electron Approximation

System with H as above admits seperable eigenfunctions of form

W(xy,x2,...,xn) = Y1(x1)2(x2) ... ¥n(xn)
Hj(x) = Epi(x)

o Total Ground-state Energy E = E1 + E> 4 --- + Ep

@ Wave Functions under this approximation don’t satisfy the
Pauli Exclusion Principle



DFT Hamiltonian and approximations

Pauli-Exclusion Principle

@ Pauli-Exclusion Principle: two fermions cannot occupy same
quantum state
@ W(xy,...,xy) is anti-symmetric:
Q W(xy, ..., Xjy. o, Xj, ... xy) =0 if x; = x;
Q W(x1,...,Xj .., Xjy. oo Xy) = —W(X1, .., X,y ooy Xy Xy)



DFT Hamiltonian and approximations

Variational Principle, Revisited

Variational Form

_ (W|H|w) .
E AT AT
vedy (W[w) ﬁu:%;f'm W)
=1

o Ay = Set of N-electron antisymmetric wavefunctions

o Ay is large and complex

Variational Approximation

EV = min (W|H|W)
WeBy
lwjl=1

With By € Apy. Note EV > E

One idea of antisymmetric function: a determinant



DFT Hamiltonian and approximations
Slater Determinant

Slater Determinant

Define A%, C Ay as the set of all Slater Determinant
wavefunctions

Yilxa)  Pile) .. i)
1 [Ye(a) Yo(x) ... P2(xn)

v FE
Yn(xa) Un(xe) .. Un(xn)

Such that the N spin-orbital functions {1;}/_; satisfy
o 1 € 2
o (Vilyy) = djj




DFT Hamiltonian and approximations

Variational Principle, Revisited

Hartree-Fock Variational Form

e (WA

Since A%, c Ay we have that EFF > E
So, solving for

EMF = min (W|H|W)
we Al
wi=1
= min (W|T + Vep + Vee + Ej|W)
weAd
lwi=1



DFT Hamiltonian and approximations

Hartree-Fock Approximation

Hartree-Fock Energy

Define the following functional FHF (W) = FHF({yp AN 1)

FAF (it V) = XN:/ (;‘Vr¢i’2+vext’¢i’2) dx
41 Z//W): |r| |4 (x) P dxdx’
Z//w,*(x wj‘(x ) (x)i(x /)dde'+E//

=7

M = min FPE((giy)
{i}l,
(ilby)=0j;




DFT Hamiltonian and approximations

Parametrizations for W

Aside: approximation methods in quantum many-body problems

Variational Approximation

EV = min (W|H|W)
veBy
lwj|=1

With By € Apy. Note EV < E

Variational Approximation (Parametrization)

P_ :
£ = min (Ws|H|W)

0 could be parameters in a tensor network or neural network

N

Could also make convex relaxations to this problem
(See intro of [4])



DFT Hamiltonian and approximations

Electron Density and Wavefunction

Electron Density
Given a Slater-Determinant wavefunction W,

N
p(r) =D _wi(n)?
i=1

Probability that an electron lies in an infinitesimal area around r
@ W(xy,...xy) = determines p(r)

@ p(r) = determines W(r)
?



DFT Hamiltonian and approximations

Hohenberg-Kohn Theorems

Theorem (Hohenberg-Kohn)

For any system of interacting particles in an external potential Vey,
the potential Ve is determined uniquely, except for a constant, by
the ground state particle density p (Original Paper: [3])

W s a functional of the electron density:

W= W]

AN

ex t lu



DFT Hamiltonian and approximations

Variational Principle and HK

E= min (W/HW)
Ve Ay
(w|w)=1

= min { min (W|H|W)
pEIN | WEAN
Wi—p

wrgiEN (W|T + Vep + Vee + Ej|W)
Wi—p

= min
pPEIN

pEIN | WeAN
Wi—p

= min { min (W|T + Ve |W) + (W|V,|W) » + Eyy



DFT Hamiltonian and approximations
External Potential Term

(V| Ven| W) can be expressed solely in terms of density

N N

(V[ Ven| W) = (W[ Ve (ri; {RM_1H|w) )= (V[ Veee(ri)| W)
i=1 i=1

N
= Z/ W* (X1, .« oy XN) Vexe (F)W(x, - . ., xn)dxa - .. dxy

= N/|\U X1yeoo | Vext(rl)dxl dXN




DFT Hamiltonian and approximations
Levy-Lieb Functional

E= min { min (W|T + Vee| W) + (W|Ver| W) b + E
min \%IEN( |T + Vee|W) + (W[ Ve |W) ¢ + Ey
—p

= min J min (W|T + Voo W) —i—/p(r)Vext(r)dr +Ey
Wi—p

Definition (Levy-Lieb Functional)

The Levy-Lieb Functional, 7 [p], is defined as

Fulpl = gmin (V[T + Vee|W)
‘Ur—);l)v




DFT Hamiltonian and approximations

Density Functional Theory

The ground-state energy can be found through the following
minimization

£ = min { il + [ o(r)Verl1)} +

e Fii[p] is hard to calculate
@ How to simplify? Recall
W|Hw R
EHF = min w: min (W|H|W)
ver (WWY  uen
[w]=1

optimizes over the set of Slater Determinants A%,



DFT Hamiltonian and approximations

Kohn-Sham Density Functional Theory

@ Kohn-Sham Idea: Slater Determinant and DFT
o Vp € Jn, there exists a W € A%, such that W p

Using Slater Determinants, this becomes

Fulpl = gmin, (W|TI¥) + 2//p )drdr + Eelp]

llh—>p

o E,. is the exchange correlation functional, not known

o E,. contributes little to energy



DFT Hamiltonian and approximations

Kohn-Sham Density Functional Theory

Kohn-Sham DFT Energy

G _ 1 p(ne(r) |
P = (wiTi) + 5 [ [ BEE T + Bl

+ / AP 1 B

and the energy becomes




DFT Hamiltonian and approximations

Kohn-Sham Density Functional Theory

Kohn-Sham DFT Energy (Orbitals)

Expressed in terms of Orbitals, we have
P Z/rv D)L+ [ plr)Ve()d

2// plr)p drdr + Exc[p]

And the ground-state energy is

EKS — min FE{wity)
{wi i=1
(¢i|¢j>:5u

In principle, exact! Assuming we know E,,



DFT Hamiltonian and approximations

Exchange-Correlation Functionals

5% RPA,

- double hybrid . roi dependent
unctionals
= .
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Figure: Source [6]



DFT Hamiltonian and approximations
Kohn-Sham Equations

LRSS (o)) (1 ) 0EAY
2 50 (r) ( 3t Vo) 5 [ [P e+ e )“””

= > W)X
j
And our Euler-Lagrange equation becomes

(=38 + Vaslr) + | A a0+ S ) = oo




DFT Hamiltonian and approximations
Kohn-Sham Equations

To Solve: Find Stationary Point of Lagrangian

LOFS({w)) (1 o OBl
2<W()_( A+ Vee(r ‘ 5p )w,()
:ij(r)/\l

And our Euler-Lagrange equation becomes

e
5 Vo) + [ Ao P 0y — o

depends on ;



DFT Hamiltonian and approximations

Solving a KS-DFT Problem

@ Discretize Hamiltonian onto a basis set using orbitals
@ Solve eigenvalue problem

© Update orbitals until self-consistency

Discretization

Pin — H[pxn]

Iteration \ / Evaluation

Pout

Figure: Source [6]



DFT Hamiltonian and approximations

Questions?

Thanks for coming to the talk!
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