SEISMIC VELOCITY ESTIMATION

 FROM TIME MIGRATION

 FROM TIME MIGRATION}

Maria Cameron
Department of Mathematics, University of Maryland
Joint work with
Sergey Fomel, U ofTexas, Austin James Sethian, U of California, Berkeley

Seismic data

Time coordinates vs depth coordinates

$\left(x_{0}, t_{0}\right)=$ the location of
the first arrival at the surface and and the travel time
$(x, z)=$ the cartesian coordinates of the subsurface location

Time migration vs depth migration

Adequate for	Mild lateral velocity variation	Arbitrary lateral velocity variation
Input	Seismic data $P(s, r, t)$	Seismic data $P(s, r, t)$ and seismic velocity $v(x, z)$
Output	Image in the Imene coordinates in the	
depth coordinates		

Time migration

Time migration velocity

$$
v_{m}\left(x_{0}, t_{0}\right)
$$

Seismic velocity and transition matrices

$$
v(x, z), \quad x_{0}(x, z), \quad t_{0}(x, z)
$$

Depth migration using the seismic velocity

$$
v(x, z)
$$

The Goal:

Develop a fast algorithm to convert:

- Time migration velocities to seismic velocities
- Time coordinates to depth coordinates

The eikonal approximation

The wave equation:

$$
\begin{gathered}
\frac{\partial^{2} P}{\partial t^{2}}=v^{2}(x, y, z) \Delta P \\
v(x, y, z) \\
=\text { unknown seismic velocity } \\
=\text { the of propagation of } \mathrm{P} \text {-waves }
\end{gathered}
$$

The high frequency approximation:

$$
P(x, y, z)=A(x, y, z) e^{-i \omega(t-T(x, y, z))}
$$

The eikonal equation:

$$
|\nabla T|^{2}=\frac{1}{v^{2}(x, y, z)}
$$

The travel time approximation

Using the Pythagorean theorem we get:

$$
T\left(x_{0}, t_{0} ; s, r\right)=\sqrt{t_{0}^{2}+\frac{\left|x_{0}-s\right|^{2}}{v_{m}^{2}}}+\sqrt{t_{0}^{2}+\frac{\left|x_{0}-r\right|^{2}}{v_{m}^{2}}}
$$

The Dix inversion

$$
T\left(x_{0}, t_{0} ; s, r\right)=\sqrt{t_{0}^{2}+\frac{\left|x_{0}-s\right|^{2}}{v_{m}^{2}\left(t_{0}\right)}}+\sqrt{t_{0}^{2}+\frac{\left|x_{0}-r\right|^{2}}{v_{m}^{2}\left(t_{0}\right)}}
$$

The Dix formula:

$$
v_{D i x}\left(t_{0}\right)=\sqrt{\frac{\partial}{\partial t_{0}}\left(t_{0} v_{m}^{2}\left(t_{0}\right)\right)}
$$

The travel time approximation based on the Dix formula

$$
v_{D i x}\left(x_{0}, t_{0}\right)=\sqrt{\frac{\partial}{\partial t_{0}}\left(t_{0} v_{m}^{2}\left(x_{0}, t_{0}\right)\right)}
$$

Paraxial ray tracing

M. Popov

$$
Q:=\frac{d q}{d x_{0}}, \quad P:=\frac{d p}{d x_{0}}
$$

$|Q|=$ the geometrical spreading of the image rays

$$
\frac{d}{d t_{0}}\left[\begin{array}{l}
Q \\
P
\end{array}\right]=\left[\begin{array}{cc}
0 & v^{2} \\
-\frac{v_{q q}}{v} & 0
\end{array}\right]\left[\begin{array}{l}
Q \\
P
\end{array}\right]
$$

$$
Q\left(x_{0}, 0\right)=1, \quad P\left(x_{0}, 0\right)=0
$$

$$
v=v\left(x_{0}, t_{0}\right)
$$

$v_{q q}=$ the 2nd derivative along the line normal to the central ray

The relationship between

time migration velocities and seismic velocities
Cameron, Fomel, Sethian, 2006

2D:

$$
v_{D i x}\left(x_{0}, t_{0}\right)=\frac{v\left(x_{0}, t_{0}\right)}{\left|Q\left(x_{0}, t_{0}\right)\right|}
$$

where

$$
v_{D i x}\left(x_{0}, t_{0}\right)=\sqrt{\frac{\partial}{\partial t_{0}}\left(t_{0} v_{m}^{2}\left(x_{0}, t_{0}\right)\right)}
$$

