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1. Principal Component Analysis

Principal Component Analysis (PCA), originally formulated by Pearson (1901), is a
widely used tool for data analysis in both natural and social sciences. A classical reference
for the PCA is the book by I. T. Jolliffe [1] available online. Here I give just a brief
overview.

Let η ∈ RD be a vector random variable. Let

X =

 x>1 →
...
x>n →


be an n×D matrix of samples of η. The goal of the PCA is to map the samples of η from
the high-dimensional space RD into a low-dimensional space Rd, while retaining as much
variation present in the samples as possible.

1.1. Derivation. We would like to replace η with a random variable ξ ∈ Rd whose com-
ponents are linear combinations of the components of η,

ξ = (w>1 η, . . . , w
>
d η)

1

http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20(2ed.,%20Springer,%202002)(518s)_MVsa_.pdf
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where the coefficients wi, i = 1, . . . , d maximize the variance Var(w>i η) while satisfy the
constraints

w>i wi = 1, i = 1, . . . , d, and Cov(wiη, wjη) = 0.

The condition Cov(wiη, wjη) = 0 means that the components of ξ should be uncorrelated.
First we find PCA 1, ξ1 = w1η using Lagrange multipliers. Let

C := Cov(η) = (E[(ηi − E[ηi])(ηj − E[ηj ])])
D
i,j=1

be the covariance matrix of η. It is D ×D, symmetric positive definite provided that all
components of η have nonzero variances. Then

Var(ξ1) = E[(w>1 η − w>1 E[η])2] = w>1 Cw1.

The Lagrangian function is given by

L(w, λ) = w>1 Cw1 − λ(w>1 w1 − 1),

where λ is the Lagrange multiplier. Differentiating L with respect to w1 we get

Cw1 − λw1 = (C − Iλ)w1 = 0.

Hence w1 must be an eigenvector of C corresponding to the eigenvalue λ. To decide which
eigenvalue we pick, we recall that we are maximizing

w>1 Cw1 = λw>1 w = λ.

Hence, we pick λ1, the largest eigenvalue of C, and the corresponding eigenvector w1.
Next we will look for w2. The zero covariance condition gives:

Cov(w1η, w2η) = w>1 Cw2 = λ1w
>
1 w2 = 0.

Hence w2 must be orthogonal to w1. The Lagrangian function is

L(w2, λ, φ) = w>2 Cw2 − λ(w>2 w2 − 1)− φw>1 w2.

Differentiating it with respect to w2 we get:

Cw2 − λw2 − φw1 = (C − Iλ)w2 − φw1 = 0.

Taking a dot product of this equation with w1 we get: 0− 0− φ = 0 which forces φ to be
zero. Hence, λ and w2 must be an eigenpair corresponding to the second largest eigenvalue
of C.

Proceeding in a similar manner, we find that wk is the eigenvector of C corresponding
to its kth largest eigenvalue.

The variables ξi = w>i η where wi, i = 1, . . . , d are the eigenvectors of the covariance
matrix C corresponding to the d largest eigenvalues, are called the principal components.
The vector wi, i = 1, . . . , d, is called the vector of coefficients or loadings for the ith principal
component.
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1.2. Calculation in practice. In practice, when we are dealing with data, the data points
xi ∈ RD are interpreted as samples of a vector random variable. The covariance matrix is
not known. To approximate it, we compute the D ×D data covariance matrix. First we
need to center the data so that column means are all zero:

Y := X −

 1
...
1

[ 1

n

n∑
i=1

xi1, . . . ,
1

n

n∑
i=1

xiD

]
.

Then the covariance matrix is given by

C :=
1

n
Y >Y.

Its eigendecomposition with eigenvalues ordered in the decreasing order is

C = WΛW>, where Λ = diag{λ1, . . . , λD}

and λ1 ≥ . . . ≥ λD ≥ 0. The d eigenvectors corresponding to the d largest eigenvalues will
be the desired loadings. The coordinates of the data points in the principal component
space will be zi := Y wi, i = 1, . . . , d.

Now let us connect the PCA with the SVD. Let

Y = UΣW>

be an SVD of Y . Then

Y >Y = WΣ2W> ≡ NC = NWΛW>.

Hence the first d columns of W = [w1, . . . , wD] are the vectors of coefficients for the first d
principal components, and the principal components are Y wi.

