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1. An Introduction to the Large Deviation Theory

The Large Deviation Theory was largely developed in 1960s-1970s by S. R. Srinivasa
Varadhan, (currently Professor in New York University, Department of Mathematics) in the
United States and by Mark Freidlin (also click here) (currently Professor in the University
of Maryland, Department of Mathematics) and Alexander Wentzell (currently Professor
Emeretus in Tulane University, Department of Mathematics) in the Soviet Union.

The most well-known reference for the Large Deviation Theory is the book by Freidlin
and Wentzel [16]. Its first edition appeared in Russian in the late 1970s, its most recent
edition is the 3rd edition that appeared in 2013.

In these notes, for simplicity, we will focus on the stochastic differential equation (SDE)

(1) dx = b(x)dt+
√
εdw, x ∈ Rd

where b(x) is a continuously differentiable vector field with a finite number of isolated
equilibria, ε is a small parameter, and w is the standard Brownian motion.
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1.1. Long-time behavior of solutions of ẋ = b(x). Together with Eq. (1) we also
consider the unperturbed deterministic equation

(2)
dx

dt
= b(x).

We assume that the vector field b(x) is such that for any initial condition x(0) = x0

the characteristic of Eq. (2) starting at x0 will remain in some bounded region. (A
characteristic is the equivalence class of trajectories that can be mapped one to another
by a time shift. In other words, a characteristic is a curve on the phase plane depicting
a solution of the ODE extended to the maximal time interval.) In other words, we will
consider only such vector fields b(x) that no characteristic goes to infinity at t→∞.

The solutions of the algebraic equation b(x) = 0 are called equilibria or equilibrium
points, or stationary points.

Definition 1. • An equilibrium x∗ is called stable if for any its neighborhood U(x∗)
one can find a neighborhood V (x∗) ⊂ U(x∗) such that any characteristic starting
in V (x∗) will remain in U(x∗).
• Otherwise, the equilibrium is called unstable.
• If x∗ is a stable equilibrium, and every characteristic x(t) starting in V (x∗) ap-

proaches x∗ as t→∞, then the equilibrium x∗ is called asymptotically stable.

We assume that the equation b(x) = 0 has a finite number of solutions. This implies, in
particular, that all equilibria are isolated.

To summarize, we assume that a vector field in ODE (2) satisfies the following conditions:

A1: b(s) is continuously differentiable,
A2: every characteristic of Eq. (2) remains in a bounded region,
A3: b(x) = 0 has at most a finite number of zeros.

The long-time behavior of Eq. (2) with b(x) satisfying the discussed assumptions is
simple in 1D. For every initial condition x(0) = x0, the characteristic x(t) tends to some
asymptotically stable equilibrium. All equilibrium points are solutions of the algebraic
equation b(x) = 0.

Now we discuss the long-time behavior of a characteristic in higher dimensions.

Definition 2. Let x(t) be a characteristic of Eq. (2) staying in a bounded region D. A
point x∗ is a limit point of x(t) if there exists a sequence of moments of time {tn} → ∞
such that

x(tn)→ x∗ as n→∞.
The set of all limit points of a characteristic x(t) is called the ω-limit set of x(t).

The long-time behavior of Eq. (2) in 2D is more complicated [24]. ω-limit sets of
trajectories are always connected and compact. Under assumptions A1, A2, and A3, there
are three kinds of possible ω-limit sets in 2D:

(1) an equilibrium point;
(2) a limit cycle (a closed characteristic corresponding to a periodic solution of Eq.

(2));
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(3) a set consisting of equilibria and characteristics approaching equilibria at t→ ±∞.

These types of ω-limit sets are illustrated in Fig. 1.

Asymptotically stable 

equilibrium point 

Stable limit cycle 

A union of equilibria and homoclinic and heteroclitic characteristics

Figure 1. The three possible types of ω-limit sets of trajectories of ODE
(2) in 2D.

ω-limit sets in dimensions three and higher can be very complicated. The most famous
example is the Lorenz’63 system where almost all characteristics approach a certain fractal
set at appropriate ranges of parameter values [27]. Other such examples are given by the
Roessler system [31] and Gissinger’s model for chaotic reversals [19].

The term attractor is commonly used when the long-time behavior of solutions of au-
tonomous ODEs is discussed. This term is hard to define rigorously. On one hand, the
definition should be broad enough to embrace all known candidates. On the other hand,
it should exclude impostors. Below is the definition given in S. Strogatz’s book [34]

Definition 3. An attractor is a closed set A possessing the following properties:

(1) A is an invariant set, i.e., any trajectory starting in A remains in A for all time.
(2) A attracts an open set of initial conditions: there is an open set U ⊃ A such that

for all trajectories with x(0) ∈ U , the distance between x(t) and A tends to zero at
t → ∞. The maximal set U with this property is called the basin of attraction of
A.

https://en.wikipedia.org/wiki/Lorenz_system
https://en.wikipedia.org/wiki/R�ssler_attractor
https://en.wikipedia.org/wiki/R�ssler_attractor
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(3) A is minimal, i.e., there is no proper subset of A that satisfies properties (1) and
(2).

In summary, any characteristic of ODE (2) provided that assumptions A1, A2, and A3
hold, approaches some attractor as t→∞.

The long-time behavior of SDE (1) is much more complicated. No matter how small the
noise term is, trajectories of SDE (1) will escape from any neighborhood of any attractor
of the corresponding ODE if you wait long enough. If the ODE has multiple attractors,
the noise term in the corresponding SDE enables transitions between them. The large
deviation theory [16] quantifies escapes from neighborhoods of attractors and transitions
between various attractors, i.e., gives asymptotic estimates for escape times and escape
paths. In the next few sections, we will discuss the key concepts of the large deviation
theory in terms of which the aforementioned estimates are given. Then we will discuss
numerical tools for finding these estimates.

1.2. Freidlin-Wentzell Action Functional. Let x0 and x1 be two points in Rd. We
consider a set of all absolutely continuous paths φ : [0, T ]→ Rd connecting x0 and x1. The
Freidlin-Wentzell action functional ST (φ) is defined by

(3) ST (φ) =
1

2

∫ T

0
‖φ̇− b(φ(t))‖2dt, φ(0) = x0, φ(T ) = x1,

where ‖ · ‖ is the two-norm, φ̇ ≡ dφ
dt . If φ(t) is a solution of ẋ = b(x), i.e., then the Freidlin-

Wentzel action along this path is zero. Otherwise it is positive. Let us give an insight of
where the Freidlin-Wentzell action comes from. The reasoning below is far from rigorous.
An interested reader should study Ref. [16].

Consider a solution x(t) of Eq. (1). Let us calculate the probability that x(t) nearly
follows a given path φ(t). Motivated by the fact that

dx− b(x)dt =
√
εdw

we define another path ξ(t) that should be followed by the Brownian motion:

dξ(t) = (φ̇− b(φ))dt, ξ(t) =

∫ t

0
(φ̇− b(φ))dτ.

If the solution x(t) stays close to φ(t), then the scaled Brownian motion
√
εw(t) should

stay close to the path ξ(t). Now we outline the calculation of the probability that j-th
component of the scaled Brownian motion

√
εw(t) stays in the ε-tube surrounding the j-th

component of the path ξ(t). This can be done using the Wiener measure as follows. We
discretize the time interval [0, T ]

0 < t1 < t2 < . . . < tn = T

so that the length of each subinterval is h. Recall that
√
ε(w(t + h) − w(t)) ∼ N(0, εh).

Then the probability that each component
√
εwj(t) stays within distance ε of ξj(t) is given

https://en.wikipedia.org/wiki/Absolute_continuity
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by

P ( max
1≤j≤d

max
0≤tk≤T

|√εwj(tk)− ξj(tk)| < δ)

=
n∏
j=1

lim
n→∞

∫ ξj(t1)+δ

ξj(t1)−δ

e−(y1−ξj(0))2/2εh

√
2πεh

dy1

∫ ξj(t2)+δ

ξj(t2)−δ

e−(y2−y1)2/2εh

√
2πεh

dy2

. . .

