SEISMIC VELOCITY ESTIMATION FROM TIME MIGRATION

Maria Cameron Department of Mathematics, University of Maryland

> Joint work with Sergey Fomel, U of Texas, Austin James Sethian, U of California, Berkeley

Seismic data

Time coordinates vs depth coordinates

 (x_0, t_0) = the location of the first arrival at the surface and and the travel time

(x, z) = the cartesian coordinates of the subsurface location

Time migration vs depth migration

	Time migration	Depth migration
Adequate for	Mild lateral velocity variation	Arbitrary lateral velocity variation
Input	Seismic data P(s,r,t)	Seismic data P(s,r,t) and seismic velocity v(x,z)
Output	Image in the time coordinates	Image in the depth coordinates

The Goal:

Develop a fast algorithm to convert:

- Time migration velocities to seismic velocities
- Time coordinates to depth coordinates

The eikonal approximation

The wave equation:

$$\frac{\partial^2 P}{\partial t^2} = v^2(x, y, z) \Delta P$$

v(x, y, z) = unknown seismic velocity = the of propagation of P-waves

The high frequency approximation:

$$P(x, y, z) = A(x, y, z)e^{-i\omega(t - T(x, y, z))}$$

The eikonal equation:

$$\boxed{\left|\nabla T\right|^2 = \frac{1}{v^2(x, y, z)}}$$

The travel time approximation

The Dix inversion

$$T(x_0, t_0; s, r) = \sqrt{t_0^2 + \frac{|x_0 - s|^2}{v_m^2(t_0)}} + \sqrt{t_0^2 + \frac{|x_0 - r|^2}{v_m^2(t_0)}}$$

The Dix formula:

$$v_{Dix}(t_0) = \sqrt{\frac{\partial}{\partial t_0}} \left(t_0 v_m^2(t_0) \right)$$

The travel time approximation based on the Dix formula

Paraxial ray tracing

M. Popov

$$Q := \frac{dq}{dx_0}, \quad P := \frac{dp}{dx_0}$$

|Q| = the geometrical spreading of the image rays

$$\frac{d}{dt_0} \begin{bmatrix} Q\\P \end{bmatrix} = \begin{bmatrix} 0 & v^2\\ -\frac{v_{qq}}{v} & 0 \end{bmatrix} \begin{bmatrix} Q\\P \end{bmatrix}$$
$$Q(x_0, 0) = 1, \quad P(x_0, 0) = 0$$

$$v = v(x_0, t_0)$$

 v_{qq} = the 2nd derivative along the line normal to the central ray

The relationship between time migration velocities and seismic velocities

Cameron, Fomel, Sethian, 2006

The statement of the inverse problem

PDE for Q in 2D

Cameron, Fomel, Sethian, 2008

Notation: $f(x_0, t_0) := v_{Dix}(x_0, t_0)$

The reconstruction scheme Dix velocities $f(x_0, t_0)$ A finite difference A Chebyshev spectral method scheme The geometrical spreading $Q(x_0, t_0)$ Seismic velocities in the time coordinates $v(x_0, t_0) = f(x_0, t_0)Q(x_0, t_0)$ Time-to-depth conversion Transition matrices from time- to depth coordinates $x_0(x,z), \quad t_0(x,z)$

Seismic velocities in the depth coordinates v(x,z)

Cauchy problem for elliptic equation

Notation change:
$$t_0 \rightarrow t$$
, $x_0 \rightarrow x$
Variable change: $y = -\frac{1}{Q}$
The PDE for Q becomes: $\left(\frac{y_t}{f^2}\right)_t = \frac{y}{f}\left(\left(\frac{f}{y}\right)_x y\right)_x$
The expanded form: $\frac{y_{tt}}{f^2} - 2\frac{y_t f_t}{f^3} = y\frac{f_{xx}}{f} - y_x\frac{f_x}{f} - y_{xx} + \frac{y_x^2}{y}$
Initial conditions: $y(x,0) = -1$, $y_t(x,0) = 0$
Boundary conditions: $y(0,t) = y(L,t) = -1$