3D:

$$
\frac{\partial}{\partial t_{0}}\left(t_{0} v_{m}^{2}\left(x_{0}, t_{0}\right)\right)=v^{2}\left[Q^{T} Q\right]^{-1}
$$

where

$$
v=v\left(x_{0}, t_{0}\right), \quad Q=Q\left(x_{0}, t_{0}\right)
$$

The statement of the inverse problem

Input

2D: $\quad v_{D i x}\left(x_{0}, t_{0}\right)=\frac{v\left(x_{0}, t_{0}\right)}{\left|Q\left(x_{0}, t_{0}\right)\right|}$

3D: $\quad f\left(x_{0}, t_{0}\right):=\frac{\partial}{\partial t_{0}}\left(t_{0} v_{m}^{2}\left(x_{0}, t_{0}\right)\right)$ $\operatorname{det} f\left(x_{0}, t_{0}\right)=v^{4}(\operatorname{det} Q)^{-2}$

Output

PDE for \mathbf{Q} in 2D

Cameron, Fomel, Sethian, 2008

Notation: $f\left(x_{0}, t_{0}\right):=v_{D i x}\left(x_{0}, t_{0}\right)$
Look at $\quad\left\{\begin{array}{l}\frac{\partial Q}{\partial t_{0}}=v^{2} P \\ \frac{\partial P}{\partial t_{0}}=-\frac{v_{q q}}{v} Q\end{array} \quad\right.$ and $\quad v=f Q$
Since

$$
\begin{gathered}
Q=\frac{d q}{d x_{0}} \quad \text { we have: } \frac{d}{d q}=Q^{-1} \frac{d}{d x_{0}} \\
\left(\frac{Q_{t_{0}}}{Q^{2} f^{2}}\right)_{t_{0}}=-\frac{1}{f Q}\left(\frac{(f Q)_{x_{0}}}{Q}\right)_{x_{0}} \\
Q\left(x_{0}, 0\right)=1, \quad Q_{t_{0}}\left(x_{0}, 0\right)=0
\end{gathered}
$$

The reconstruction scheme

The geometrical spreading $Q\left(x_{0}, t_{0}\right)$
Seismic velocities in the time coordinates

$$
v\left(x_{0}, t_{0}\right)=f\left(x_{0}, t_{0}\right) Q\left(x_{0}, t_{0}\right)
$$

ζ Time-to-depth conversion
Transition matrices from time- to depth coordinates

$$
x_{0}(x, z), \quad t_{0}(x, z)
$$

Seismic velocities in the depth coordinates

$$
v(x, z)
$$

Cauchy problem for elliptic equation

Notation change: $\quad t_{0} \rightarrow t, \quad x_{0} \rightarrow x$
Variable change: $\quad y=-\frac{1}{Q}$
The PDE for Q becomes: $\left(\frac{y_{t}}{f^{2}}\right)_{t}=\frac{y}{f}\left(\left(\frac{f}{y}\right)_{x} y\right)_{x}$
The expanded form: $\frac{y_{t t}}{f^{2}}-2 \frac{y_{t} f_{t}}{f^{3}}=y \frac{f_{x x}}{f}-y_{x} \frac{f_{x}}{f}-y_{x x}+\frac{y_{x}^{2}}{y}$
Initial conditions: $\quad y(x, 0)=-1, \quad y_{t}(x, 0)=0$

Boundary conditions: $\quad y(0, t)=y(L, t)=-1$

The finite difference scheme

$$
\begin{aligned}
P_{j}^{n+1} & =\frac{P_{j+1}^{n}+P_{j-1}^{n}}{2}-\frac{\Delta t}{4 \Delta x^{2}} \frac{1}{(f Q)_{j}^{n}}\left(\frac{(f Q)_{j+2}^{n}-(f Q)_{j}^{n}}{Q_{j+1}^{n}}-\frac{(f Q)_{j}^{n}-(f Q)_{j-2}^{n}}{Q_{j-1}^{n}}\right) \\
-\frac{1}{Q_{j}^{n+1}} & =-\frac{1}{Q_{j}^{n}}+\frac{\Delta t}{2}\left(\left(f_{j}^{n}\right)^{2} P_{j}^{n}+\left(f_{j}^{n+1}\right)^{2} P_{j}^{n+1}\right)
\end{aligned}
$$

$$
j-2 \quad j-1 \quad j \quad j+1 \quad j+2
$$

The Chebyshev spectral method

$$
\left(\frac{y_{t}}{f^{2}}\right)_{t}=\frac{y}{f}\left(\left(\frac{f}{y}\right)_{x} y\right)_{x}
$$