∫ ξj(tn)+δ

ξj(tn)−δ

e−(yn−yn−1)2/2εh

√
2πεh

dyn.(4)

For any 1 ≤ k ≤ n, one can make a variable change yk = ξk(k) + uk. Then∫ ξj(tk)+δ

ξj(tk)−δ

e−
(yk−yk−1)

2

2εh√
2πεh

dyk =

∫ δ

−δ

e−
(ξj(tk)−yk−1+uk)

2

2εh√
2πεh

duk.

Note that

(ξj(tk)− ξj(tk−1))2

2εh
=

(φ̇j − bj(φ(t)))2h2

2εh
=

1

2ε
(φ̇j − bj(φ(t)))2h.

Pulling these terms outside each sub-integral, carefully taking the limits: first n → ∞,
then δ → 0, and and finally ε→ 0, one obtains that

(5) P (‖√εwt − ξ(t)‖max < δ) � exp

{
− 1

2ε

∫ T

0
‖φ̇− b(φ(t))‖2dt

}
≡ exp

{
−ST (φ)

ε

}
,

where ST is the Freidlin-Wentzel action Eq. (3). The symbol ’�’ denotes logarithmic
equivalence. Eq. (5) means that

(6) − lim
ε→0

ε log
[
P (‖√εwt − ξ(t)‖max < δ)

]
= ST (φ),

i.e.,

P (‖√εwt − ξ(t)‖max < δ) = g(ε, φ, δ) exp

{
−ST (φ)

ε

}
,

where the function g(ε, ·) called a prefactor is such that it decays to zero as ε→ 0 so that

lim
ε→0

ε log g(ε, ·) = 0.

The Freidlin-Wentzell theory is concerned only with asymptotic estimates up to exponential
orders. Most of its results have the form of Eq. (6).

1.3. The quasipotential. Now we consider the problem of exiting from a region D sur-
rounding an attractor. The expected exit times and the transition rates are defined in
terms of the quasipotential. We start with the simplest case where the attractor is an
asymptotically stable equilibrium x0 of ẋ = b(x). The quasipotential Ux0(x) at point x
with respect to the point x0 is defined as the infimum of the Freidlin-Wentzell action over
all possible times T and all absolutely continuous paths φ connecting the points x0 and x:

(7) Ux0(x) = inf
φ,T
{ST (φ) φ(0) = x0, φ(T ) = x} .
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The expected exit time E[τexit] from the basin of attraction B(x0) of the point x0 is
logarithmically equivalent to [16]

(8) E[τexit] � e
1
ε

minx∈∂B(x0)
Ux0 (x).

Moreover, the maximum likelihood exit path from B(x0) is the minimizer of the Freidlin-
Wentzell action over all absolutely continuous paths from the point x0 to the boundary of
its basin of attraction and all times T . Such a path is called the Minimum Action Path
(MAP) or the instanton. A sharp estimate (including a prefactor) for the expected exit
time from the basin of an asymptotically stable equilibrium via a saddle point with only
one unstable direction provided that the quasipotential is smooth near the saddle is given
by Bouchet and Reygner in [4].

1.4. The geometric action. The infimum in time in Eq. (7) can be taken analytically.
Let a point x0 be an asymptotically stable equilibrium of ẋ = b(x), and a point x belong
to its basin of attraction. The minimization with respect to the travel-time T can be
performed analytically [16, 23, 22] resulting at the geometric action S(ψ). Let φ(t) be a
fixed absolutely continuous path φ(t). Expanding ‖ · ‖2 in Eq. (3) and using the inequality
y2 + z2 ≥ 2yz for all nonnegative real numbers y and z, we get:

ST (φ) =
1

2

∫ T

0
‖φ̇− b(φ)‖2dt =

1

2

∫ T

0

(
‖φ̇‖2 − 2φ̇ · b(φ) + ‖b(φ)‖2

)
dt

≥ 1

2

∫ T

0

(
2‖φ̇‖‖b(φ)‖ − 2φ̇ · b(φ)

)
dt(9)

=

∫ T

0

(
‖φ̇‖‖b(φ)‖ − φ̇ · b(φ)

)
dt.

The inequality in Eq. (9) becomes an equality if and only if ‖φ̇‖ = ‖b(φ)‖. The last integral
is independent of the parametrization of the path φ. Let χ be the path obtained from φ
by a reparametrization such that ‖χ̇‖ = ‖b(χ)‖. Then

(10) ST (φ) ≥ STχ(χ) =

∫ Tχ

0
(‖χ̇‖‖b(χ)‖ − χ̇ · b(χ)) dt.

Note that Tχ can be infinite. The integral in right-hand side of Eq. (10) is invariant with
respect to the parametrization of the path χ. Hence, we can pick the most convenient
one, for example, the arclength parametrization, and denote the reparametrized path by
ψ. Hence,

(11) STχ(χ) =

∫ L

0
(‖ψs(s)‖‖b(ψ(s))‖ − ψs(s) · b(ψ(s))) ds =: S(ψ),

where L is the length of the paths χ and ψ (corresponding to the same curve). For
computation of the quasi-potential, it is more convenient to deal with the geometric action
S(ψ) than with the Freidlin-Wentzell action ST (φ).
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We note that the value of integral in Eq. (11) is independent of the choice of parametriza-
tion of the path ψ. We mostly will use either the arclength parametrization or the uniform
parametrization on the interval [0, 1]. Then the geometric action becomes

(12) S(ψ) =

∫ L

0
{‖b(ψ(s)‖‖ψs‖ − b(ψ(s)) · ψs} ds

for the arclength parametrization, where L is the length of the path, and

(13) S(ψ) =

∫ 1

0
{‖b(ψ(α))‖‖ψα‖ − b(ψ(α)) · ψα} dα

for the uniform parametrization on the interval [0, 1].

1.5. The case of the overdamped Langevin dynamics. Consider the overdamped
Langevin dynamics:

(14) dx = −∇V (x)dt+
√

2β−1dw,

where β = (kBT )−1, kB is the Boltzmann constant, T is the absolute temperature. Then
the minimum and the minimizer of the geometric action have a simple characterization
[22]. Suppose a path ψ(s) connects two local minima xA and xB of V (x) separated by a
single saddle xAB. Consider first the part of the path going uphill and set

ψ(0) = xA, ψ(1) = xAB.

Start from Eq. (13) and replace b(c) with −∇V (x) in it:

S(ψ) =

∫ 1

0
{‖∇V (ψ(α))‖‖ψα‖+∇V (ψ(α)) · ψα} dα

=

∫ 1

0
{‖∇V (ψ(α))‖‖ψα‖} dα+ V (xAB)− V (xA).

Note that

‖∇V (ψ(α))‖‖ψα‖ ≥ ∇V (φ) · φα,
and the equality takes place if and only if φα is parallel to ∇V (φ(α)). Hence

S(ψ) ≥
∫ 1

0
∇V (ψ(α)) · ψαdα+ V (xAB)− V (xA) = 2(V (xAB)− V (xA)).

Therefore, the quasipotential with respect to a minimum xA within its basin of attraction
is the doubled potential. Note that traveling along the steepest descent path φ̇ = −∇V (φ)
from the saddle xAB to the minimum does not contribute to the geometric action.

The result that minψ S(ψ) = 2(V (xAB) − V (xA)) where the minimum is taken over all
paths starting at the local minimum xA and ending at the local minimum xB, is consistent
with the Arrhenius law. Indeed, the transition rate from xA to xB, which is the reciprocal
of the expected exit time from the basin of attraction of xA is

rAB � exp

{
−β

2
2(V (xAB)− V (xA))

}
= exp{−β(V (xAB)− V (xA))}.
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The path ψ that minimizes the geometric action is the one satisfying the condition dψ
dα

is parallel to ∇V (ψ), i.e., the velocity vector of the path is parallel to the gradient of the
vector field. Hence, the path ψ goes either directly uphill or directly downhill. A path ψ
going directly uphill or directly downhill is called the Minimum Energy Path or MEP. The
collection of MEPs connecting every pair of neighboring minima in the 7-well potential is
shown in Fig. 2.