2. Diffusion maps

While the PCA is a power tool when the data points lie near a d-dimensional hyperplane
in RD, it might fail to give a nice embedding if the data are instead located near some
d-dimensional curved manifold. To handle this case, Coifman and Lafon (Yale University,
2006) introduced the so-called diffusion maps [2]. The key idea of this approach is to
devise a discrete-time Markov chain on the data points and define the distances between
remote points using the stochastic matrix of this Markov chain. This approach is robust to
noisy data and is capable of adequately representing complex geometries of data structures.
This dimensional reduction technique has been successfully applied to problems arising in
protein dynamics (e.g. [3, 4]). A weakness of this approach is that it requires to provide a
scaling parameter ε which might be hard-to-find. Nonetheless, it is a beautiful idea worth
going over. One approach to tackle the problem of choosing ε was proposed by A. Little,
M. Maggioni, and L. Rosasco.

https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf
https://pdfs.semanticscholar.org/012e/b8da8885060d22c2598e287e61b25cec2121.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.1721&rep=rep1&type=pdf
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2.1. Background: properties of stochastic matrices. An n × n matrix P is called
stochastic if its entries are nonnegative and its row sums are equal to 1. The entries Pi,:
can be interpreted as the transition probabilities from state i: pij is the probability that
the system currently at state i will go next to state j.

Definition 1. We say that a sequence of random variables (Xk)k≥0, Xk : Ω → S ⊂ Z, is
a Markov chain with initial distribution λ and stochastic matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xk+1 = ik+1 | Xk = ik, . . . , X0 = i0) = P(Xk+1 = ik+1 | Xk = in) = pikik+1
.

We will write a probability distribution as a row vector. One can show that if λ is the
initial probability distribution, then the probabiliby distribution after one step becomes
λP , in two steps λP 2, in k steps λP k, and so on. A probability distribution π is invariant
if

πP = π and
n∑
i=1

πi = 1.

If µ is a row vector with n entries such that µP = µ, we say that µ is an invariant probability
measure. Note that µ does not need to sum up to 11.

We will limit ourselves to a special kind of Markov chains arising in diffusion maps:

• The number of states is finite: |S| = n.
• The stochastic matrix P is irreducible and aperiodic. Irreducibility means that any

state can be reached from any state in a finite number of jumps, i.e, for any pair
i, j, (P t)ij > 0 for some t ∈ N. Aperiodcity means that for any state i and for all
sufficiently large t, there is a nonzero probability of returning to i in t steps, i.e,
(P t)ii > 0 for all large enogh t and for all i. In this case, one can prove that there
exists a unique invariant probability distribution π, and for any initial probability
distribution λ we have

lim
k→∞

λP k = π.

• The Markov chain is time-reversible, or, equivalently, possesses the property of
detailed balance: if π is the invariant probability distribution then

πiPij = πjPji,

The detailed balance means that, on average, the number of transitions from i to
j per time unit is the same as that from j to i.

1Note that is the set of states is infinite, invariant measure may exist while invariant distribution does not
exist. For example, consider a symmetric random walk on Z.
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2.1.1. Spectral decomposition. The detailed balance property can be written in the matrix
form:

ΠP = P>Π, where Π := diag{π1, . . . , πn}.

Note that the detailed balance condition ΠP = P>Π implies that ΠP is symmetric. Indeed,
its transpose is P>Π. Hence, the stochastic matrix P is decomposable as

P = Π−1K̃, where K̃ is symmetric.

Furthermore, P has one eigenvalue equal to 1. The corresponding right eigenvector is
r0 = [1, . . . , 1]> (as row sums are all 1), while the corresponding left eigenvector is is π, the
invariant distribution (as πP = π). All other eigenvalues of P are less than 1 in absolute
value. The fact that they do not exceed 1 in absolute value readily follows for Gershgorin
circle theorem saying that the eigenvalues of a matrix A are located within the union of
Gershgorin discs D(aii, Ri) ⊂ C, where Ri =

∑
j 6=i |aij |. Each such disc has center on the

real axis in the interval [0, 1] and has radius at most 1. The fact that all other eigenvalues
are less than 1 in absolute value follows from aperiodicity and irreducibility.

Exercise Prove this.

The detailed balance condition ΠP = P>Π implies that P is similar to a symmetric
matrix

Π1/2PΠ−1/2 = Π−1/2(ΠP )Π−1/2.

Hence all eigenvalues of P are real. Furthermore, let

V ΛV >

be the spectral decomposition of Π1/2PΠ−1/2. Then

V >Π1/2PΠ−1/2V = (Π−1/2V )−1/2P (Π−1/2V ) = Λ.

Hence

P = (Π−1/2V )Λ(Π−1/2V )−1

is the eigendecomposition of P . Denoting the matrix Π−1/2V of right eigenvectors of P
by R, we express V = Π1/2R. Hence, the matrix L = (Π−1/2V )−1 = V >Π1/2 of left
eigenvectors of P is expressed via R and Π as:

L = V >Π1/2 = R>Π.

Hence, the eigendecomposition of P is

(1) P = RΛR>Π.

Since RL = LR = I, we have

(2) R>ΠR = I.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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2.2. A basic construction of a diffusion map. First, we present the most basic diffu-
sion map algorithm corresponding to α = 0 in [2]. This construction is very similar to the
construction of Laplacian eigenmap by Belkin and Niyogi (2003) [5].