- Choose the number of Chebyshev points N
- Choose the number of Chebyshev polynomials for function evaluation $N_{\text {eval }}$
- Interpolate the input data $f(x, t)$ at the Chebyshev points
- Solve the PDE to find y at the Chebyshev points
- Compute $Q(x, t)=-1 / y(x, y)$ on the regular grid

Time-to-depth conversion

Input

Output

Motivation and a building block: Fast Marching Method (Sethian, I996)

$$
\begin{aligned}
\left|\nabla t_{0}\right|^{2} & =\frac{1}{v^{2}\left(x_{0}, t_{0}\right)} \\
\nabla t_{0} \cdot \nabla x_{0} & =0
\end{aligned}
$$

Eikonal equation with unknown RHS
Orthogonality relationship: image rays are orthogonal to equitime curves

Movie: time-to-depth conversion

The input and the results

Computed points in coordinates

$$
\left(x_{0}, t_{0}\right)
$$

$$
(x, z)
$$

The points are computed in the order of increase of t_{0}

An issue

Fast Marching Method

$$
\left|\nabla t_{0}\right|^{2}=\frac{1}{v^{2}(x, z)}
$$

Time-to-depth conversion

$$
\begin{aligned}
& \left|\nabla t_{0}\right|^{2}=\frac{1}{v^{2}\left(x_{0}(x, z), t_{0}(x, z)\right)} \\
& \nabla t_{0} \cdot \nabla x_{0}=0
\end{aligned}
$$

Not necessarily $T_{1}(C) \geq T_{2}(C)$

Example 1. Time-to-depth conversion.

2D example: Gaussian anomaly

2D example: asymmetric anomaly

Why does this work?

- Special input corresponding to a positive finite velocity
- Special initial conditions corresponding to the image rays
- Our finite difference scheme damps high harmonics.
- High harmonics are truncated in the Chebyshev spectral method.
- Short enough interval of time on which we need to compute the solution, such that low harmonics do not grow significantly.

Special input

Claim 1 Consider the following initial and boundary value problem for equation

$$
\begin{align*}
& \frac{y_{t t}}{f^{2}}-2 \frac{y_{t} f_{t}}{f^{3}}=y \frac{f_{x x}}{f}-y_{x} \frac{f_{x}}{f}-y_{x x}+\frac{y_{x}^{2}}{y} \tag{1}\\
& y(x, 0)=0, \quad y_{t}(x, 0)=0 \tag{2}\\
& y(a, t)=y(b, t)=-1 \tag{3}
\end{align*}
$$

Suppose the function f in Eq. (1) is analytic and satisfies the following conditions:

1. $f(x, t)$ is independent of t;
2. $f(x)$ is bounded: $0<m \leq f(x) \leq M$;
3. $f_{x x} \leq 0$ on (a, b) and $f_{x x}(a)=f_{x x}(b)=0$.
4. f and $f f_{x x}$ reach their absolute maximums at the same point $x_{0} \in(a, b)$ and $f_{x x}\left(x_{0}\right)<$ 0 .

Then the solution to the problem (1), (2), (3) becomes zero or $-\infty$ in a finite time. This corresponds to Q becoming infinitely large or zero respectively.

Special initial conditions

Claim 1 Suppose $f(x, t)=1$. Consider the following initial and boundary value problem:

$$
\begin{align*}
& y_{t t}=-y_{x x}+\frac{y_{x}^{2}}{y}, \quad a \leq x \leq b \tag{1}\\
& y(x, 0)=\alpha(x), \quad y_{t}(x, 0)=0 \tag{2}\\
& y(a, t)=y(b, t)=-1 \tag{3}
\end{align*}
$$

Let $\alpha(x)$ be a smooth analytic function such that

1. $-M \leq \alpha \leq-m<0, \alpha(a)=\alpha(b)=-1$,
2. α has an absolute maximum at a point $x_{0} \in(a, b) \alpha_{x x}\left(x_{0}\right)<0$;
3. $\alpha_{x x}(a)=\alpha_{x x}(b)=0$.

Then the solution to the problem (1)-(3) becomes zero or $-\infty$ in a finite time. This corresponds to Q becoming infinitely large or zero respectively.