1

2

3
4

6

5

7

Figure 2. The Minimum Energy Paths (MEPs) connecting every pair of
neighboring minima in the 7-well potential.

1.6. Quasipotential with respect to compact sets. In order to define the quasipo-
tential with respect to more complex attractors than asymptotically stable equilibria, we
extend its definition to a function defined on pairs of compact sets in Rn.

Definition 4. For any pair of compact sets X0 ⊂ Rn and X ⊂ Rn we define the quasipo-
tential as

(15) U(X0, X) = inf {S(ψ) ψ(0) ∈ X0, ψ(1) ∈ X} .
It follows from Eqs. (12) and (15) that the quasipotential is Lipschitz-continuous func-

tion with respect to both of its arguments on every compact set D, and the Lipschitz
constant is 2 maxD |b|. If X0 and X are points then

|U(X0, X)− U(Y0, Y )| ≤ 2 max
D
‖b‖ (‖X0 − Y0‖+ ‖X − Y ‖) .

If X0 and X are compact sets, the same is true with respect to the Hausdorff distance.
An important property of the quasipotential is that it is constant on every attractor of

the system. This property is summarized in the following theorem [5]

http://en.wikipedia.org/wiki/Hausdorff_distance
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Theorem 1. Let X0 be a compact set. Let C = {z(t) t ≥ 0} be a trajectory of ẋ = b(x),
and F be its ω-limit set. Then

(1) U(X0, y) = U(X0, F ) for all y ∈ F , i.e, the quasipotential U(X0, y) is constant on
the ω-limit set F and equals to U(X0, F ).

(2) U(y,X0) = U(F,X0) for all y ∈ F , i.e, the quasipotential U(y,X0) is constant on
the ω-limit set F and equals to U(F,X0).

1.7. The Hamilton-Jacobi-Bellman equation for the quasipotential. In this sec-
tion, we derive the Hamilton-Jacobi-Bellman equation for the quasipotential from the Bell-
man Principle of Optimality [3]. This equation will provide us with the relationship between
the velocity vector ψs of the Minimum Action Path (MAP) (i.e., the minimizer of the geo-
metric action) and the gradient of the quasipotential that will enable us to compute the
MAP once we have found the quasipotential.

Let us fix some compact set X0 and consider the quasipotential U(x) ≡ U(X0, x) as a
function of the point x. Then the function U(x) is given by

(16) U(x) =

{
inf
ψ,L

∫ L

0
{‖b(ψ(s)‖‖ψs‖ − b(ψ(s)) · ψs} ds ψ(0) ∈ X0, ψ(L) = x

}
.

Bellman’s Principle of Optimality: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

We will treat the quasipotential U(x) as the value function, the integrand in Eq. (16)
as the cost function, and unit velocity vector ψs as the control. The Bellman optimality
principle reads

(17) U(x) = inf
ψs(s)

{∫ l

0
(‖b(ψ(s))‖ − b(ψ(s)) · ψs)ds+ U

(
x−

∫ l

0
ψs(s)ds

)}
.

We fix a small ε > 0 and set l = ε. Then Eq. (17) becomes

(18) U(x) = inf
ψs∈Sn−1

{
(‖b(ψ)‖ − b(ψ) · ψs)ε+ U(x)− (∇U(x) · ψs)ε+O(ε2)

}
,

where Sn−1 is the unit sphere in Rn. Canceling U(x), dividing by ε, and taking the limit
ε→ 0, we obtain the static Hamilton-Jacobi-Bellman equation

(19) H(x,∇U) := inf
ψs∈Sn−1

{‖b(x)‖ − (b(x) +∇U(x)) · ψs} = 0.

The control ψs ∈ Sn−1 that gives the infimum in Eq. (19) can be found explicitly. We
observe that

−‖b+∇U‖ ≤ (b+∇U) · ψs ≤ ‖b+∇U‖.
Therefore, the infimum is achieved if

ψs =
b+∇U
‖b+∇U‖ .
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Furthermore, this infimum equals zero if and only if ‖b +∇U‖ = ‖b‖. Hence the optimal
control ψs and the gradient of the value function ∇U are related via

(20) ψs =
b+∇U
‖b‖ , ∇U = ‖b‖ψs − b.

The equation ‖b+∇U‖ = ‖b‖ implies that

(21) ‖∇U‖2 + 2∇U · b(x) = 0, UX0 = 0.

We will refer to Eq. (21) as the Hamilton-Jacobi equation for the quasipotential.
Note that

‖∇U‖2 + 2∇U · b(x) = ∇U · (∇U + 2b(x)) = 0.

The last equality shows that ∇U(x) belongs to the sphere of radius ‖b(x)‖ centered at
b(x) as shown in Fig. 3, and the direction of the MAP ψs at a point x is collinear to
b(x) +∇U(x).

Figure 3. The relationship between the force field b(x), the gradient of
the quasipotential ∇U(x), and the direction of the Minimum Action path
ψs ‖ b+∇U .

The Hamilton-Jacobi-Bellman equation (21) implies that the vector field b(x) can be
decomposed into the potential component and the orthogonal to it rotational component
wherever U(x) is continuously differentiable as

(22) b(x) = −1
2∇U(x) +

(
1
2∇U(x) + b(x)

)
≡ −1

2∇U(x) + l(x).

The orthogonality of ∇U(x) and l(x) can be shown from Eq. (21) by rewriting it as

0 = 2∇U · (1
2∇U + b(x)) = 2∇U · l(x).

Eq. (20) implies that the Minimum Action Paths (MAPs) are the flowlines of the field
1
2∇U + l(x), i.e., the MAPs follow the rotational component of the field but go against its
potential component as in an example provided in [16] (Chapter 4, Theorem 3.1, p. 118).
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I would like to emphasize that the Hamilton-Jacobi equation (21) with the boundary
condition U(x) = 0 at a given attractor does not define the quasipotential. The quasipo-
tential is just one of its solutions. Generally, it is a so called viscosity solution as the
quasipotential might be non-differentiable. There is always at least one more solution
U(x) = 0 for all x.

There can be other nontrivial solutions of Eq. (21) besides the quasipotential. Let us
demonstrate this phenomenon on an example.

Example 1 One can check that the quasipotential for the 2D linear SDE

(23) dx = Axdt+
√
εdw, A =

[
−1 −1

0 −1

]
is given by

(24) U(x) =
1

5

(
4x2

1 + 4x1x2 + 6x2
2

)
.

This solution is found using formula (31) below. Therefore, the potential
and rotational components of the vector field Ax are given by −Qx ≡
−1

2∇U(x) and Lx respectively where the matrices Q and L are

(25) Q =
1

5

[
4 2
2 6

]
, L =

1

5

[
−1 −3

2 1

]
.

It is easy to check that the U(x) satisfies the Hamilton-Jacobi equation
(21). Canceling the factor of 4 we get:

x>Q (Q+A)x> = 0 for all x

as the matrix Q(Q+A) is antisymmetric, indeed:

Q(Q+A) =
1

25

[
4 2
2 6

] [
−1 −3

2 1

]
=

1

5

[
0 −2
2 0

]
.

On the other hand, let us consider the decomposition A = −V +R where

V =

[
0 0
0 1

]
, R =

[
−1 −1

0 0

]
It is easy to check that V x = −1

2∇U1(x) for U1(x) = x2
2 and that the

matrix V (V +A) is zero, hence antisymmetric. Therefore, U1(x) satisfies the
Hamilton-Jacobi equation (21). Hence, we have found another nontrivial
solution of (21) that is not the quasipotential.

