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Abstract. We extend the results of the 2019 paper by the third
and fourth author globally in time. More precisely, we prove uni-
form in N estimates for the solutions ϕ, Λ and Γ of a coupled
system of Hartree–Fock–Bogoliubov type with interaction poten-
tial VN (x− y) = N3βv(NβVN ((x− y)) with β < 1. The potential
satisfies some technical conditions, but is not small. The initial
conditions have finite energy and the “pair correlation” part sat-
isfies a smallness condition, but are otherwise general functions in
suitable Sobolev spaces, and the expected correlations in Λ de-
velop dynamically in time. The estimates are expected to improve
the Fock space bounds from the 2021 paper of the first and fifth
author. This will be addressed in a different paper.

1. Introduction

The general motivation for this paper is the evolution of N Bosons
under a mean-field Hamiltonian

−
N∑
k=1

∆xi
+

1

2N

∑
k ̸=l

VN(xk − xl)

where xi ∈ R3, N is large and

VN(x) = N3βv(Nβx)

and the potential v is discussed below. (The notation vM(x) will also be
used in sections 2-5 , with a different meaning.) The initial conditions
are (exactly or approximately) a tensor product ϕ⊗ · · · ⊗ ϕ.

The exact evolution of the system is approximated by a construc-
tion involving just two functions: the condensate ϕ(t, x) and a pair
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excitation function k(t, x, y), and it is

ψapprox := e−
√
NA(ϕ(t)e−B(k(t))Ω (1)

where

A(ϕ) :=

∫
dx
{
ϕ̄(x)ax − ϕ(x)a∗x

}
(2)

and e−
√
NA(ϕ) is a unitary operator on Fock space, the Weyl operator.

and

B(k) := 1

2

∫
dxdy

{
k̄(t, x, y)axay − k(t, x, y)a∗xa

∗
y

}
. (3)

The unitary operator eB(k) is the representation of an (infinite dimen-
sional) real symplectic matrix. Also, Ω is the vacuum. See for instance
[10] for background on this construction.

In order for ψapprox to be an approximation to the exact evolution,
ϕ and k must satisfy certain PDEs. In the math literature, they were
introduced in [10] and independently and in a different context in [1].
They were studied in [11], [12], [5], as well as [2].

To write down the equations it is convenient to consider a self-adjoint
kernel

Γ(t, x, y) = ϕ̄(t, x)ϕ(t, y) +
1

N

(
sh(k) ◦ sh(k)

)
(t, x, y) := Γc + Γp

and a symmetric kernel

Λ(t, x, y) = ϕ(t, x)ϕ(t, y) +
1

2N
sh(2k)(t, x, y) := Λc + Λp

where

sh(k) := k +
1

3!
k ◦ k ◦ k + . . . ,

ch(k) := δ(x− y) +
1

2!
k ◦ k + . . .

The functions Λ and Γ have the conceptual meaning of reduced density
matrices. Here, (u ◦ v)(x, y) =

∫
u(x, z)v(z, y)dz). There are several

equivalent ways of expressing the equations. In this section we give a
compact, matrix formulation.

For the current paper we separate the condensate part from the pair
interaction part: define Γc = ϕ̄ ⊗ ϕ, Λc = ϕ ⊗ ϕ, Γp = 1

N
sh(k) ◦ sh(k)

and Λp =
1
2N

sh(2k). Also, denote ρ(t, x) = Γ(t, x, x).
To write the Hartree-Fock-Bogoliubov equations in matrix notation,

define
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Ω =

(
−Γ −Λ̄
Λ Γ̄

)
:= Ψ + Φ

where

Ψ =

(
−Γp −Λ̄p

Λp Γ̄p

)

Φ =

(
−Γc −Λ̄c

Λc Γ̄c

)
Finally, let

S3 =

(
−I 0
0 I

)
where I is the identity operator.

The evolution equations for Ω and Ψ (for t > 0, with initial condi-
tions at t = 0) are

1

i
∂tΦ− [∆xδ(x− y)S3,Φ]

= −[(VN ∗ ρ(t, x))δ(x− y)S3,Φ]− [VNΨ
∗,Φ] (4)

1

i
∂tΨ− [∆xδ(x− y)S3,Ψ] (5)

= −[(VN ∗ ρ)δ(x− y)S3,Ψ]− 1

2N
[S3, VNΨ]− [VNΩ

∗,Ψ]− 1

2N
[S3, VNΦ]

In addition, the condensate ϕ satisfies{
1

i
∂t −∆x1

}
ϕ(x1)

= −
∫
dy {vN(x1 − y)Γ(y, y)}ϕ(x1)

−
∫
dy
{
vN(x1 − y)Γp(y, x1)ϕ(y)

+

∫
dy
{
vN(x1 − y)Λp(x1, y)

}
ϕ(y)

Here A∗(x, y) = Ā(y, x), [A,B] = A ◦ B − B ◦ A and VN acts by
pointwise multiplication by VN(x− y). We will write down these equa-
tions in scalar form later, see (67)-(70)). Also, we will write down a
simplified model at the end of the introduction.
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The arguments of this paper will involve non-local fractional time
derivatives, so the values of the solutions at negative times also matter.
It is convenient to replace (4), (5) by

1

i
∂tΦ− [∆xδ(x− y)S3,Φ] = h(t)×RHS(4) (6)

1

i
∂tΨ− [∆xδ(x− y)S3,Ψ] = h(t)×RHS(5) (7)

where h(t) is the characteristic function of [0,∞) and RHS(4) stands
for the right hand side of equation (4). This is the usual solution
one gets from Duhamel’s formula, and solutions to (4), (5) agree with
solutions to (6), (7) fot t > 0, provided they have the same initial
conditions.