Let X = (xik) be an n × D matrix of data. The rows xi, i = 1, . . . , n, of X represent
data points lying in RD.

• First we compute the squared-distance matrix between the data points:

∆(i, j) =
D∑
k=1

(xik − xjk)2.

• Next, we pick a scaling parameter ε and define the diffusion kernel, an n×n matrix
K = (kij) where

kij = exp

(
−∆(i, j)

ε

)
.

A good choice of ε is very important. ε should be comparable to squared distances
from the data points to their neighbors. In practice, pick a reasonable initial guess
for ε and then tune it experimentally. One way to pick an initial ε is the following.
We find row minima among off-diagonal entries for the matrix ∆ . Then we find
the mean of these minima and set ε to be double this mean:

for i = 1 : N

drowmin(i) = min(d(i,setdiff(1:N,i)));

end

epsilon = 2*mean(drowmin);

Then, if the result is not satisfactory, keep increasing the factor by which the mean
of row minima is multiplied in the last line until the embedding starts making sense.
• Convert the diffusion kernel K into a stochastic matrix P = (pij) by dividing each

row of K by the corresponding row sum:

P = Q−1K where Q := diag


n∑
j=1

k1j , . . . ,
n∑
j=1

knj

 := diag{q1, . . . , qn}.

Indeed, all entries of the resulting matrix P are nonnegative, and its row sums are
one.

Note that the diagonal entries of Q constitute an invariant probability measure.
Indeed:

[q1, . . . , qn]Q−1K = [1, . . . , 1]K = [q1, . . . , qn]

as K = K> and its row sums are 1. To obtain the invariant probability distribution,
we normalize [q1, . . . , qn] so that it sums up to one:

π =
q∑n
i=1 qi

where q := [q1, . . . , qn].

http://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf
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• Let us take tth power of the matrix P and denote its entries by ptij ≡ (P t)ij . The

entry ptij is the probability to transition from i to j in t steps, t ∈ N. A family of
diffusion distances indexed by t ∈ N is defined by

(3) Dt(xi, xj)
2 :=

n∑
m=1

1

πm

∣∣ptim − ptjm∣∣2 .
Hence, the diffusion distance is a weighted l2 distance between rows i and j of the
matrix P t. Note that Dt(xi, xj) will be small if there is a large number of short
paths connecting xi and xj , which makes transition for either of them to any state
xm approximately equally likely. The power t plays the role of a scale parameter.
Let us list interesting features of the diffusion distance:

– Since it reflects the connectivity of the data at a given scale, points are closer
if they are highly connected in the graph. Therefore, this distance emphasizes
the notion of a cluster.

– The quantity Dt(xi, xj) involves summing over all paths of length t connect-
ing xi and xj . This number is very robust to noise perturbation, unlike the
geodesic distance.

• The family of diffusion maps Ψt : RD → Rn−1 indexed by t ∈ N from the data
space RD to the diffusion space Rn−1 is defined so that the Euclidean distances in
the diffusion space are equal to the diffusion distances:

‖Ψt(xi)−Ψt(xj)‖ = Dt(xi, xj).

Let

P = RΛL ≡ RΛR>Π

be the spectral decomposition of P with ordered eigenvalues:

1 = λ0 > |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1|.

The diffusion map Ψt is defined by:

(4) Ψt(xi) :=

 λt1r1(i)
...

λtn−1rn−1(i)

 ,
where R := [r0, r1, . . . , rN−1] is the matrix of right eigenvectors of P normalized so
that R>ΠR = I. Respectively, λtm, is the tth power of λm, m = 1, . . . , n− 1. Note
that since P is irreducible and aperiodic (as Pii > 0, i = 1, . . . , n) by construction,
λ0 = 1 and r0 = [1, . . . , 1]>. In Eq. (4), rm(i) denotes the ith entry of the vector
rk. In other words, Ψt(xi) is the transposed ith row of the matrix

(R1Λt1)> ≡ [λt1r1, λ
t
2r2, . . . , λ

t
n−1rn−1]>.

Note that we remove the first column of R because it consists of all ones and hence
is not informative.
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Proposition 1.

(5) Dt(xi, xj)
2 =

n−1∑
m=1

λ2t
m|rm(i)− rm(j)|2,

i.e., the diffusion distance in the data space equals the Euclidean distance squared
in the diffusion space.

We will prove this proposition after we finish the description of the construction.
• The diffusion maps allow us to do dimensional reduction by keeping only the first

few components of Ψt(·). Often it is desirable to keep only the first two or three
entries of Ψt(·) as then the diffusion map is readily visualizable. To make the
dimension of the embedding space justified, we introduce an accuracy parameter
δ ∈ (0, 1) and define the number of terms to keep:

(6) s(δ, t) = max{m ∈ N such that |λm|t > δ|λ1|t}.
Then, up to relative precision δ, we have:

(7) Dt(xi, xj)
2 =

s(δ,t)∑
m=1

λ2t
m|rm(i)− rm(j)|2,

and

(8) Ψt(xi) =

 λt1r1(i)
...