1.8. Invariant probability measure. The quasipotential allows us to estimate the in-
variant probability measure m(x) in a sublevel set D of the quasipotential with respect to
an attractor A

D := {x ∈ Rn | UA(x) < a}
such that A is the unique attractor within D [16] (Chapter 4, Theorem 4.3):

m(x) � e−UA(x)/ε.
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We remind that the symbol � means logarithmic equivalence. Hence this estimate gives
the exponent of the equilibrium density but not its prefactor. Let us fix the attractor A of
ẋ = b(x) and show that

(26) m(x) = Z−1e−U(x)/ε,

whenever the quasipotential U(x) is continuously differentiable and the rotational compo-
nent l(x) of the vector field b(x) is divergence-free, i.e., ∇ · l(x) = 0.

We remind that a function m(x) is the invariant pdf for SDE (1) if and only if it satisfies
the condition

∫
Rnm(x)dx = 1 and the stationary forward Kolmogorov (a.k.a. the Fokker-

Planck) equation

−∇ · (b(x)m(x)) + ε
2∆m(x) = 0.

The last equation can be rewritten as

(27) −∇ · J(x) = 0, where J := J(x) = b(x)m(x)− ε
2∇m(x)

is the probability current.
Suppose the quasipotential U(x) is continuously differentiable. Plugging Eq. (26)

into the expression for the probability current J(x) and using the decomposition b(x) =
−1

2∇U(x) + l(x) we get

J(x) = b(x)m(x)− ε
2∇m(x)

=
(
−1

2∇U(x) + l(x)
)
m(x) + 1

2∇U(x)m(x) = l(x)m(x).

Then its divergence is

(28) ∇ · J(x) =
(
∇ · l(x)− ε−1l(x) · ∇U(x)

)
m(x) = m(x)∇ · l(x)

due to the orthogonality of l(x) and ∇U(x). Therefore, ∇·J(x) = 0 for m(x) given by Eq.
(26) if U(x) is continuously differentiable and l(x) is divergence-free.

2. Special cases where the quasipotential can be found analytically

In general, the quasipotential cannot be found analytically. The first numerical solver for
the quasipotential for 2D SDEs of the form (1) was proposed in [5] in 2012. This solver was
based on the Sethian’s and Vladimirsky’s Ordered Upwind Method for solving stationary
Hamilton-Jacobi equations [32, 33]. A family of more efficient 2D quasipotential solvers
named the Ordered Line Integral Methods (OLIMs) was introduced in 2017 in [8]. The
OLIMs were extended to the case of variable and anisotropic diffusion in [9]. The OLIMs
were promoted to 3D and highly optimized in [39].

Nevertheless, the examples where the quasipotential can be found analytically are very
important as they can be used for obtaining asymptotic estimates (this is useful, e.g. for
initialization of numerical methods) as well as for testing numerical methods.
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2.1. Periodic trajectories. It was proven in [5] that the quasipotential with respect to
a stable equilibrium surrounded by cyclic characteristics is zero in the region consisting
of these characteristics. This is the case, e.g., in the Lotka-Volterra system perturbed by√
εdw.

Theorem 2. Let x0 be an equilibrium of ẋ = b(x), x ∈ R2 and all of trajectories in some
neighborhood D of x0 containing no other critical points are periodic. Then U(x, y) = 0
for all x ∈ D, y ∈ D.

2.2. Linear SDEs. Let us consider a linear SDE of the form

(29) dx = Axdt+
√
εdw, x ∈ Rd,

where A is such that all of its eigenvalues have negative real parts. Then the origin is an
asymptotically stable equilibrium and the only attractor of the system. The quasipotential
with respect to it is given by the Chen-Freidlin formula [11, 12]:

(30) U(x) =
1

2
x>
(∫ ∞

0
eAteA

>tdt

)−1

x.

It is shown in [11, 12] that the matrix in Eq. (30) is positive definite. The derivation of
Eq. (30) is based on the theorem stating that if all eigenvalues of a matrix A have negative
real parts then the matrix equation AX + XA> = Y has a unique solution for every Y ,

and this solution is given by X =
∫∞

0 eAt(−Y )eA
>tdt [20]. Eq. (30) is important from

the theoretical point of view. It proves the existence of the quasi-potential decomposition
for linear SDEs (29). The uniqueness of this decomposition follows from Theorem 3.1,
Section 4.3 in [16]. This theorem says that a continuously differentiable solution u(x) of
the Hamilton-Jacobi equation (21) with the boundary condition u(x) = 0 on an attractor
A of ẋ = b(x) such that u(x) > 0 for x /∈ A is the quasi-potential.

While formula (30) is compact and universal, it is not convenient for numerical evalua-
tion.

A different, simple-to-evaluate formula for the quasi-potential for a 2 × 2 matrix A =
(Aij)i,j=1,2 with all eigenvalues having negative real parts was developed in [5] from geo-
metric considerations:

U(x) = x>
[
A B
B C

]
x, where(31)

A = −(αA11 + βA21), B = −(αA12 + βA22), C = −(αA22 − βA12),

α =
(A11 +A22)2

(A11 +A22)2 + (A21 −A12)2
, β =

(A21 −A12)(A11 +A22)

(A11 +A22)2 + (A21 −A12)2
.

In dimensions higher than 2, the quasipotential for linear SDEs (29) with an attractor
at the origin can be found algorithmically. Eq. (30) shows that the quasipotential is a
quadratic form

U(x) = x>Qx

https://en.wikipedia.org/wiki/Lotka?Volterra_equations
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where Q is a symmetric positive definite matrix that needs to be found. We will call Q
the quasipotential matrix. Plugging the gradient ∇U(x) = 2Qx to the Hamilton-Jacobi
equation (21) and canceling the factor of 4 we obtain

(32) x>Q (Q+A)x = 0 for all x ∈ Rd.
Hence the matrix Q(Q+A) must be antisymmetric, i.e.

(33) Q(Q+A) + (Q+A>)Q = QA+A>Q+ 2Q2 = 0.

Multiplying (33) by Q−1 on the left and on the right, we obtain the Sylvester equation
(a.k.a. the Lyapunov equation) with respect to Q−1:

(34) AQ−1 +Q−1A> = −2I.

Eq. (34) can be solved is solved by the Bartels-Stewart algorithm [2] that is implemented
in MATLAB in the command sylvester. Therefore, the quasipotential matrix Q can be
calculated in MATLAB using the following command1:

Q = inv(sylvester(A,A’,-2*eye(size(A))))

An algorithm for finding the quasipotential for linear SDEs similar to Bartels-Stewart is
described in [6].

For linear SDEs (29) the rotational component l(x) = (A+Q)x =: Rx is divergence-free.
Indeed,

∇ ·Rx = tr(R) = 0,

(see Theorem 5.1 in [6]). Hence, the invariant pdf is given by

(35) m(x) =

√
detQ

πd/2εd/2
e−x

>Qx/ε.

2.3. An example with a limit cycle. We would like to give an example of an equation
with a stable limit cycle where the quasipotential can be found analytically. We consider
the SDE made up from an example of a system with a stable limit cycle from [24]

dx = (y + x(1− x2 − y2))dt+
√
εdw1(36)

dy = (−x+ y(1− x2 − y2))dt+
√
εdw2.

The corresponding equation without the stochastic term takes the form

dr

dt
= r(1− r2),

dφ

dt
= −1

in the polar coordinates, and its general solution is

r(t) =
1√

1 + ke−2t
, φ(t) = −(t− t0),

where k and t0 are arbitrary constants. One can see that this equation has the stable limit
cycle r(t) = 1 for k = 0, and all other trajectories approach it from inside or from outside

1I thank Prof. Daniel Szyld for pointing out this simple way to find the quasipotential decomposition for
linear SDEs using MATLAB.
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as t → +∞. It is easy to decompose the vector field in Eq. (36) into the potential and
rotational components

b(x, y) = −1
2∇U + l(x, y)

just by glance. One can check that

U =
1

2

(
x4 + 2x2y2 + y4

)
− x2 − y2 +

1

2
=

1

2

(
r2 − 1

)2
,(37)

l =

(
y
−x

)
.(38)

One can see from Eq. (37) that the quasipotential U(r) has a minimum at the limit cycle
r = 1 as U ′(r) = 2r

(
r2 − 1

)
is zero at r = 1, and U ′′(r) = 6r2 − 2 is 4 > 0 at r = 1.