Next, we review the conserved quantities of these equations. See [10]
for details. The first conserved quantity is the total number of particles
(normalized by division by N):

tr {Γ(t)} = ∥ϕ(t, ·)∥2L2(dx) +
1

N
∥sh(k)(t, ·, ·)∥2L2(dxdy) = 1 . (8)

The second conserved quantity is the energy per particle

E(t) := tr {∇x1 · ∇x2Γ(t)}+
1

2

∫
dx1dx2

{
VN(x1 − x2)

∣∣Λ(t, x1, x2)∣∣2}
(9)

+
1

2

∫
dx1dx2

{
VN(x1 − x2)

(∣∣Γ(t, x1, x2)∣∣2 + Γ(t, x1, x1)Γ(t, x2, x2)
)}

−
∫
dx1dx2

{
VN(x1 − x2)|ϕ(t, x1)|2|ϕ(t, x2|2

}
.

The above holds for any Schwartz potential v. In addition, in order to
use the estimates of [5], we assume

v is spherically symmetric and (10)

v ≥ 0, v ∈ C∞
0 ,

∂v

∂r
(r) ≤ 0.
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For the initial conditions, we assume there exist a constant C (inde-
pendent of N) and α > 1

2
such that

tr {Γ(0)} ≤ C

E(0) ≤ C (11)

∥
〈
∇x

〉α〈∇y

〉α
Γ(0, x, y)∥L2 ≤ C (this follows from the previous condition,

and will be preserved by the time evolution)

∥
〈
∇x

〉α〈∇y

〉α
Λ(0, x, y)∥L2 ≤ C (this will also be preserved by the time evolution

for all 1
2
≤ α ≤ α0 for some α0 >

1
2
, as was shown in [5])

∥|∇x||∇y|Λ(0, x, y)∥L2 ≤ CN.

The data is also assumed to be in a high Hs space (but not uniformly
in N).

In addition, there will be a smallness assumption on the initial con-
ditions for the “pair” components of Γ and Λ. Under the above as-
sumptions, the arguments of [5] imply that for all α > 1

2
, sufficiently

close to α > 1
2
, there exists ϵ3 > 0 such that∫ ∣∣|∇x|α|∇y|αΛp(t, x, y)

∣∣2dxdy ≤ C

N ϵ3
(12)

uniformly in t and N . This follows by interpolating between (14) in [5]
and Theorem 1.2 in that paper.

In addition, we assume∥∥〈∇x

〉α〈∇y

〉α
Γp(0, ·, ·)

∥∥
L2 ≤

1

N ϵ3
(13)

α is a number slightly bigger that 1
2
, to be chosen later.

Also, from Proposition 3.4 in [5] we have a Morawetz type estimate

||Γ(t, x, x)||L2
t,x

≲ 1 (14)

while from conservation of energy and the trace theorem,

||Γ(t, x, x)||L∞(dt)L2(dx) ≲ 1. (15)

In order to state the main result of this paper in the simplest possible
form, we define the following partial Strichartz norms:

∥Λ∥Sx,y (16)

= sup
p,q admissible,

∥Λ∥Lp(dt)Lq(dx)L2(dy)

+ sup
p,q admissible,

∥Λ∥Lp(dt)Lq(dy)L2(dx).
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Recall p, q are admissible in 3+1 dimensions if 2
p
+ 3

q
= 3

2
, 2 ≤ p ≤ ∞.

Thus

∥Λ∥Sx,y ∼ ∥Λ∥L2(dt)L6(dx)L2(dy) + ∥Λ∥L2(dt)L6(dy)L2(dx) + ∥Λ∥L∞(dt)L2(dxdy).

The main result of this paper is

Theorem 1.1. Let Λ = Λp + Λc, Γ = Γp + Γc be solutions of (6),
(7) (or, equivalently, (67)-(70)), where the potential satisfies (10), and
the initial conditions satisfy (11) and (13). Then we have the a priori
estimates

∥Γ∥
L8(dt)L∞(d(x−y))L

4
3 (d(x+y))

≤ C (17)

∥∇x+yΓ∥L8(dt)L∞(d(x−y))L
4
3 (d(x+y))

≤ C (18)

and thus also

∥
〈
∇x+y

〉α
Γ∥

L8(dt)L∞(d(x−y))L
4
3 (d(x+y))

≤ C. (19)

(In what follows, α > 1
2
, close to 1

2
, will be fixed.)