λts(δ,t)rs(δ,t)(i)

 .
This allows us to determine the power t for embedding into Rd as follows. We pick
δ ∈ (0, 1), for example, δ = 0.2, and then define t so that t is the smallest integer
such that

(9)

(
|λ1|
|λd|

)t
≤ δ ⇒ t = ceil

[
log(δ)

(log(|λd|)− log |λ1|)

]
.

Once the appropriate power for the desired dimension of embedding space (2 or 3)
is found, we can define diffusion maps (abusing the term) to 2D or 3D diffusion
spaces by

(10) Ψt(xi) =

[
λt1r1(i)
λt2r2(i)

]
and Ψt(xi) =

 λt1r1(i)
λt2r2(i)
λt3r3(i)

 .
Now let us prove Proposition 1.

Proof. Let us redefine the diffusion kernel K as

K →

(
N∑
i=1

qi

)−1

K.
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Then the stochastic matrix P with the new K can be decomposed as

P = Π−1K.

P is similar to the symmetric matrix

A := Π1/2PΠ−1/2 = Π1/2Π−1KΠ−1/2 = Π−1/2KΠ−1/2.

Hence, the eigenvalues of A coincide with those of P . Let

A = ΦΛΦ> =
n−1∑
k=0

λkφkφ
>
k .

be an eigendecomposition of A where Φ is orthogonal, and the diagonal entries of Λ, the
eigenvalues, are ordered in the decreasing order. Then the desired eigendecomposition of
P can be obtained as follows:

(11) P = Π−1/2AΠ1/2 = Π−1/2ΦΛΦ>Π1/2 =: RΛL =
n−1∑
k=0

λkrklk,

where rk := Π−1/2φk, the columns of R, are the right eigenvectors of P , and lk := φ>k Π1/2,
the rows of L, are the left eigenvectors of P . It can be readily verified that the left and
right eigenvectors satisfy the following conjugacy relationships:

(12)
n∑

m=1

πmri(m)rj(m) = r>i Πrj = φ>i Π−1/2ΠΠ−1/2φj = φiφj = δi,j ,

(13)
n∑

m=1

li(m)lj(m)

πm
= liΠ

−1l>j = φ>i Π1/2Π−1Π1/2φ = φiφj = δi,j .

Eq. (11) allows us to write entries of P t as

(14) ptim =

n−1∑
k=0

λtkrk(i)lk(m).

Plugging ptim and ptjm into (3) defining Dt(i, j), we get:

Dt(i, j)
2 =

n∑
m=1

1

πm

[
n−1∑
k=0

λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2

=

n∑
m=1

1

πm

n−1∑
k=0

[
λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2
+

n∑
m=1

n−1∑
k=0

∑
s6=k

lk(m)ls(m)

πm
λtkλ

t
s[rk(i)− rk(j)][rs(i)− rs(j)].
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Let us show that the second term in this sum is zero. Rearranging the order of summation
and using (13) we get

n−1∑
k=0

∑
s 6=k

λtkλ
t
s[rk(i)− rk(j)][rs(i)− rs(j)]

n∑
m=1

lk(m)ls(m)

πm
= 0.

Returning to the first term, we calculate:

Dt(i, j)
2 =

n∑
m=1

1

πm

n−1∑
k=0

[
λtkrk(i)lk(m)− λtkrk(j)lk(m)

]2
=

n∑
m=1

n−1∑
k=0

[lk(m)]2

πm
λ2t
k [rk(i)− rk(j)]2

=
n−1∑
k=0

λ2t
k [rk(i)− rk(j)]2

n∑
m=1

[lk(m)]2

πm

=
N−1∑
n=0

λ2t
n [rn(i)− rn(j)]2 .

Finally, we take into account that since r0 = [1, . . . , 1]>, r0(i)− r0(j) = 0. Therefore,

Dt(i, j) =
n−1∑
k=1

λ2t
k [rk(i)− rk(j)]2

as desired. �

2.3. Illustrative examples.

2.3.1. Swiss Roll. First we make an approximately uniform mesh of points on the Swiss
Roll as shown in Fig. 1(a). The number of points is n = 1060. We set δ = 0.2 and find the
values for ε and t as described above:

ε = 0.7717928, t = 147.

The points are sorted and colored according to the approximate geodesic distance to the
data point closest to the origin. The matrix P t is displayed in Fig. 1(b). The absolute
eigenvalues of P t starting from |λ1| are shown in Fig. 1(c). The embedding to 3D is in
Fig. 1(d). The Swiss Roll has been mostly unrolled.