Furthermore, we can calculate the angle θ(x, y) between the vector fields b(x, y) and l(x, y):

cos θ =
b · l
|b||l| =

x2 + y2

r
√
r6 − 2r4 + 2r2

=
1√

(r2 − 1)2 + 1
.

Therefore, θ depends only on r and θ(r)→ arccos(1) = 0 as r → 1.
The invariant pdf for the diffusion process given by Eq. (36) can be found exactly by

(39) m(x, y) = Z−1e−U(x,y)/ε,

where U(x, y) is given by Eq. (37) and Z is the normalization constant. Indeed, we have
shown in Section 1.8 that it suffices to check whether the rotational component l(x, y) given
by Eq. (38) is divergence-free. Obviously, this is the case.

3. Methods for finding Minimum Energy Paths

In this section, we consider systems evolving according to the overdamped Langevin
dynamics

dx = −∇V (x)dt+
√

2β−1dw.

The attractors of the corresponding ODE ẋ = −∇V (x) are local minima of V (x). The
maximum likelihood transition paths between them are the so-called Minimum Energy
Paths (MEPs) that are parallel to ∇V , i.e., they climb up to saddles along ∇V and
descend from saddles along −∇V . The two most successful methods for finding MEPs
are the nudged elastic band method (NEB) proposed by Jonsson, Mills, and Jacobsen in
1998 [25] and the string method proposed by E, Ren, and Vanden-Eijnden in 2002 [13].
The NEB and the string methods are based on the same curve evolution law stated in Eq.
(40) below, but realize it via different numerical implementations. In both cases, the path
between minima xA and xB is represented by a finite collection of points called images. At
each step, both methods let the images move along the component of −∇V normal to the
current path. Then the string method reparametrizes the path in order to keep the images
uniformly distributed along it, while the NEB connects the images with imaginary springs
and keeps them approximately uniformly distributed at all times due to the spring forces
projected onto the direction of the path. Below we discuss the string method in details. I
am referring the reader to Ref. [25] to learn more about the NEB.
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The string method was used to obtain the Minimum Energy Paths in Fig. 2 connecting
all neighboring minima of the 7-well potential using the Matlab code string_7well.m.
The code NEB_demo_2well.m is a demo code implementing the NEB on a 2D two-well
potential.

3.1. Terminology. For the further discussion, we will need the following terminology.

Definition 5. Let V (x), x ∈ Rn, be a twice continuously differentiable function. Along
with V , we consider the gradient ∇V (x) and the Hessian matrix

H(x) :=

(
∂2V (x)

∂xi∂xj

)n
i,j=1

.

• A point x? is a stationary point of V (x) if ∇V (x?) = 0.
• A stationary point x? is nondegenerate if H(x?) is full rank, or, equivalently, has

no zero eigenvalues.
• The Morse index of a nondegenerate stationary point x? is the number of of

negative eigenvalues of the Hessian matrix H(x?).
• A Morse index one saddle s is a nondegenerate stationary point of V such that

the Hessian matrix H(s) has a unique negative eigenvalue.

3.2. The string method. The first version of the string method was proposed by E, Ren,
and Vanden-Eijnden in 2002 [13]. An improved and simplified version was introduced by
the same authors in 2007 [15]. An analysis of the curve evolution under the string method
was conducted in [10]: it was shown how one can make up curves such that their evolution
under the string method fails to converge to a MEP. These curves are quite fancy. Their
failure to converge to a MEP is either linked to their special design and the presence of
Morse index two stationary points. Stability and convergence to a MEP has been recently
established in [37] provided that the initial path is close to this MEP, and this MEP passes
through a sequence of m local minima, and each pair of minima in this sequence is separated
by a single Morse index one saddle, m ≥ 2.

3.2.1. The curve evolution. The string method is a numerical procedure accomplishing a
curve evolution described below under the influence of a potential V : Rn → R. A curve
is a continuous image of a unit interval in Rn. Moreover, the ends of the curve are fixed
at two distinct critical points of the potential. Suppose the curve is differentiable and its
configuration at time t is parametrized nondegenerately by α ∈ (A(t), B(t)), i.e., the curve

at time t is {φ(α, t) | α ∈ (A(t), B(t))} and its unit tangent vector is τ̂(α, t) = φα
|φα| . Then

the string method evolves it so that the normal velocity is the component of ∇V normal
to the curve:

(40) φt(α, t) = −∇V ⊥(φ(α, t)) + λτ̂ ,

where

(41) ∇V ⊥ = ∇V (φ(α, t))− (∇V (φ(α, t)) · τ̂(α, t)) τ̂(α, t).
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The evolution of the curve is well defined, although λ = λ(α, t) is not unique. Different
choices of λ correspond to different parametrizations. This is easy to see using the chain
rule: if φ(α, t) and φ̃(α̃, t) represent the same evolving curve, then φ(α, t) = φ̃(α̃(α, t), t)
and the differentiation gives

φt = φ̃t + φ̃α̃α̃t = φ̃t + µτ̂ with µ = |φ̃α̃|α̃t.
It is often convenient to choose a particular parametrization. For a robust numerical
solution, a good choice is the unit-speed parametrization, i.e., |φα| = 1. Then λ(α, t) is
fully determined, and α ranges over (0, l(t)) where l(t) is the length of the curve at time t.
Moreover, it is advantageous to avoid evaluation of ∇V ⊥ [15]. If we set

β = λ+ (∇V (φ(α, t)) · τ̂(α, t)) ,

then the evolution law is given by

(42) φt(α, t) = −∇V (φ(α, t)) + β(α, t)τ̂ ,

where β(α, t) is again uniquely determined by the requirement that |φα| = 1. To be
stationary under Eqs. (40) or (42), a curve must satisfy ∇V ⊥(φ) = 0 pointwise. When
this happens, Eq. (40) says that φt is everywhere tangent to the curve. Therefore, its
image (as a geometric curve) does not change, although the parametrization may change
in time. Thus: a piecewise smooth curve passing through a sequence of critical points x1,
... , xN (the points where ∇V (x) = 0) is a stationary state of the string method if the
curve is everywhere tangent to ∇V . Put differently: the curve is stationary if it consists
of a sequence of critical points connected by heteroclinic orbits (solutions of ẋ = −∇V (x)
traced forward or backward in time). As noted previously, such curves are called Minimum
Energy Paths.

3.2.2. Numerical implementation. Let xA and xB be two potential minima or two points
lying close to two isolated potential minima. Let φ0(α), α ∈ [0, 1], be an initial curve
connecting xA and xB, i.e., φ0(0) = xA, φ0(1) = xB. For example, φ0(α) can be a segment
of straight line connecting xA and xB. We discretize the curve, i.e., represent it as a
sequence of N points (these points are called “images” by chemical physicists)

{φ(αj)}Nj=1 =: {φj}Nj=1, αj =
j

N − 1
.

Each iteration of the string method evolving a curve φ according to Eq. (42) consists of
two substeps. Pick a time step h.

Gradient descent: Move images according to the gradient descent

φ∗j = φj − h∇V (φj), 1 ≤ j ≤ N.
Reparametrization: Define a new continuous curve φ∗ by interpolation between

the updated images {φ∗j}Nj=1. Distribute the new images φnewj uniformly along the
curve φ∗.
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Stop if the curve almost stops moving, i.e. if max1≤j≤N ‖φnewj − φj‖ < tol where tol is the
user-prescribed tolerance.