Also, there exists N0, and α >
1
2
and C independent of N such that

∥
〈
∇x

〉α〈∇y

〉α
Λ∥Sx,y + ∥

〈
∇x

〉α〈∇y

〉α
Γ∥Sx,y (20)

+ ∥
〈
∇x+y

〉α
Λ∥L2(dt)L∞(d(x−y))L2(d(x+y)) (21)

+ ∥|∂t|
1
4Λ∥L2(dt)L∞(d(x−y))L2(d(x+y)) (22)

+ sup
x−y

∥|∇x+y|αΓ∥L2(dtd(x+y)) ≤ C (23)

for all N ≥ N0. In addition, if∥∥〈∇x

〉α〈∇y

〉α|∇x+y|jΛ(0, ·)
∥∥
L2 +

∥∥〈∇x

〉α〈∇y

〉α|∇x+y|jΓ(0, ·)
∥∥
L2 ≤ C

for all j = 1, · · · , j0, then also

∥
〈
∇x

〉α〈∇y

〉α|∇x+y|jΛ∥Sx,y + ∥
〈
∇x

〉α〈∇y

〉α|∇x+y|jΓ∥Sx,y

+ ∥
〈
∇x+y

〉α+j
Λ∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4 |∇x+y|jΛ∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ sup
x−y

∥|∇x+y|α+jΓ∥L2(dtd(x+y)) ≤ C.

The above hold for both the condensate and pair functions.

Remark 1.2. We don’t know if supx−y ∥|∇x+y|αΓ∥L2(dtd(x+y)) can be re-
placed by the stronger norm ∥|∇x+y|αΓ∥L2(dt)L∞(d(x−y))L2(d(x+y)).

For a proof of (17) and (18) see Lemma 6.2. These estimates depend
on initial conditions of trace class (or in a Schatten space) and could
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not be true, even for a linear equation, with just Ḣs initial conditions.
See [9], [8]

We also have a theorem for sh(2k) (without dividing it by N):

Theorem 1.3. Let Λ, Γ, ϕ be solutions of (6), (7), where the potential
satisfies (10) and the initial conditions satisfy (11) and (13). Assume
also that

∥sh(2k)(0, ·, ·)∥L2 + ∥(sh(k) ◦ sh(k))(0, ·, ·))∥L2 ≤ C.

Then, for all N ≥ N0 (as in Theorem 1.1)

∥sh(2k)∥Sx,y + ∥sh(k) ◦ sh(k)∥Sx,y ≤ C logN.

Also, assume that for all j = 1, · · · , j0 we have

∥|∇x+y|jsh(2k)(0, ·, ·)∥L2 + ∥|∇x+y|j(sh(k) ◦ sh(k))(0, ·, ·))∥L2 ≤ C.

Then also

∥||∇x+y|jsh(2k)∥Sx,y + ∥|∇x+y|j(sh(k) ◦ sh(k))∥Sx,y ≤ C logN.

Remark 1.4. The above estimates also imply some estimates for sh(k).
In particular,

∥sh(k)∥Lp(dx)L2(dy) ≤ C∥sh(2k)∥Lp(dx)L2(dy). (24)

This is because sh(k) = 1
2
sh(2k) ◦ ch(k)−1 and ch(k)−1 has bounded

operator norm.

Finally, we also have estimates for ϕ.
Define the standard Strichartz spaces

∥ϕ∥S = sup
p,q admissible

∥ϕ∥Lp(dt)Lq(dx).

Corollary 1.5. Under the assumptions of Theorem 1.1, and the ad-

ditional assumptions ∥
〈
∇
〉α+j

ϕ(t = 0)∥L2 ≤ C for all j = 0, 1, · · · , j0,
we have

∥
〈
∇
〉α+j

ϕ∥S ≤ C

We expect the above theorems to have immediate applications to
proving a global improved Fock space estimate. This will be addressed
in a different paper. We expect to be able to prove

∥ψexact(t)− ψapprox(t)∥F := ∥eitHe−
√
NA(ϕ0)e−B(k(0))Ω− eiχ(t)e−

√
NA(ϕ(t))e−B(k(t))Ω∥F

≤ CP (t)

N
1−β
2
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for a polynomial P (t), and 0 < β < 1. Currently, the best bounds for

growth in time for the above construction are of the form eCt

N
1−β
2

. See

[6] for the proof and background material.
Finally, we mention the difficulties surrounding equations (4), (5).
Denote

S =
1

i

∂

∂t
−∆x −∆y

S± =
1

i

∂

∂t
−∆x +∆y.

Schematically, treating VN as δ and ignoring constants, the equations
become

SΛc = Γ(t, x, x)Λc(t, x, y)}+ Λp(t, x, x)Γc(t, x, y)

S±Γc = Γ(t, x, x)Γc(t, x, y)}+ Λ̄p(t, x, x)Λc(t, x, y)

SΛp +
VN
N

Λp = Γ(t, x, x)Λp(t, x, y)}+ Λp(t, x, x)Γp(t, x, y)−
VN
N

Λc

+ Λc(t, x, x)Γp(t, x, y)

S±Γp = Γ(t, x, x)Γp(t, x, y) + Λp(t, x, x)Λp(t, x, y) + Λ̄c(t, x, x)Λp(t, x, y).

Our method for treating the nonlinear terms requires (roughly) Strichartz

estimates for |∇x|
1
2 |∇y|

1
2Λp or c, |∇x|

1
2 |∇y|

1
2Γp or c. But if we apply |∇x|

1
2 |∇y|

1
2

to the forcing term VN

N
Λc in the equation for Λp, we get a singularity

which approached δ(x−y)Λc which cannot be treated by standard X− 1
2

type techniques.

