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Seismic data



Time coordinates vs depth coordinates
x

z

x0

t0

(x0, t0)           = the location of 
the first arrival at the surface 
and and the travel time

(x, z)         = the cartesian 
coordinates of 
the subsurface location



Time migration vs depth migration

Time migration Depth migration

Adequate for Mild lateral velocity 
variation

Arbitrary lateral velocity 
variation

Input Seismic data P(s,r,t)
Seismic data P(s,r,t)

and
seismic velocity v(x,z)

Output Image in the 
time coordinates

Image in the 
depth coordinates



Idea
Time migration

Time migration velocity
vm(x0, t0)

Seismic velocity and transition matrices
v(x, z), x0(x, z), t0(x, z)

Depth migration using the seismic velocity
v(x, z)



The Goal:
Develop a fast algorithm to convert:

• Time migration velocities to seismic velocities
• Time coordinates to depth coordinates

vm(x0, t0) v(x, z)

x

z

x0

t0



The eikonal approximation

The wave equation: 
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= the of propagation of P-waves 
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The travel time approximation
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The Dix inversion
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The Dix formula:



The travel time approximation 
based on the Dix formula
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Paraxial ray tracing 

dx0

dq dp

Q :=
dq

dx0
, P :=

dp

dx0

|Q| = the geometrical spreading 
of the image rays
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dt0
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v = v(x0, t0)

vqq = the 2nd derivative along the line 
normal to the central ray

M. Popov

Q(x0, 0) = 1, P (x0, 0) = 0



The relationship between 
time migration velocities and seismic velocities

Cameron, Fomel, Sethian, 2006
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The statement of the inverse problem
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Input
x

z

Output
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PDE for Q in 2D
Cameron, Fomel, Sethian, 2008

Notation: f(x0, t0) := v
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The reconstruction scheme

v(x, z)
Seismic velocities in the depth coordinates

x0(x, z), t0(x, z)

Transition matrices from time- to depth coordinates

Dix velocities f(x0, t0)

v(x0, t0) = f(x0, t0)Q(x0, t0)

The geometrical spreading Q(x0, t0)

Seismic velocities in the time coordinates

A finite difference

scheme

A Chebyshev 

spectral method

Time-to-depth conversion



Cauchy problem for elliptic equation

Notation change: t0 ! t, x0 ! x

Variable change: y = � 1

Q

The PDE for Q becomes:
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The expanded form:

Initial conditions: y(x, 0) = �1, yt(x, 0) = 0

Boundary conditions: y(0, t) = y(L, t) = �1
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The finite difference scheme
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The Chebyshev spectral method
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• Choose the number of Chebyshev points 

• Choose the number of Chebyshev polynomials for function 
evaluation 

• Interpolate the input data             at the Chebyshev points

• Solve the PDE to find         at the Chebyshev points

• Compute                                     on the regular grid

N

Neval

f(x, t)

y

Q(x, t) = �1/y(x, y)



Time-to-depth conversion

x0

t0

Input
x

z

Output

v(x0, t0) v(x, z), x0(x, z), t0(x, z)

Motivation and a building block:
Fast Marching Method (Sethian, 1996)

|rt0|2 =
1

v

2(x0, t0)

rt0 ·rx0 = 0

Eikonal equation with unknown RHS

Orthogonality relationship: 
image rays are orthogonal 

to equitime curves



Movie: time-to-depth conversion
The input and the results Computed points in coordinates

(x0, t0) (x, z)

    The points are computed 
in the order of increase of t0



Fast Marching Method Time-to-depth conversion 
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T1(C) ≥T 2(C)!

An issue

Not necessarily  T1(C) ≥T 2(C)!





2D example: Gaussian anomaly



2D example: asymmetric anomaly



Why does this work?

• Special input corresponding to a positive finite velocity

• Special initial conditions corresponding to the image rays

• Our finite difference scheme damps high harmonics. 

• High harmonics are truncated in the Chebyshev spectral method.

• Short enough interval of time on which we need to compute the 
solution, such that low harmonics do not grow significantly.



Special input



Special initial conditions



Damping high harmonics

• Write the modified equation for our finite difference scheme

• Set                               for simplicity

• Consider a perturbed problem:

• Linearize the modified equation around                                    
to obtain an equation for  

• Plot the root diagram for the eigenroots of the linearized modified 
equation for the Fourier harmonics supported by the grid: 

f = 1 + �f, y = 1 + �y

�y

0  k  ⇡/�x

f = 1, y = �1

f = 1, y = �1



Analysis of the modified equation 

Modified equation 
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Root diagrams

Our scheme: 
“Lax-Friedrichs” averaging, 

5 point stencil in space

Alternative scheme 1: 
no “Lax-Friedrichs” averaging, 

5 point stencil in space

Alternative scheme 2: 
“Lax-Friedrichs” averaging, 

3 point stencil in space



PDE for Q in 3D
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3D Example 1 



3D example 2 



Marmousi Example 

Prestack depth-migrated image  
with Dix velocities 

Prestack depth-migrated image  
with our velocities 

Angle domain common-image point gather 
at 4000 m using: Left: Dix, velocity, Right: 
our velocity 



Conclusions 
•  Relationships between vm(x0,t0) and v(x,z) in 2D and 3D 

•  PDE�s connecting v(x0,t0) and vm(x0,t0) in 2D and 3D 

•  Difficulties of solving them arise from 
 
 
 

•  Finite difference (�Lax-Friedrichs�) and spectral (�Chebyshev�) numerical 
methods allow to solve these PDE�s on a short interval of time due to  

•  Efficient Dijkstra-like solver to compute v(x,z), x0 (x,z), t0(x,z) from v(x0,t0)  

 

1.  Sensetivity (dependence not only on the data but also on their derivatives) 
2.  Ill-Posedness (Cauchy problems for elliptic PDE�s) 

1.   Special input 
2.  Special initial conditions 
3.  Damping of high harmonics 