Below is a Matlab code that does reparametrization:

function [x,l] = reparametrization(x)

% x is an n by d array. Row i of x is the i-th image along the path

% returns a uniformly reparametrized path and its length l

t = linspace(0,1,size(x,1));

dx = zeros(size(x));

dx = x - circshift(x,[1,0]);

dx(1,:) = zeros(1,size(x,2));

lxy = cumsum(sqrt(sum(dx.^2,2)));

l = lxy(end);

x = interp1(lxy/l,x,t);

end

3.3. String method for SPDEs. Stochastic Allen-Cahn model. An important ad-
vantage of path-based methods such as the string method is that they are applicable to
high-dimensional SDEs and even to SPDEs. To illustrate this, we consider a well-known ex-
ample of the Allen-Cahn PDE perturbed by white noise and find a transition path between
its stable stationary solutions.

3.3.1. Analysis of the Allen-Cahn PDE with periodic boundary conditions. Allen-Cahn
PDE (1979) [1] is a model for magnetization in alloys:

(43) ut = κ∆u+ u− u3.

Let us consider PDE (43) in a 2D domain Ω = [0, 1]2 with periodic boundary conditions,
i.e.,

u(0, y) = u(1, y), ux(0, y) = ux(1, y), u(x, 0) = u(x, 1), uy(x, 0) = uy(x, 1).

In this case, Eq. (43) has three uniform stationary solutions: u ≡ 0 is unstable, while
u ≡ 1 and u ≡ −1 are stable (see the note of Trefethen [36] for more details). If κ is small
enough, there also exist nonuniform stationary solutions, and their number increases as κ
decreases [35] . The stability of stationary solutions can be assessed by considering the
energy functional for Eq. (43) defined by

(44) V [u] :=

∫
Ω

[
κ

2

(
u2
x + u2

y

)
+

1

4

(
1− u2

)2]
dxdy.

Let us find out how the energy functional will change if we add a perturbation δu also
satisfying periodic boundary conditions to u (see the discussion in [35]). Hence, we consider
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the difference V [u+ δu]− V [u] =

=

∫
Ω

[
κ

2

(
(ux + δux)2 + (uy + δuy)

2
)

+
1

4

(
1− (u+ δu)2

)2]
dxdy − V [u]

=

∫
Ω

[κ
2

(
(ux)2 + (uy)

2
)

+ κ(uxδux + uyδuy) +
κ

2

(
(δux)2 + (δuy)

2
)

+
1

4

(
1− u2

)2 − (1− u2)uδu+ u2(δu)2 − 1

2
(1− u2)δu2 +O

(
(δu)3

)]
dxdy − V [u].

Integrating by parts the terms with the first derivatives of δu we obtain:

V [u+ δu]− V [u] =

∫
Ω
−
[
κ(uxx + uyy) + u− u3

]
δudxdy

+

∫
Ω

[
κ

2

(
(δux)2 + (δuy)

2
)

+
1

2

(
3u2 − 1

)
(δu)2

]
dxdy +O

(
(δu)3

)
:= I1 + I2 +O

(
(δu)3

)
.(45)

The integral I1 above shows that u is a stationary point of the energy functional if and only
if κ(uxx+uyy) +u−u3 = 0, i.e., u is a stationary solution of PDE (43). Indeed, otherwise,
we can find δu such that the change in V [u] due to perturbing u will be of the order of δu.
A stationary point of a functional is called an extremal. In general, the function appearing
in I1 that is multiplied by δu, which is −

[
κ(uxx + uyy) + u− u3

]
in this example, is called

the functional derivative of V [u] and denoted by δV
δu . The integral I2 above shows that

u is a minimizer of V [u] if u ≡ 1 or u ≡ −1 as then the integrand is positive meaning
that any perturbation δu leads to an increase of V [u]. On the other hand, if u ≡ 0, then
the integrand is negative. Therefore, u ≡ 0 is an unstable stationary point of the energy
functional.

In order to relate our conclusions regarding the extremals of the energy functional to the
stability of the stationary solutions of the Allen-Cahn PDE, we determine how the energy
functional changes along its solutions:

V [u(·, t+ dt)]− V [u(·, t)] = V [u(·, t) + utdt+O(dt2))]− V [u(·, t)]

=

∫
Ω
−
[
κ(uxx + uyy) + u− u3

]
utdtdxdy +O(dt2)

= −
[∫

Ω

[
κ(uxx + uyy) + u− u3

]2
dxdy

]
dt+O(dt2) ≤ 0.(46)

Therefore, the energy functional is decreasing along all nonstationary solutions of PDE
(43). Hence, u ≡ 1 and u ≡ −1 are stable stationary solutions, while u ≡ 0 is an unstable
stationary solution of PDE (43).

With the notation δV
δu , one can write the Allen-Cahn PDE (43) in the form of a gradient

descend in the functional space:

(47) ut = κ∆u+ u− u3 ≡ −δV [u]

δu
.
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3.3.2. The Allen-Cahn PDE with frustrated boundary conditions. Next, we consider the
Dirichlet boundary conditions (BC) for PDE (43) given by

(48)


u(0, y) = u(1, y) = 1, 0 < y < 1,

u(x, 0) = u(x, 1) = −1, 0 < x < 1,

u(0, 0) = u(0, 1) = u(1, 0) = u(1, 1) = 0.

With these boundary conditions, PDE (43) no longer has stable stationary solutions u ≡ 1
and u ≡ −1. If κ is small enough, it has stable stationary solutions close to those two.
These stationary solutions for κ = 0.005 are plotted in Fig. 4. These solutions were
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Figure 4. Stationary solutions to the Allen-Cahn PDE (43) with κ = 0.005
and boundary conditions (48).

found in MATLAB using the function fsolve applied to the system of nonlinear equations
obtained via the standard finite-difference discretization of the Laplacian operator (see the
code AllenCahnString.m). One can conduct stability analysis of solutions of PDE (43)
with BC (48) as in was done for the case of periodic BC. The differences will be that (i)
the perturbation δu must satisfy the homogeneous Dirichlet BC, i.e., δu|δΩ = 0, and (ii)
stationary solutions will be different, in particular those shown in Fig. 4.

3.3.3. Finding a transition path using the string method. Now we perturb the Allen-Cahn
PDE by white noise and obtain the following SPDE:

(49) ut = κ∆u+ u− u3 +
√
εη(x, y, t),

where ε is a small parameter and η is the white noise satisfying

E[η(x, y, t)η(x′, y′, t′)] = δ(x− x′)δ(y − y′)δ(t− t′).
We set κ = 0.005 and BC (48). Our goal is to find the maximum likelihood transition path
between the two stable stationary solutions in Fig. 4. We will refer to them as u1 adn
u−1 respectively. Eq. (47) motivates the application of the string method for this purpose.
Discretizing the Laplacian using finite differences, we reduce PDE (43) to a system of ODEs.
Then the application of the string method is straightforward (see AllenCahnString.m).
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The initial guess for the transition path obtained using linear interpolation between u1 and
u−1 is shown in Fig, 5(a). The final path is displayed in Fig. 5(b). The energy functional
along the final path is plotted in Fig. 6.
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Figure 5. (a): The initial guess for the transition path between the two
stable stationary solutions of the Allen-Cahn PDE in Fig. 4. (b):The tran-
sition path between them found by the string method. The colormap is the
same as in Fig. 4.
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Figure 6. The energy functional along the path in Fig. 5(b).

Remark • I would like to emphasize that there is no guarantee that the path found
by the string method is the Maximum Likelihood Path. The output of the string
method is biased by the initial guess. A visual example of this phenomenon is found
in [13] where the string method has been originally presented. It is applied there
to a bit different SPDE describing magnetization of a 2D plate. The two different
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found paths presented there resulted from different initial guesses for the transition
path. The energy graphs show that one of them is much more favorable than the
other one.
• The string method is designed to evolve the path in such a manner that the maximal

energy along it is nonincreasing. In contrast, the GMAM discussed in Section 5
applied to a gradient SDE does not have this important feature. One can design an
example where the maximal energy increases as the path is evolved by the GMAM.