1.6. Acknowledgment. The second and third authors thank Daniel
Tataru for the suggestion that the resulting singularities mentioned
above are sufficiently special that they can be treated by other methods
[20]. Also, we thank Xiaoqi Huang for suggesting several improvements
to this paper. He is currently working on extending our current results
to the case β = 1.

J. Chong was supported by the NSF through the RTG grant DMS-
RTG 1840314. Z. Zhao was partially supported by the NSF grant of
China (No. 12101046) and the Beijing Institute of Technology Research
Fund Program for Young Scholars.

2. Statement of the main linear estimates

Let x, y ∈ R3, recall S = 1
i
∂
∂t
−∆x−∆y and h(t) denotes the Heaviside

function. Consider the equation
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SΛ(t, x, y) = h(t)

(
N3β−1v(Nβ(x− y)Λ(t, x, y) +G(t, x, y)

+N3β−1v(Nβ(x− y)H(t, x, y)

)
(25)

Λ(0, ·) = Λ0

for 0 < β < 1 with v is Schwartz.
Recall the definition of Sx,y from (16). Also define the full Strichartz

norm (including Lp(dt)Lq(d(x− y))L2(d(x+ y)) )

∥Λ∥S (26)

= sup
p,q admissible

∥Λ∥Lp(dt)Lq(dx)L2(dy)

+ sup
p,q admissible

∥Λ∥Lp(dt)Lq(dy)L2(dx)

+ sup
p,q admissible

∥Λ∥Lp(dt)Lq(d(x−y))L2(d(x+y))

and the restricted dual Strichartz norm , excluding the end-points p′ =
2, p′ = 1: let p1 large and p0 > 2 but close to 2 as above, and define

∥G∥S′
r
= inf

p,q admissible,p1≥p≥p0>2
{∥G∥Lp′ (dt)Lq′ (dx)L2(dy), ∥G∥Lp′ (dt)Lq′ (dy)L2(dx)}.

The reason for excluding p′ = 2 is that we don’t know if we can flip x
and y in the double end-point case in Theorem 4.1. The reason p′ = 1 is
excluded is the failure of sharp Sobolev estimates in L1, see for instance
the proof of Lemma 4.6.

Finally, define the “collapsing norms”

∥Λ∥collapsing =
∥∥Λ∥∥

L∞(d(x−y))L2(dt)L2(d(x+y))
.

We will also use the stronger norms
∥∥Λ∥∥

L2(dt)L∞(d(x−y))L2(d(x+y))
. For the

reason we don’t work only with this stronger norm see the comments
regarding (65). For the reason we don’t work only with the collapsing
norms, see Remark (6.3).

The simplest form of our theorem is

Theorem 2.1. Let Λ satisfy (25), assume v is Schwartz. Let 0 < β < 1
and α > 1

2
is sufficiently close to 1

2
(so that (28)-(30) hold). Then there
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exists ϵ > 0 (depending on β < 1) such that, for N sufficiently large,∥∥〈∇x

〉α〈∇y

〉α
Λ
∥∥
Sx,y

+
∥∥〈∇x+y

〉α
Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14Λ∥∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+N−ϵ

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+N−ϵ
∥∥∣∣∂t∣∣ 14H∥∥collapsing +N−ϵ

∥∥〈∇x+y

〉α
H
∥∥
collapsing

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

Remark 2.2. Notice that the LHS involves the stronger norm
L2(dt)L∞(d(x− y))L2(d(x+ y)) , while the RHS has the weaker “col-
lapsing” norm L∞(d(x− y))L2(dt)L2(d(x+ y)).

We first reduce the proof to v̂ compactly supported. Let 0 < ϵ <<
1 − β to be chosen below. Start with v ∈ S and ψ̂ ∈ C∞

0 , supported

in a ball of radius 1
10
, and ψ̂ = 1 on a neighborhood of 0 and define

vmain and vtail (depending on N) by v̂main = v̂(ξ)ψ̂
(

ξ
Nϵ

)
and v̂tail =

v̂(ξ)
(
1− ψ̂

(
ξ
Nϵ

))
. Since v̂ is Schwartz, for any p, |ξαDβ

ξ v̂tail(ξ)| ≤
Cp,α,βN

−p. Thus we also have |xαDβ
xvtail(x)| ≤ Cp,α,βN

−p (with a dif-
ferent Cp,α,β, of course).