Damping high harmonics

- Write the modified equation for our finite difference scheme
- Set $f=1, \quad y=-1$ for simplicity
- Consider a perturbed problem: $\quad f=1+\delta f, \quad y=1+\delta y$
- Linearize the modified equation around $f=1, \quad y=-1$ to obtain an equation for δy
- Plot the root diagram for the eigenroots of the linearized modified equation for the Fourier harmonics supported by the grid:

$$
0 \leq k \leq \pi / \Delta x
$$

Analysis of the modified equation

Original equation

$$
y=-\frac{1}{Q} \quad\left(\frac{y_{t}}{f^{2}}\right)_{t}=\frac{y}{f}\left(\left(\frac{f}{y}\right)_{x} y\right)_{x}
$$

Modified equation

Modified equation linearized around $f=1$ and $y=-1$

$$
\delta y_{t}+\delta y_{y_{t u}}-\frac{\Delta x^{2}}{2 \Delta t} \delta y_{t u t}+\frac{\Delta t^{2}}{2} \delta y_{y_{t}}+\frac{\Delta x^{2}}{3} \delta y_{\mathrm{max}}=F
$$

Equation for the Fourier harmonics

$$
\frac{\Delta t^{2}}{2} a_{t t t}+a_{t t}+\frac{\Delta x^{2}}{2 \Delta t} k^{2} a_{t}+\left(\frac{\Delta x^{2}}{3} k^{4}-k^{2}\right) a=\hat{F}
$$

Root diagrams

Our scheme:

"Lax-Friedrichs" averaging, 5 point stencil in space

Alternative scheme I: no "Lax-Friedrichs" averaging, 5 point stencil in space

Alternative scheme 2:
"Lax-Friedrichs" averaging, 3 point stencil in space

PDE for \mathbf{Q} in 3D

$$
\begin{aligned}
\left(\frac{1}{v^{2}} Q_{t}\right)_{t} & =-\frac{1}{v} Q^{-T} \nabla\left[(\nabla v)^{T} Q^{-1}\right] Q \\
v & =\sqrt[4]{\operatorname{det} f(\operatorname{det} Q)^{2}}
\end{aligned}
$$

Input: $\quad \sqrt{\operatorname{det} f}$

3D Example 1

Figure 15: 3D example 1. The first row: the velocity on the vertical plane $y=0$. The second row: the velocity on the vertical plane $x=0$. The third row: the velocity on the horizontal plane $z=2.55 \mathrm{~km}$. The first column ((a),(d),(g)): the reconstructed velocity and the image rays; the second column ((b),(e),(h)): the exact velocity; the third column ((c),(f),(i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue and dark red correspond to $2 \mathrm{~km} / \mathrm{s}$ and $4 \mathrm{~km} / \mathrm{s}$ respectively.

3D example 2

Figure 16: 3D example 2. The first row: the velocity on the vertical plane $y=0$. The second row: the velocity on the vertical plane $x=0$. The third row: the velocity on the horizontal plane $z=2.0 \mathrm{~km}$. The first column ($(\mathrm{a}),(\mathrm{d}),(\mathrm{g}))$: the reconstructed velocity and the image rays; the second column ((b),(e),(h)): the exact velocity; the third column ((c),(f),(i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue and dark red correspond to $2 \mathrm{~km} / \mathrm{s}$ and $4 \mathrm{~km} / \mathrm{s}$ respectively.

Marmousi Example

Prestack depth-migrated image with Dix velocities

Prestack depth-migrated image with our velocities

Angle domain common-image point gather at 4000 m using: Left: Dix, velocity, Right: our velocity

Conclusions

- Relationships between $v_{m}\left(x_{0}, t_{0}\right)$ and $v(x, z)$ in 2D and 3D
- PDE' s connecting $v\left(x_{0}, t_{0}\right)$ and $v_{m}\left(x_{0}, t_{0}\right)$ in 2D and 3D
- Difficulties of solving them arise from

1. Sensetivity (dependence not only on the data but also on their derivatives)
2. III-Posedness (Cauchy problems for elliptic PDE' s)

- Finite difference ("Lax-Friedrichs") and spectral ("Chebyshev") numerical methods allow to solve these PDE's on a short interval of time due to

1. Special input
2. Special initial conditions
3. Damping of high harmonics

- Efficient Dijkstra-like solver to compute $v(x, z), x_{0}(x, z), t_{0}(x, z)$ from $v\left(x_{0}, t_{0}\right)$