4. Methods for finding saddles

Once a MEP connecting two local minima of the given potential V (x) is computed,
one can find the images at which V (x) along the MEP reaches local maxima. Typically,
these images are close enough to Morse index one saddles and can serve for initialization
of saddle finders.

Methods for finding saddles can be divided into three groups: one-image methods, two-
image methods, and path-based methods. One-image methods are presented by the first
saddle finder (to the best of my knowledge) proposed by Cerjan and Miller (1981) [7], its
adjustment by Wales (1989) for finding saddles in energy landscapes of atomic clusters [38],
and more recent development, the so-called gentlest ascend dynamics (GAD) by Gao, Leng,
and Zhou [17, 18]. A simple and robust two-image method called the dimer method was
proposed by Henkelman and Jonsson (1999) [21]. Later, Du and Zhang (2012) modified
it into the shrinking dimer method and analyzed its dynamics and convergence properties
[40]. We will consider the shrinking dimer method in details below. Ren and Vanden-
Eijnden (2013) adjusted the string method for finding saddles adjacent to a given local
minimum and called the resulting path-based method the climbing string method [30].

4.1. The shrinking dimer method. Here I present the basic version of the shrinking
dimer method [40].

4.1.1. Shrinking dimer dynamics. A dimer is a line segment connecting a pair of points
x1, x2 ∈ Rn. Its length is

l = ‖x2 − x1‖.
Its center is the point

x :=
x1 + x2

2
.

Its direction is characterized by the unit vector

v :=
x2 − x1

l
.

Given the position of the center x and the direction v one can restore the positions of the
endpoints of the dimer:

x1 = x− l

2
v, x2 = x+

l

2
v.
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The shrinking dimer dynamics is designed so that if the initial approximation is good
enough, the dimer gets oriented so that the vector v is parallel to the eigenvector corre-
sponding to the only negative eigenvalue, climbs to the saddle along the direction of this
eigenvector (this is the gentlest ascend direction), and shrinks to a point while approaching
the saddle.

Let F1 = −∇V (x1) and F2 = −∇V (x2) be the forces acting on the ends of the dimer.
The force acting on the center of the dimer, F is defined as the average of these forces:

F =
F1 + F2

2
.

The difference of the forces acting on x1 and x2 is

∆F := F2 − F1.

The time evolution of the dimer is defined by the following system of ODEs:

µ1ẋ = (I − 2vvT )F,(50)

µ2v̇ = (I − vvT )∆F/l,(51)

µ3 l̇ = −l.(52)

The coefficients µ1, µ2 and µ3 allow us to adjust the relationships between the speed of the
motion of the center of the dimer, the speed of its rotation, and the speed of its shrinking.

The operator (I−2vvT ) in Eq. (50) reflects the vector F with respect to the hyperplane
orthogonal to the unit vector v along the direction of the dimer. Note that F is parallel to
v then

(I − 2vvT )F = (I − 2vvT )(−|F |v) = v|F | = −F,
If, in addition, v is parallel to the eigenvector u corresponding to the only negative eigen-
value of the Hessian matrix of the potential V , then the dimer moves directly uphill toward
the saddle.

The operator (I−vvT ) in Eq. (51) subtracts from the vector ∆F its component parallel
to the direction of the dimer v. Hence v̇ is orthogonal to v at all times. Therefore, the unit
length of v is preserved.

The right-hand side of Eq. (52) is completely determined by l. Here we have picked the
exponential shrinking law. One can pick another law.

The global convergence of the shrinking dimer method was proven in [40] for the qua-
dratic potential of the form

V (z) = −z
2
1

2
+

1

2

n∑
i=2

z2
i .

Precisely, for any initial condition x0, v0 ∈ Rn such that v0 is not perpendicular to the
vector (1, 0, ..., 0), the solution of Eqs. (50)-(52) given by (2.4) will converge to (x∗, v∗, l∗)
as t→∞, where x∗ = (0, ..., 0), v∗ = (1, 0, ..., 0) or v∗ = −(1, 0, ..., 0), and l∗ = 0.
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4.1.2. Numerical implementation. Pick a time step h. Pick the initial position of the center
x0, the initial direction of the dimer v0, and the initial length l0. Then for k = 0, 1, 2, . . .
iterate:

F1 = −∇V (xk − lvk/2), F2 = −∇V (xk + lvk/2),(53)

F =
1

2
(F1 + F2), ∆F = F2 − F1,(54)

xk+1 = xk +
h

µ1
(I − 2vkv

T
k )F,(55)

w = vk +
h

µ2lk
(I − vkvTk )∆F,(56)

vk+1 =
w

‖w‖ ,(57)

lk+1 =
lk

1 + h/µ3
.(58)

This scheme is referred to as the Modified Euler scheme in [40]. The first two equations
perform Forward Euler steps. Then v is normalized. l is updated according to the Backward
Euler scheme. As a stopping criterion, you can use, for example, |∇V (x)| < tol where tol
is some reasonable tolerance.

Time evolution of the shrinking dimer method is illustrated in Fig. 7
The code dimer_demo.m uses the string method to find approximate locations of saddles

and then the shrinking dimer method to nail down the locations of the saddles in a 2D
three-well potential. The code dimer_demo1.m runs the dimer method starting from a
uniform set of locations in the computational domain set up for the same 2D three-well
potential.

5. Methods for finding Minimum Action Paths

Now we consider a system evolving according to

dx = b(x)dt+
√
εdw.

As it was pointed out in Section 1.7, the maximum likelihood transition path (a.k.a mini-
mum action path (MAP) or instanton) from an attractor A1 to an attractor A2 separated
by a single transition state follows the rotational component of b but goes agains its po-
tential component while going out of the basin of A1 and then follows a trajectory to
A2.

If the quasipotential is computed, one is guaranteed to find the MAP (the global mini-
mizer of the geometric action) by integrating the path

ψs = − b(ψ) +∇U(ψ)

‖b(ψ) +∇U(ψ)‖ , x ∈ Rd



25

(a)

x1

x2

F1

F2

F

F v

F1

(I � 2vvT )F

The hyperplane  
orthogonal to v

(d)

x1

x2

F2F
F

v

F1 (I � 2vvT )F

The hyperplane  
orthogonal to

v

F2

(b)

x1

x2

F2

v

F1

The hyperplane  
orthogonal to v

�F

(I � vvT )�F

�F

(e)

x1

x2

F2

v

F1

The hyperplane  
orthogonal to

v

(I � vvT )�F

�F

(c)

x1

x2

(I � vvT )�F

(I � 2vvT )F

The old dimer 

The new dimer 

(f)

x1

x2

(I � vvT )�F (I � 2vvT )F

The old dimer 
The new dimer 

Figure 7. Illustration of one step of the shrinking dimer method on two
examples of dimer. (a), (b), (c) : Example 1. (d), (e), (f): Example 2.
(a), (c): Calculation of the vector (I − 2vvT )F . (b), (e): Calculation of the
vector (I − vvT )∆F . (c), (f): The updated dimers.
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starting from the found transition state that can be a saddle point, an unstable limit cycle,
etc, .to the attractor, i.e., backwards. Currently, this approach is feasible in 2D and 3D
[5, 8, 9, 39].

Alternatively, one can find the MAP using a path-based method, i.e., by solving a
minimization problem in the space of curves. The advantage of path-based methods is that
they work in any dimension and are simple-to-program in comparison with quasipotential
solvers. Their shortcoming is that they are not guaranteed to find the global minimizer.
Their outputs are biased to the initial guesses and can be local but not global minimizers,
or merely extremal of the Freidlin-Wentzell or the geometric action.