In all calculations that follow, N3β−1vtail(N
β(x− y)) and its deriva-

tives can be treated as error terms.
It is also simpler to change the notation to M = Nβ+ϵ. Then the

Fourier transform of vmain(N
βx) is v̂( ξ

Nβ )ψ̂
(

ξ
Nβ+ϵ

)
and is supported in

|ξ| < M
10
. Also, define

vM(x) = N3β−1v(Nβx)

v1M(x) = N3β−1vmain(N
βx)

v2M(x) = N3β−1vtail(N
βx)

This definition simplifies the notation during the proof of the main
linear theorem (up to section 5). When we deal with the nonlinear
equations (starting with section 6) we will use the notation VN(x) =
N3βv(Nβx).
Thus v1M(x) is slightly less singular than M2v(Mx) as M → ∞, and

its Fourier transform is supported in |ξ| < M
10
, while

∥
〈
∇
〉n
v2M∥Lp ≤ Cn,pN

−10 (27)

for any 1 ≤ p ≤ ∞, n ≥ 0. The reader willing to assume v̂ is compactly
supported in a small neighborhood of 0 can take M = N .
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At this stage we also choose α > 1
2
, a number 1+ (slightly bigger

than 1), a number 6
5
+ (slightly bigger than 6

5
+) and also ϵ0 > 0 so that

∥v1M∥
L

3
2
≲M−ϵ0 (28)

∥ < ∇ >α+δ0 v1M∥
L

6
5+ ≲Mα+δ0∥v1M∥

L
6
5+ ≲M−ϵ0

∥
√
N
〈
∇
〉α
v1M∥L1+ + ∥

〈
∇
〉2α

v1M∥L1+ (29)

≲
√
NMα(1+δ0)∥v1M∥L1+ +M2α(1+δ0)∥v1M∥L1+ ≲M−ϵ0 . (30)

The above are also true for v2M , with a bound ofM−n on the right hand
side, for any n.

All the implicit constants in ≲ depend on β < 1, (which determines
the numbers α, δ0, ϵ0, 1+, 6

5
+ described above), and the exponents

p1, p0 defining and S ′
r, but are independent of N (for N large).

3. Estimates in rotated coordinates

In order to prove Theorem 2.1 we will need to adapt standard Sobolev,
Bernstein, square function and maximal function estimates to rotated
coordinates.

The argument is based on the following lemma:

Lemma 3.1. Let

R =
1√
2

(
1 1
−1 1

)
(31)

(where 1 stands for the 3×3 identity matrix) so that ∥f◦R∥Lp(dx)Lq(dy) =
∥f∥Lp(d(x−y))Lq(d(x+y)). Let K be a distribution (possibly l2 valued1) act-
ing in the x variable, and denote Kδ = K(x)δ(y) and δK = δ(x)K(y)
(tensor products). Assume the following estimate holds, for some 1 ≤
p1, p2, q ≤ ∞:

∥(Kδ) ∗ f∥Lp1 (dx)Lq(dy) ≲ ∥f∥Lp2 (dx)Lq(dy)

Then

∥(Kδ) ∗ f∥Lp1 (d(x−y))Lq(d(x+y)) ≲ ∥f∥Lp2 (d(x−y))Lq(d(x+y))

or, equivalently

∥
(
(Kδ) ∗ (f ◦R−1)

)
◦R∥Lp1 (dx)Lq(dy) ≲ ∥f∥Lp2 (dx)Lq(dy) (32)

Also,

∥(δK) ∗ f∥Lp1 (d(x−y))Lq(d(x+y)) ≲ ∥f∥Lp2 (d(x−y))Lq(d(x+y))

1In this case, Lp1(dx)Lq(dy) is replaced by Lp1(dx)Lq(dy)l2.
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or, equivalently

∥
(
(δK) ∗ (f ◦R−1)

)
◦R∥Lp1 (dx)Lq(dy) ≲ ∥f∥Lp2 (dx)Lq(dy). (33)

Proof. In order to prove (32) we use a nonsingular lower triangular
matrix L1 such that

(RL1)
−1 =

(
1 a
0 b.

)
(34)

Using the invariance of Lp1(dx)Lq(dy) under transformations given by
lower triangular matrices, (32) is equivalent to

∥
(
(Kδ) ∗ (f ◦ (RL1)

−1)
)
(RL1(x, y))∥Lp1 (dx)Lq(dy) ≲ ∥f∥Lp2 (dx)Lq(dy)

but, by direct calculation (see Lemma 10.6 in the appendix),(
(Kδ) ∗ (f ◦ (RL1)

−1)
)
(RL1(x, y)) = ((Kδ) ∗ f)(x, y).

In order to prove (33) we use the same argument, based on a nonsin-
gular lower triangular matrix L2 such that

(RL2)
−1 =

(
c 1
d 0

)
(35)

and the calculation(
(δK) ∗ (f ◦ (RL2)

−1)
)
(RL2(x, y)) = ((Kδ) ∗ f)(x, y).

□

A first consequence is the “Sobolev at an angle” estimate

Lemma 3.2. Let α > 0, 1 ≤ p, q,≤ ∞ and assume the Sobolev esti-
mate ∥u∥Lp(dx) ≲ ∥

〈
∇x

〉α∥Lq(dx) holds. Then

∥Λ∥Lp(d(x−y))L2(d(x+y))

≲ min{∥
〈
∇x

〉α
Λ∥Lq(d(x−y))L2(d(x+y))∥

〈
∇y

〉α
Λ∥Lq(d(x−y))L2(d(x+y))}

(36)

and also

∥Λ∥Lp(dx)L2(dy) ≲ ∥
〈
∇x+y

〉α
Λ∥Lq(dx))L2(dy).

Proof. This follows by using K the kernel of
〈
∇x

〉−α
.