Next, we repeat this experiment by adding noise to the data:

noisestd = 0.4;

X = X + noisestd*randn(size(X)); % perturb by Gaussian noise

Setting δ = 0.2 as before, we find:

ε = 0.6108029, t = 300.

The results are shown in Fig. 2.
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Figure 1. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh. (b): The matrix P t for ε = 0.7717928, t = 147. (c): The
absolute eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffu-
sion map to 3D.

Finally, we take the same Swiss Roll data that we used for the isomap experiments with
Gaussian noise of standard deviation 0.8. With δ = 0.2, we found

ε = 2.104531, t = 1705.

The results are shown in Fig. 3.

2.3.2. Pacman. Let us consider a data set consisting of 200 images depicting the Pacman.
This example is similar to the one in this article1. Each image is 65 × 65 pixels either
black (color = 0) or white (color = 255). The images differ from each other by the angle

1While this article offers a nice exposition, I do not recommend to rely on it as it contains a number of
errors in important formulas. For example, Eqs. (6) and (7) contain errors, the comments following Eq.
(9) are misleading, etc.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6590&rep=rep1&type=pdf
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Figure 2. (a): The Swiss Roll dataset with points arranged into a quasi-
uniform mesh and perturbed by Gaussian noise with standard deviation
0.4. (b): The matrix P t for ε = 0.6108029, t = 300. (c): The absolute
eigenvalues of the eigenvalues of P t starting from |λ1|. (d): Diffusion map
to 3D.

of rotation of the Pacman around the center of the image. The angles of rotation are

αi =
2πi

200
.

A sample of 20 such images is shown in Fig. 4(a). This dataset is naturally embedded into

R652 = R4225 space. Note that D > N in this case. The PCA mapping into 3D applied to
this dataset is shown in Fig. 4(b). The absolute eigenvalues and the embedding into 3D
are shown in Figs. 4(c) and (d) respectively. Both the PCA and the diffusion map show
that the set of images is well-approximated by a 1D manifold as we would expect.

2.3.3. Cat-in-the-hat. A similar example with a more complex image of the Cat-in-the-hat
is shown in Fig. 5. Each image is 500× 500. The double-loop formed by the mapped data
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Figure 3. (a): The Swiss Roll dataset used for the experiments with
isomap perturbed by Gaussian noise with standard deviation 0.8. (b): The
matrix P t for ε = 2.104531, t = 1705. (c): The absolute eigenvalues of the
eigenvalues of P t starting from |λ1|. (d): Diffusion map to 3D.

is caused by the fact that the image rotated by π is closer to the original image than those
rotated by an angle between π/6 and 5π/6.

2.4. Removing the effect of nonuniform sampling. Coifman and Lafon in [2] pro-
posed a more general construction than the one described in Section 2.2: a whole family
of diffusion maps parametrised by three parameters:

• ε, the local scale parameter,
• t ∈ N, the number of steps done by the constructed Markov chain, and
• α ∈ R, a renormalization parameter.

The most interesting values of α are 0, 1/2, and 1. The construction defined in Section 2.2
corresponds to α = 0. The illustrative examples suggest that this construction handles
noisy but uniformly distributed data pretty well, but nonuformity (even due to sampling
from uniform distributions) leads to ugly embeddings like in Figs. 3(d) and 5(d).
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Figure 4. The dataset consists of 200 images of the Pacman rotated around
the center of the image by angles αi = 2πi/200. (a): A sample of 20 data
points. (b): The PCA mapping into 3D. (c): The absolute eigenvalues
of the eigenvalues of P t starting from |λ1|. Here: δ = 0.5, ε = 2335698,
t = 187. (d): Diffusion map to 3D.

The matrix P for a given α > 0 is constructed as follows. Here we assume that the kernel
is Gaussian while in [2] a more general kernel is allowed provided that it is rotation-invariant
and has exponential decay.

• Step 1. Set a rotation-invariant kernel

kε(x, y) = exp
[
−‖x− y‖2/ε

]
.
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Figure 5. The dataset consists of 200 images of the Cat-in-the-hat rotated
around the center of the image by angles uniformly distributed in (0, 2π).
(a): A sample of 20 data points. (b): The PCA mapping into 2D. (c):
The absolute eigenvalues of the eigenvalues of P t starting from |λ1|. Here:
δ = 0.2, ε = 7.318159 · 107, t = t. (d): Diffusion map to 3D.

• Step 2. Calculate row sums qε(x) =
∑

y kε(x, y) and form the new kernel

(15) k(α)
ε (x, y) =

kε(x, y)

qαε (x)qαε (y)
, or K = Q−αKQ−α.
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• Calculate row sums
d(α)
ε (x) =

∑
y

k(α)
ε (x, y)

and define the stochastic matrix

(16) Pε,α =
[
D(α)
ε

]−1
K(α)
ε ,

where

D(α)
ε = diag

{
d(α)
ε (x1), . . . , d(α)

ε (xn)
}
, K(α)

ε = (k(α)
ε (xi, xj))

n
i,j=1.