To the best of my knowledge, the first proposed method for finding MAPs is the Mini-
mum Action Method (MAM) by E, Ren, and Vanden-Eijnden (2004) [14]. The further de-
velopments in this direction resulted in the Geometric Minimum Action Method (GMAM)
by Heymann and Vanden-Eijnden [22, 23] and in the Adaptive Minimum Action Method
(AMAM) by Zhou, Ren, and E [41, 42]. The GMAM and the AMAM are based on a nu-
merical minimization of the geometric action and the Freidlin-Wentzell action respectively.
The GMAM is simpler, while the AMAM demonstrates a superior performance on systems
such Lorenz’63 where the MAPs are complicated [42]. Below we consider the GMAM in
more detail.

5.1. Geometric Minimum Action Method. A clear, concise, and straight-to-the-point
presentation of the GMAM is given in [22]. Here I will provide some details that are omitted
there. As we have shown in Section 1.4, the minimum action path (MAP) minimizes the
geometric action

(59) S(ψ) =

∫ 1

0
‖ψα‖‖b(ψ)‖ − ψα · b(ψ)dα, ψ(0) = x0, ψ(1) = x1.

The GMAM is designed for finding MAPs between two asymptotically stable equilibria.
An adjustment where one of the attractors is a limit cycle was recently proposed in [26].
In order to minimize the geometric action, we use calculus of variation in a similar manner
as we did in Section 3.3.1.

Let ψ be a path satisfying the boundary conditions (BC) ψ(0) = x0, ψ(1) = x1, and
let δψ be a small continuously differentiable perturbation of the path such that ψ + δψ
also satisfies the same BC. Hence δψ(0) = 0, δψ(1) = 0. We consider the change in S(ψ)
occurring if ψ is perturbed by δψ: S(ψ + δψ)− S(ψ). This can be done in a more general
form for a functional of the form

S(ψ) =

∫ 1

0
L(ψ,ψα)dα.

Using the Taylor expansion, we calculate:

S(ψ + δψ)− S(ψ) =

∫ 1

0
L (ψ + δψ, ψα + δψα) dα−

∫ 1

0
L(ψ,ψα)dα

=

∫ 1

0

[
∂L

∂ψ
δψ +

∂L

∂ψα
δψα

]
dα+O(δψ2) +O(δψ2

α).
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Integrating the term ∂L
∂ψα

δψα by parts and taking into account that δψ(0) = 0, δψ(1) = 0,
we get:

(60) S(ψ + δψ)− S(ψ) =

∫ 1

0

[
∂L

∂ψ
− d

dα

∂L

∂ψα

]
δψdα+O(δψ2) +O(δψ2

α).

Eq. (60) shows that the path ψ is a local minimizer of S(ψ) if and only if the following
two conditions hold.

(1) The function in the square brackets in (60) is zero. This function is denoted by δS
δψ

and called the functional derivative. The condition that it must be zero results in
the famous Euler-Lagrange equation:

(61)
δS

δψ
:=

∂L

∂ψ
− d

dα

∂L

∂ψα
= 0.

Otherwise, we can find a perturbation δψ that decreases S(ψ).
(2) The term O(δψ2) +O(δψ2

α) must be positive unless δψ ≡ 0. In order to check this
condition, one needs to Taylor-expand the integrand in S(φ) further as it was done
in Section 3.3.1.

If the path ψ satisfies the Euler-Lagrange equation (61), ψ is called an extremal of S(ψ).
It might be a local minimizer, a local maximizer, or neither. Even if both conditions hold,
we can only say that ψ is a local minimizer of S(ψ), while the MAP must be the global
minimizer.

The GMAM is based on a numerical solution of the Euler-Lagrange equation for the
geometric action (59). Hence, even if it properly converges, the only guarantee that can
be given is that the resulting path approximates an extremal of S(ψ).

Recall that the value of the geometric action (59) is independent of the parametrization
of the path ψ. Therefore, the simplest possible parametrization is chosen for the GMAM:
‖ψα‖ is constant along the path and is equal to l, the length of ψ.

Substituting the integrand of the geometric action for L in the Euler-Lagrange equation
(61) and applying the condition ‖ψα‖ = const, one obtains the following equation for an
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extremal of S(ψ) after a careful and tedious calculation:

λ
δS

δψ
= −λ2ψαα + λ

(
∇b− (∇b)>

)
ψα + (∇b)>b− λλαψα, where(62)

λ :=
‖b‖
‖ψα‖

,

∇b :=

(
∂bi
∂xj

)
=


∂b1
∂x1

∂b1
∂x2

. . .
∂b2
∂x1

∂b2
∂x2

. . .
...

...

 ,

ψ(α) =

 x1(α)
x2(α)

...

 .
The GMAM proceeds as follows. First, we pick an initial guess for the path ψ. Often, it

is a line segment connecting x0 and x1. Sometimes, as it is in the Maier-Stein system [28],
the initial path being the line segment connecting its two asymptotically stable equilibria
leads to a wrong result which can be identified, for example, by comparing values of S(ψ)
at outputs of the GMAM starting from a collection of various initial paths.

Next, we discretize the path into N points uniformly distributed along the path:

{x0 ≡ ψ1, ψ2, . . . , ψN−1, ψN ≡ x1} .
The points ψ1 and ψN remain fixed, while the points ψj , j = 2, . . . , N − 1, are evolved
by the GMAM. Each step of the GMAM consists of two substeps: steepest descent and
reparametrization.

Steepest descent. The following linearly-implicit scheme is implemented for the steep-
est descent step. This choice of the scheme allows us to use rather large time steps without
creating stability problems. Let ψj be the jth point of the current path and ψ̃j be the jth
point of the updated path. The function λ, the forcing b, and the tensor ∇b are evaluated
at the current path ψ, while the second derivative of the path with respect to α is evaluated
at the updated path ψ̃. Let τ be the time step and h = (N − 1)−1 be the step in α. Then

ψ̃j − ψj
τ

=
(λj)

2

h2

[
ψ̃j+1 − 2ψ̃j + ψ̃j−1

]
− λ

[
∇b(ψj)− (∇b(ψj))> + λj

λj+1 − λj−1

2h

]
ψj+1 − ψj−1

2h

− (∇b(ψj))>b(ψj).(63)

The implementational details of this scheme can be read off from my code gmam.m that
finds a MAP in the Maier-Stein system [28].

Reparametrization. The points ψ̃j are not uniformly distributed along the path ψ̃
obtained as a result of one step of the linearly-implicit scheme (63). To maintain the
rule ‖ψα‖ = const along the path at all times based on which Eq. (62) is derived, we
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reparametrize ψ̃ and obtain the new path ψ. The reparametrization is performed in the
same way as it is done in the string method. In gmam.m, this procedure is organized in a
separate function within the file.

Remark • The GMAM works very well in arbitrary dimensions, even for discretized
SPDEs, where the transition paths are simple in the sense that they do not involve
high-curvature segments. In particular, the endpoints should not be spiral points.
If the path spirals, the path evolution by the GMAM slows down and a stopping
criterion gets satisfied before the path converges to the spiraling part. In contrast,
the AMAM is able to converge to spiraling paths as it is shown on the example on
the Lorenz’63 system [42]
• A very important advantage of the GMAM is its relative simplicity: it is easy-to-

program. Thanks to it, it has become quite popular.
• As we have discussed, one can only guarantee that the output of the GMAM

approximates an extremal of the geometric action provided that the method has
converged. An alternative approach based on computing the quasipotential on
a mesh by Dijkstra-like algorithms has been developed in [5, 8, 9, 39]. Once the
quasipotential is found, one can obtain the global minimizer of the geometric action
by direct integration. However, this approach is currently developed for at most 3D
SDEs and requires much more programming efforts. The first 2D quasipotential
solver [5] has become the core for the R package Qpot that is publicly available on
cran. A detailed description of this package in found in the R Journal (see Ref.
[29]).
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