□
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Another consequence is Bernstein’s inequality in rotated coordinates.
Recall the standard Littlewood-Paley decomposition. Let ϕ(x) such

that ϕ̂ ∈ C∞
0 and ϕ̂(ξ) = 1 in |ξ| < 1, ϕ̂(ξ) = 0 in |ξ| > 2. Define ϕk

for k ≥ 0 by ϕ̂k(ξ) = ϕ̂( ξ
2k
) and denote

P|ξ|≤2kf = f ∗ ϕk

so that the inverse Fourier transform of ϕ̂( ξ
2k
)f̂ is P|ξ|≤2kf .

Next, let ψ0 = ϕ and define ψk for k ≥ 1 by ψ̂k(ξ) = ϕ̂( ξ
2k
)− ϕ̂( ξ

2k−1 )
We also denote

P|ξ|∼2kf = f ∗ ψk

and note that
∑l

k=0 ψ̂k(ξ) = ϕ̂( ξ
2l
) and

l∑
k=0

f ∗ ψk → f (37)

in all Lp spaces (1 ≤ p <∞).

More generally, sometimes we will denote by ψ̂k(ξ) = ψ̂( ξ
2k
) for k ≥ 1

and any ψ̂ ∈ C∞
0 (R3), vanishing on a neighborhood of 0. ϕ = ψ0 will

only be required to have C∞
0 Fourier transform. In that case (37) will

not be true, but the Bernstein and square function estimates listed
below still hold.

The classical Bernstein inequalities are

∥ < ∇ >α (ϕk ∗ f)∥Lp(dx) ≲ 2αk∥ϕk ∗ f∥Lp(dx)

∥ < ∇ >α (ψk ∗ f)∥Lp(dx) ∼ 2αk∥ψk ∗ f∥Lp(dx) ( if k ≥ 1)

(α ≥ 0, 1 ≤ p ≤ ∞). See, for instance, [18]. The (elementary) proof
immediately implies (for 1 ≤ p, q ≤ ∞)

∥ < ∇x >
α ((ϕkδ) ∗ f)∥Lp(dx)Lq(dy) ≲ 2αk∥(ϕkδ) ∗ f∥Lp(dx)Lq(dy)

∥ < ∇x >
α ((ψkδ) ∗ f)∥Lp(dx)Lq(dy) ∼ 2αk∥(ψkδ) ∗ f∥Lp(dx)Lq(dy).

Using Lemma 3.1 we get

Lemma 3.3. The following estimates hold

∥ < ∇x >
α ((ϕkδ) ∗ f)∥Lp(d(x−y))Lq(d(x+y) ≲ 2αk∥(ϕkδ) ∗ f∥Lp(d(x−y))Lq(d(x+y))

∥ < ∇y >
α ((δϕk) ∗ f)∥Lp(d(x−y))Lq(d(x+y) ≲ 2αk∥(δϕk) ∗ f∥Lp(d(x−y))Lq(d(x+y))

∥ < ∇x >
α ((ψkδ) ∗ f)∥Lp(d(x−y))Lq(d(x+y) ∼ 2αk∥(ψkδ) ∗ f∥Lp(d(x−y))Lq(d(x+y))

∥ < ∇y >
α ((δψk) ∗ f)∥Lp(d(x−y))Lq(d(x+y) ∼ 2αk∥(δψk) ∗ f∥Lp(d(x−y))Lq(d(x+y))



14 J. CHONG, X. DONG, M. GRILLAKIS, M. MACHEDON, AND Z. ZHAO

Finally, we state two square function estimates. For a function de-
pending only on x, the classical estimate is (for 1 < p <∞)

∥

(
∞∑
k=0

|f ∗ ψk|2
) 1

2

∥Lp(dx) ∼ ∥f∥Lp(dx).

The proof can be modified to apply to L2 valued functions and we have

Lemma 3.4. Let 1 < p <∞ . Define F
(
P|ξ−η|∼2kf

)
= f̂(ξ, η)ψ̂

(
ξ−η
2k

)
for k ≥ 1 and F

(
P|ξ−η|∼20f

)
= f̂(ξ, η)ϕ̂ (ξ − η). Then the following

estimate holds (for functions which also depend on t)

∥

(
∞∑
k=0

|P|ξ−η|∼2kf)|2
) 1

2

∥Lp(d(x−y))L2(d(x+y)dt) ∼ ∥f∥Lp(d(x−y))L2(d(x+y)dt).

The proof is the same as the standard square function estimate.
Also, we have a result for a “double square function” in rotated

coordinates:

Lemma 3.5. Let 1 < p <∞ . Then the following estimate holds

∥

(
∞∑

k′,k′′=0

|f ∗ (ψk′δ) ∗ (δψk′′)|2
) 1

2

∥Lp(d(x−y))L2(d(x+y)) ∼ ∥f∥Lp(d(x−y))L2(d(x+y)).

Proof. For ≲ see Lemma 10.8 in the Appendix. The opposite inequality
is a standard duality argument. □

4. Preliminary estimates for solutions to the linear
Schrödinger equation

We will use the following Strichartz estimate (proved in Theorem
2.4, 2.5 of [5] ). In 6 + 1 dimensions,

Theorem 4.1. Let Su = f + g, u(0, ·) = u0. Then

∥u∥S ≲ ∥f∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥g∥S′
r
+ ∥u0∥L2 .