The finite difference scheme

The Chebyshev spectral method $\left(\frac{y_t}{f^2}\right)_t = \frac{y}{f} \left(\left(\frac{f}{y}\right)_x y\right)_x$

- Choose the number of Chebyshev points $\,N\,$
- Choose the number of Chebyshev polynomials for function evaluation N_{eval}
- Interpolate the input data f(x,t) at the Chebyshev points
- Solve the PDE to find y at the Chebyshev points
- Compute Q(x,t) = -1/y(x,y) on the regular grid

Motivation and a building block: Fast Marching Method (Sethian, 1996)

$$\nabla t_0|^2 = \frac{1}{v^2(x_0, t_0)}$$
$$\nabla t_0 \cdot \nabla x_0 = 0$$

Eikonal equation with unknown RHS

Orthogonality relationship: image rays are orthogonal to equitime curves

Movie: time-to-depth conversion

Computed points in coordinates (x_0, t_0) (x, z)

The points are computed in the order of increase of t_0

Fast Marching Method

$$\left|\nabla t_0\right|^2 = \frac{1}{v^2(x,z)}$$

Time-to-depth conversion

$$\left|\nabla t_{0}\right|^{2} = \frac{1}{v^{2}(x_{0}(x,z),t_{0}(x,z))}$$
$$\nabla t_{0} \cdot \nabla x_{0} = 0$$

Not necessarily $T_1(C) \ge T_2(C)$

Example 1. Time-to-depth conversion.

2D example: Gaussian anomaly

2D example: asymmetric anomaly

Why does this work?

- Special input corresponding to a positive finite velocity
- Special initial conditions corresponding to the image rays
- Our finite difference scheme damps high harmonics.
- High harmonics are truncated in the Chebyshev spectral method.
- Short enough interval of time on which we need to compute the solution, such that low harmonics do not grow significantly.

Special input

Claim 1 Consider the following initial and boundary value problem for equation

$$\frac{y_{tt}}{f^2} - 2\frac{y_t f_t}{f^3} = y\frac{f_{xx}}{f} - y_x\frac{f_x}{f} - y_{xx} + \frac{y_x^2}{y},\tag{1}$$

$$y(x,0) = 0, \quad y_t(x,0) = 0$$
 (2)

$$y(a,t) = y(b,t) = -1.$$
 (3)

Suppose the function f in Eq. (1) is analytic and satisfies the following conditions:

- 1. f(x,t) is independent of t;
- 2. f(x) is bounded: $0 < m \le f(x) \le M$;
- 3. $f_{xx} \leq 0$ on (a, b) and $f_{xx}(a) = f_{xx}(b) = 0$.
- 4. f and ff_{xx} reach their absolute maximums at the same point $x_0 \in (a, b)$ and $f_{xx}(x_0) < 0$.

Then the solution to the problem (1), (2), (3) becomes zero or $-\infty$ in a finite time. This corresponds to Q becoming infinitely large or zero respectively.

Special initial conditions

Claim 1 Suppose f(x,t) = 1. Consider the following initial and boundary value problem:

$$y_{tt} = -y_{xx} + \frac{y_x^2}{y}, \quad a \le x \le b, \tag{1}$$

$$y(x,0) = \alpha(x), \quad y_t(x,0) = 0,$$
 (2)

$$y(a,t) = y(b,t) = -1.$$
 (3)

Let $\alpha(x)$ be a smooth analytic function such that

1.
$$-M \le \alpha \le -m < 0, \ \alpha(a) = \alpha(b) = -1,$$

2. α has an absolute maximum at a point $x_0 \in (a, b)$ $\alpha_{xx}(x_0) < 0$;

3.
$$\alpha_{xx}(a) = \alpha_{xx}(b) = 0.$$

Then the solution to the problem (1)-(3) becomes zero or $-\infty$ in a finite time. This corresponds to Q becoming infinitely large or zero respectively.