The rest of the construction is the same as in Section 2.2 except for the formula for the
embedding is modified to:

(17) Ψt(xi) =


λ

(1−α)t
1 r1(i)

...

λ
(1−α)t
s(δ,t) rs(δ,t)(i)

 .
This construction is given in [2] in a continuous setting. This allows one to consider

the limit ε→ 0. The main theoretical result in [2] is the theorem relating this limit to an
α-dependent differential operator. It follows from this result that, in order to compensate
for a noninuform distribution of data, one needs to take α = 1.

2.5. Approximation of differential operators by means of diffusion maps. Sup-
pose that the data points xi ∈ Rd, i = 1, . . . , n, are sampled from a pdf q(x). Let G(x, y)
be any function of two variables, and f(y) be any function of one variable. Then we define
the matrix G = (G(xi, xj))

n
i,j=1 and the vector f = [f(x1), . . . , f(xn)]>. Then by the strong

law of large numbers we have

(18) lim
n→∞

1

n

n∑
j=1

G(xi, xj)f(xj) = Ey [G(xi, y)f(y)] =

∫
Rd
G(xi, y)f(y)q(y)dy.

Now let us take G(x, y) = kε(x, y) ≡ exp(−‖x− y‖2/ε) and define

(19) Pε(x, y) =
kε(x, y)∫

Rd kε(x, y)q(y)dy
and Pε(xi, xj) =

kε(xi, xj)∑n
j=1 kε(xi, xj)

.

Then the matrix-vector product Pεf approximates the following integral:

lim
n→∞

1

qε(xi)

n∑
j=1

kε(xi, xj)f(xj) = lim
n→∞

1
n

∑n
j=1 kε(xi, xj)f(xj)

1
n

∑n
j=1 kε(xi, xj)

=
Ey [k(xi, y)f(y)]

Ey [k(xi, y)]
=

∫
Rd kε(xi, y)f(y)q(y)dy∫

Rd kε(xi, y)q(y)dy
=

∫
Rd
Pε(xi, y)f(y)q(y)dy(20)

This shows us how we can relate integral operators and matrix operators as the number
of sample points tends to infinity. It is easier to manipulate integrals than sums as some
integrals we will encounter can be calculated analytically and give a nice and compact
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result. Therefore, we will first obtain the desired approximations for differential operators in
terms of integral operators, and then switch to discrete sample points and matrix operators.

2.5.1. Definitions and the main theorem.

• Let α ∈ R be a parameter. We will be mostly interested in α = 0, α = 1/2, and
α = 1 and these values lead familiar operators as we will see later. We define the
kernel function

(21) kε(x, y) = e−‖x−y‖
2/ε, x, y ∈ Rd.

• Let q(y) be a pdf. We define

(22) qε(x) =

∫
Rd
kε(x, y)q(y)dy.

Then we define a new kernel depending on the parameter α:

(23) kε,α(x, y) =
kε(x, y)

qαε (x)qαε (y)
.

Then we set

(24) dε,α(x) =

∫
Rd
kε,α(x, y)q(y)dy

and define the transition kernel

(25) pε,α(x, y) =
kε,α(x, y)

dε,α(x)
.

• Next, we define the following integral operator:

(26) Pε,αf(x) =

∫
Rd
pε,α(x, y)f(y)q(y)dy.

• Finally, we define the generator

(27) Lε,αf(x) :=
Pε,αf(x)− f(x)

ε
.

The main theorem proven in [2] shows what this generator is in the limit ε→ 0.

Theorem 1. The generator defined in (27) approximates the following differential opera-
tor:

(28) lim
ε→0

Lε,αf(x) :=
∆
(
fq1−α)− f∆

(
q1−α)

4q1−α .

Prior to proving this theorem, let us calculate the right-hand side of (28) for α = 0, 1/2,
and 1.

α = 0:

∆ (fq)− f∆ (q)

4q
=
∇ · ∇(fq)− f∆ (q)

4q

=
q∆f + 2∇f · ∇q + f∆q − f∆ (q)

q
=

1

4

(
∆f + 2

∇f · ∇q
q

)
.(29)
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α = 1/2: Suppose that q is the Gibbs density, i.e., q(y) = Z−1 exp(−βU(y)). Then

(30)
∆
(
fe−βU/2

)
− f∆

(
e−βU/2

)
4e−βU/2

=
1

4
(−β∇U · ∇f + ∆f) =

β

4
Lf,

where L is the generator for the SDE

dx = −∇U(x)dt+
√

2β−1dw.