In the applications that follow, u will be Λ (or Λp or Λc, or suitable
fractional derivatives of Λ), f will be vM(x − y)Λ(x, y) (or suitable
derivatives) and g will be G (or suitable derivatives).

After our paper [5] was published, we learned about [13] which con-
tains closely related results (proved with different methods).

Remark 4.2. Another way of obtaining Strichartz estimates on the LHS
will be given in Propositions 4.7, 4.8 below.
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Using Theorem 4.1 and Lemma 3.2, we can get a (non-sharp) col-
lapsing estimate.

Lemma 4.3. If Su = f + g, u(0, ·) = u0, and let α > 1
2
. Then

∥u∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ min{∥
〈
∇x

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α
g∥S′

r
+ ∥
〈
∇x

〉α
u0∥L2 ,

∥
〈
∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇y

〉α
g∥S′

r
+ ∥
〈
∇y

〉α
u0∥L2 .}

Proof.

∥u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲ ∥
〈
∇x

〉α
u∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α
g∥S′

r
+ ∥
〈
∇x

〉α
u0∥L2 ,

and, of course,
〈
∇x

〉α
can be replaced by

〈
∇y

〉α
.

□

We record that the above implies

Lemma 4.4. If Su = f + g, u(0, ·) = u0. Then

∥
〈
∇x

〉α
u∥L2(dt)L∞(d(x−y))L2(d(x+y)) + ∥

〈
∇y

〉α
u∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α
g∥S′

r

+ ∥
〈
∇x

〉α〈∇y

〉α
u0∥L2 .

We will also need

Lemma 4.5. If Su = f + g, u(0, ·) = u0. Then

∥
〈
∇x+y

〉α
u∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α
g∥S′

r

+ ∥
〈
∇x

〉α〈∇y

〉α
u0∥L2 .

Proof. The estimate for the homogeneous equation follows from stan-
dard Strichartz estimates and “Sobolev at an angle”, as in the proof
for the inhomogeneous estimate. Thus we can assume u0 = 0. Let
u =

∑∞
k,k′=0 uk,k′ be a “double” Littlewood-Paley decomposition u =

u ∗ (ψkδ) ∗ (δψk′) (see Lemma 3.5) so that ûk,k′(ξ, η) is supported in
|ξ| ∼ 2k, |η| ∼ 2k

′
if k, k′ ≥ 1. We only treat the sum over k ≤ k′ with

k′ ≥ 1 (so x corresponds to the “low” frequency), the remaining part
being similar. We use the standard procedure of reducing a Strichartz
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estimate to a frequency localized estimate, but in the context of mixed
coordinates. We have

∥
〈
∇x+y

〉α
u∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x+y

〉α〈∇x

〉α
u∥|L2(dt)L6(d(x−y))L2(d(x+y)) (Lemma 3.2)

= ∥
〈
∇x+y

〉α〈∇x

〉α ∑
0≤k≤k′

uk,k′∥L2(dt)L6(d(x−y))L2(d(x+y))

≲

∥∥∥∥
( ∑

0≤k≤k′

∣∣〈∇x+y

〉α〈∇x

〉α
uk,k′

∣∣2) 1
2 ∥∥∥∥

L2(dt)L6(d(x−y))L2(d(x+y))

(square function estimate)

≲

( ∑
0≤k≤k′

∥∥∥∥〈∇x+y

〉α〈∇x

〉α
uk,k′

∥∥∥∥2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

(Minkowski)

=

( ∑
0≤k≤k′

∥∥∥∥〈∇x+y

〉α〈∇x

〉α
P|ξ+η|≲2k′uk,k′

∥∥∥∥2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

≲

( ∑
0≤k≤k′

∥∥∥∥2k′α〈∇x

〉α
uk,k′

∥∥∥∥2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

(Plancherel)

≲

( ∑
0≤k≤k′

∥∥∥∥〈∇x

〉α〈∇y

〉α
uk,k′

∥∥∥∥2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

(Lemma 3.3 )

≲

( ∑
0≤k≤k′

∥∥∥∥〈∇x

〉α〈∇y

〉α
fk,k′

∥∥∥∥2
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

) 1
2

+

( ∑
0≤k≤k′

∥∥∥∥〈∇x

〉α〈∇y

〉α
gk,k′

∥∥∥∥2
S′
r

) 1
2

(Thm. 4.1)

≲

∥∥∥∥
( ∑

0≤k≤k′

∣∣〈∇x

〉α〈∇y

〉α
fk,k′

∣∣2) 1
2 ∥∥∥∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+

∥∥∥∥
( ∑

0≤k≤k′

∣∣〈∇x

〉α〈∇y

〉α
gk,k′

∣∣2) 1
2 ∥∥∥∥

S′
r

(Minkowski)

≲ ∥
〈
∇x

〉α〈∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α
g∥S′

r
(square function estimate).

□
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Lemma 4.6. Let Su = f + g, u(0, ·) = u0, and let 1
2
< α. Then

∥|∂t|
1
4u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲ ∥

〈
∇x

〉α〈∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

(38)

+ ∥
〈
∇x

〉α〈∇y

〉α
g∥S′

r
+ ∥
〈
∇x

〉α〈∇y

〉α
u0∥L2 .