Damping high harmonics

- Write the modified equation for our finite difference scheme
- Set f = 1, y = -1 for simplicity
- Consider a perturbed problem: $f = 1 + \delta f$, $y = 1 + \delta y$
- Linearize the modified equation around f=1, y=-1 to obtain an equation for δy
- Plot the root diagram for the eigenroots of the linearized modified equation for the Fourier harmonics supported by the grid:

 $0 \leq k \leq \pi/\Delta x$

Analysis of the modified equation

Original equation

 $y = -\frac{1}{2}$

$$\left(\frac{y_t}{f^2}\right)_t = \frac{y}{f} \left(\left(\frac{f}{y}\right)_x y\right)_x$$

Modified equation

$$\left(\frac{y_t}{f^2}\right)_t = \frac{y}{f} \left(\left(\frac{f}{y}\right)_x y\right)_x + \frac{\Delta x^2}{2\Delta t} \left(\frac{y_t}{f^2}\right)_{xx} - \frac{\Delta t}{2} \left(\frac{y_t}{f^2}\right)_{xx} - \Delta x^2 \frac{y}{f} \left(\frac{1}{3}v_{xxxx}y + \frac{1}{3}v_{xxx}y_x - \frac{1}{2}v_{xx}y_{xx} + \frac{1}{6}v_xy_{xxx}\right)$$

Modified equation linearized around f = 1 and y = -1

$$\delta y_{tt} + \delta y_{xx} - \frac{\Delta x^2}{2\Delta t} \delta y_{txx} + \frac{\Delta t^2}{2} \delta y_{ttt} + \frac{\Delta x^2}{3} \delta y_{xxxx} = F$$

Equation for the Fourier harmonics

$$\frac{\Delta t^2}{2}a_{ttt} + a_{tt} + \frac{\Delta x^2}{2\Delta t}k^2a_t + \left(\frac{\Delta x^2}{3}k^4 - k^2\right)a = \hat{F}$$

Root diagrams

Our scheme: "Lax-Friedrichs" averaging, 5 point stencil in space

Alternative scheme 1: no ''Lax-Friedrichs'' averaging, 5 point stencil in space

Alternative scheme 2: "Lax-Friedrichs" averaging, 3 point stencil in space

PDE for Q in 3D

$$\left(\frac{1}{v^2}Q_t\right)_t = -\frac{1}{v}Q^{-T}\nabla\left[(\nabla v)^TQ^{-1}\right]Q$$
$$v = \sqrt[4]{\det f(\det Q)^2}$$

Input:
$$\sqrt{\det f}$$

3D Example 1

Figure 15: 3D example 1. The first row: the velocity on the vertical plane y = 0. The second row: the velocity on the vertical plane x = 0. The third row: the velocity on the horizontal plane z = 2.55 km. The first column ((a),(d),(g)): the reconstructed velocity and the image rays; the second column ((b),(e),(h)): the exact velocity; the third column ((c),(f),(i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue and dark red correspond to 2 km/s and 4 km/s respectively.

3D example 2

Figure 16: 3D example 2. The first row: the velocity on the vertical plane y = 0. The second row: the velocity on the vertical plane x = 0. The third row: the velocity on the horizontal plane z = 2.0 km. The first column ((a),(d),(g)): the reconstructed velocity and the image rays; the second column ((b),(e),(h)): the exact velocity; the third column ((c),(f),(i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue and dark red correspond to 2 km/s and 4 km/s respectively.

Marmousi Example

Prestack depth-migrated image with Dix velocities

Prestack depth-migrated image with our velocities

Angle domain common-image point gather at 4000 m using: Left: Dix, velocity, Right: our velocity

Conclusions

- Relationships between $v_m(x_0,t_0)$ and v(x,z) in 2D and 3D
- PDE's connecting $v(x_0,t_0)$ and $v_m(x_0,t_0)$ in 2D and 3D
- Difficulties of solving them arise from
 - 1. Sensetivity (dependence not only on the data but also on their derivatives)
 - 2. Ill-Posedness (Cauchy problems for elliptic PDE's)
- Finite difference ("Lax-Friedrichs") and spectral ("Chebyshev") numerical methods allow to solve these PDE's on a short interval of time due to
 - 1. Special input
 - 2. Special initial conditions
 - 3. Damping of high harmonics
- Efficient Dijkstra-like solver to compute v(x,z), $x_0(x,z)$, $t_0(x,z)$ from $v(x_0,t_0)$