α = 1: In this case, one can readily see that the right-hand side of (28) is 1/4∆f .

2.5.2. Proof of Theorem 1. The proof of Theorem 1 given below is a simplification of the
proof in Appendix B in [2] for the case where the manifoldM and the space X are merely
Rd. The proof makes use of the following

Lemma 1. Let Gε be an integral operator defined by

(31) Gεf(x) =

∫
Rd
kε(x, y)f(y)dy.

Then for every four times continuously differentiable function f(x) that grows not faster
than a polynomial as ‖x‖ → ∞, the following expansion in ε takes place:

(32) Gεf(x) = (πε)d/2
(
f(x) +

ε

4
∆f +O(ε2)

)
.

Proof. To obtain (32), we collect the following building blocks:

• We will use the following Gaussian integrals:∫
Rd
e−‖z‖

2/εdz = (πε)d/2;∫
Rd
zie
−‖z‖2/εdz = 0, i = 1, . . . , d;∫

Rd
z2
i e
−‖z‖2/εdz =

ε

2
(πε)d/2, i = 1, . . . , d;∫

Rd
z3
i e
−‖z‖2/εdz = 0, i = 1, . . . , d;∫

Rd
z4
i e
−‖z‖2/εdz =

3ε2

4
(πε)d/2, i = 1, . . . , d.

• We do the variable change: z := y − x. Writing y = x + z, we Taylor-expand
f(x+ z) around f(x):

f(x+ z) = f(x) +∇f(x)>z +
1

2
z>∇∇f(x)z + r3(z) + r4(z),

where r3(z) is a homogeneous third degree polynomial in z, and r4(z) is O(z4) in
a small ball around 0.
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• We assume that ε is small. Consider integrals of the form

J :=

∫
Rd\B2εµ (0)

e−‖z‖
2/εφ(z)dz,

where µ ∈ (0, 1/2), B2εµ(0) is a ball of radius 2εµ centered at 0, and |φ(z)| ≤
A+B‖z‖k, k > 0. Note that this estimate is valid for r4(z). Then switching to the
d-dimensional generalization of polar coordinates (see e.g. this note), we obtain the
following estimate:

|J | ≤ C
∫ ∞

2εµ
rkrd−1e−r

2/εdr ≤ CR(ε)e−4ε2µ−1
,

where R is a finite linear combination of powers of ε, positive and/or negative.
Since 2µ− 1 < 0, |J | tends to zero faster than any power of ε as ε→ 0.

Now we calculate:

Gεf(x) =

∫
Rd
e−‖z‖

2/εf(x+ z)dz

=

∫
Rd
e−‖z‖

2/ε

[
f(x) +∇f(x)>z +

1

2
z>∇∇f(x)z + r3(z) + r4(z)

]
dz

= (πε)d/2
[
f(x) +

ε

4
∆f(x)

]
+

∫
B2εµ (0)

e−‖z‖
2/εr4(z)dz +

∫
Rd\B2εµ (0)

e−‖z‖
2/εr4(z)dz

= (πε)d/2
[
f(x) +

ε

4
∆f(x) +O(ε2)

]
+

∫
Rd\B2εµ (0)

e−‖z‖
2/εφ(z)dz,

where |φ(z)| < A+B‖z‖k is the difference between r4(z) and the fourth-order term in the
Taylor expansion of f(x+ z) at z = 0. The last integral decays faster than any power of ε
as ε→ 0. Hence, (32) readily follows. �

Proof. (Theorem 1.) Lemma 1 implies that

(33) qε(x) =

∫
Rd
kε(x, y)q(y)dy = (πε)d/2

[
q(x) +

ε

4
∆q(x) +O(ε2)

]
.

Therefore,

(34) q−αε (x) = (πε)−αd/2q−α(x)

[
1− αε

4

∆q(x)

q(x)
+O(ε2)

]
.

http://muleshko.faculty.unlv.edu/am_papers_pdf/n_d_polarcoordinates_note1.pdf
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Then

Kε,αf(x) =

∫
Rd

kε(x, y)

qαε (x)qαε (y)
q(y)f(y)dy

=
1

qαε (x)

∫
Rd
kε(x, y)

[
q−αε (y)q(y)f(y)

]
dy

= (πε)−αd/2
1

qαε (x)

∫
Rd
kε(x, y)

[
q1−α(y)f(y)

](
1− αε

4

∆q(y)

q(y)
+O(ε2)

)
dy

= (πε)d/2−αd/2
1

qαε (x)

[
q1−αf +

ε

4
∆
(
q1−αf

)
− q1−αf

αε

4

∆q

q
+O(ε2)

]
(35)

Observing that dε,α(x) = Kε,α1, i.e., we need to use f ≡ 1 to get dε,α(x), we calculate the
operator Pε,α:

Pε,αf(x) =

∫
Rd

kε,α(x, y)

dε,α(x)
f(y)q(y)dy

=
q1−αf + ε

4∆
(
q1−αf

)
− q1−αf αε4

∆q
q +O(ε2)

q1−α + ε
4∆ (q1−α)− q1−α αε

4
∆q
q +O(ε2)

=

[
f +

ε

4

(
∆(q1−αf)

q1−α − αf∆q

q

)
+O(ε2)

] [
1− ε

4

(
∆(q1−α)

q1−α − α∆q

q

)
+O(ε2)

]
= f +

ε

4

(
∆(q1−αf)

q1−α − αf∆q

q
− f∆(q1−α)

q1−α + αf
∆q

q

)
+O(ε2)

= f +
ε

4

(
∆(q1−αf)

q1−α − f∆(q1−α)

q1−α

)
+O(ε2)(36)

Finally, we compute the operator Lε,α and take the limit ε→ 0:

(37) lim
ε→0

Pε,αf(x)− f(x)

ε
=

1

4

(
∆(q1−αf)

q1−α − f∆(q1−α)

q1−α

)
.

�

2.6. Calculation of the committor function on a discrete dataset. Suppose we
have generated a set of data points {xi}ni=1 by integrating the SDE

dx = −U(x)dt+
√

2β−1dw

by means of the Euler-Maruyama method. We assume that the trajectory is long enough
so that the sample points are distributed according to the invariant pdf which is the Gibbs
measure q(x) = Z−1 exp(−βU(x)). We choose an appropriate value of ε, define a kernel

kε(x, y) = exp(−‖x− y‖2/ε)

and the corresponding kernel matrix

K(i, j) = exp(−‖xi − xj‖2/ε), i, j = 1, . . . , n.
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Then we compute the vector

q(i) =

n∑
j=1

K(i, j), i = 1, . . . , n,

and form the matrix

Q := diag{q(1), . . . , q(n)}.

Next, we define a new kernel corresponding to α = 1/2:

Kε,1/2 = Q−1/2KQ−1/2.

Next, we normalize the rows of the new kernel Kε,1/2 and obtain a stochastic matrix

Pε,1/2 := D−1Kε,1/2, where D = diag


n∑
j=1

Kε,1/2(1, j), . . . ,
n∑
j=1

Kε,1/2(n, j)

 .

Finally, we pick sets A,B ⊂ I, A ∪ B = ∅, I := {1, . . . , n}, and setup the committor
equation:

n∑
j=1

Pε,1/2(i, j)c(j) = c(i), i ∈ I\(A ∪B),(38)

c(i) = 0, i ∈ A, c(i) = 1, i ∈ B.(39)

Let us explain (38). Taking the limit n→∞ and applying the strong law of large numbers,
we get:

lim
n→∞

n∑
j=1

Pε,1/2(i, j)c(j)− c(i) = lim
n→∞

1
n

∑n
j=1Kε,1/2(i, j)c(j)

1
n

∑n
j=1Kε,1/2(i, j)

− c(i)

= lim
n→∞

1
n

∑n
j=1

K(i,j)c(j)
1
n [

∑n
l=1K(i,l)]

1/2
[
∑n
l=1K(j,l)]

1/2

1
n

∑n
j=1

K(i,j)
1
n [

∑n
l=1K(i,l)]

1/2
[
∑n
l=1 kε(j,l)]

1/2

− c(i)

=
Ey
[

kε(xi,y)c(y)

(Ez [kε(xi,z)])
1/2(Ez [kε(y,z)])

1/2

]
Ey
[

kε(xi,y)

(Ez [kε(xi,z)])
1/2(Ez [kε(y,z)])

1/2

] − c(xi).
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Now we recall that

Ez[kε(xi, z)] =

∫
Rd
kε(xi, z)q(z)dz ≡ qε(xi),

Ez[kε(y, z)] =

∫
Rd
kε(y, z)q(z)dz ≡ qε(y),

kε,1/2(xi, y) =
kε(xi, y)

q
1/2
ε (xi)q

1/2
ε (y)

,

Ey[kε,1/2(xi, y)c(y)] =

∫
Rd
kε,1/2(xi, y)c(y)q(y)dy,

Ey[kε,1/2(xi, y)] =

∫
Rd
kε,1/2(xi, y)q(y)dy.

Therefore, comparing these equations with the definitions in Section 2.5.1, we see that

lim
n→∞

n∑
j=1

Pε,1/2(i, j)c(j)− c(i) =

∫
Rd
pε,1/2(xi, y)c(y)q(y)dy − c(xi) = εLε,1/2c(xi).

Dividing by ε and taking limit ε → 0, we get 1/4βLc(xi) = 0, xi ∈ I\(A ∪ B), which, to-
gether with the boundary conditions (39), is the boundary-value problem for the committor
function c(x).
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