Proof. The estimate for the homogeneous equation follows from Strichartz
estimates and the fact that |τ | = |ξ|2 + |η|2 on the Fourier support
of u, so we can assume u0 = 0. Let u =

∑∞
k,k′=0 uk,k′ be a ”double”

Littlewood-Paley decomposition u = u∗(ψkδ)∗(δψk′) so that ûk,k′(ξ, η)
is supported in |ξ| ∼ 2k, |η| ∼ 2k

′
if k, k′ ≥ 1. The proof of (38) will

use two additional numbers α′, α′′ satisfying 1
2
< α′ < α′′ < α. Start

by fixing 1
2
< α′′ < α. We will prove the frequency localized estimate

∥|∂t|
1
4uk,k′∥L2(dt)L∞(d(x−y))L2(d(x+y)) (39)

≲ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
fk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
gk,k′∥S′

r
.

Summing the pieces will be easy because α′′ < α. To prove (39),
assume, without loss of generality, 1 ≤ k ≤ k′.

Now we localize uk,k′ in τ . This changes the initial conditions, but
in a controlled way. From Theorem 4.1 we have

∥
〈
∇x

〉α′′〈
∇y

〉α′′
uk,k′∥L∞(dt)L2(dxdy)

≲ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
fk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
gk,k′∥S′

r
.

Since P|τ |<100 22k′ acts by convolution in time with a function which is

in L1 uniformly in k′, we also have

∥
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |<100 22k′uk,k′(0, ·, ·)∥L2(dxdy)

≲ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
fk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α′′〈
∇y

〉α′′
gk,k′∥S′

r
.

We have

SP|τ |<100 22k′uk,k′ = P|τ |<100 22k′fk,k′ + P|τ |<100 22k′gk,k′



18 J. CHONG, X. DONG, M. GRILLAKIS, M. MACHEDON, AND Z. ZHAO

with initial conditions as discussed above. Using Lemma 3.3 we get

∥|∂t|
1
4P|τ |<100 22k′uk,k′∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ 2
k′
2 ∥|P|τ |<100 22k′uk,k′∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇y

〉 1
2P|τ |<100 22k′uk,k′∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α′〈
∇y

〉α′
fk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α′〈
∇y

〉α′
gk,k′∥S′

r
.

(See Lemma 4.4.)
Next, consider

SP|τ |>100 22k′uk,k′ = P|τ |>100 22k′fk,k′ + P|τ |>100 22k′gk,k′

and 2k (the frequency of x) is less than 2k
′
(the frequency of y).

Call either function on the RHS P|τ |>100 22k′hk,k′ . The point is that

S ∼
〈
∂t
〉
is an elliptic operator on the Fourier support of uk,k′ , and, at

the level of symbols and on L2(dtdxdy),
〈
∂t
〉
≥
〈
∇y

〉2 ≥ 〈∇x

〉2
.

Let 1
2
< α′ < α′′ < α, with α′ to be chosen later (the choice will be

α′ =
1
2
+2α′′

3
). Using Lemma 3.2,

∥
〈
∂t
〉 1

4P|τ |>100 22k
′uk,k′∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∂t
〉 1

4
〈
∇x

〉3α′
P|τ |>100 22k′uk,k′∥L2(dtdxdy)

≲ ∥
〈
∂t
〉 1

4
−1〈∇x

〉3α′
SP|τ |>100 22k′uk,k′∥L2(dtdxdy)

= ∥
〈
∂t
〉− 3

4
〈
∇x

〉3α′
P|τ |>100 22k′hk,k′∥L2(dtdxdy)

= ∥
〈
∂t
〉− 1

2

(〈
∂t
〉− 1

4
〈
∇x

〉3α′−2α′′
)〈

∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′hk,k′∥L2(dtdxdy)

≲ ∥
〈
∂t
〉− 1

2
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′hk,k′∥L2(dtdxdy)

since the choice of α′ insures 3α′ − 2α′′ = 1
2
so that

〈
∂t
〉− 1

4
〈
∇x

〉3α′−2α′′

is bounded on L2 on the Fourier support of P|τ |>100 22k′hk,k′ .
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By applying Sobolev estimates in t or x, y or x − y , and recalling〈
∂t
〉
≥
〈
∇y

〉2 ≥ 〈∇x

〉2
,
〈
∂t
〉
≥
〈
∇x−y

〉2
we get

∥
〈
∂t
〉− 1

2
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′hk,k′∥L2(dtdxdy)

≲ min

{
∥
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′hk,k′∥S′

r ,

∥
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′hk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

}
.

Recalling the definition of hk,k′ the above is dominated by

∥
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′fk,k′∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+∥
〈
∇x

〉α′′〈
∇y

〉α′′
P|τ |>100 22k′gk,k′∥S′

r

.
To sum the pieces, use α′′ < α. For instance,
∞∑

k,k′=0

∥
〈
∇x

〉α′′〈
∇y

〉α′′
fk,k′∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲
∞∑

k,k′=0

2(α
′′−α)k2(α

′′−α)k′∥
〈
∇x

〉α〈∇y

〉α
(f ∗ (ψkδ) ∗ (δψk′))∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲ sup
k,k′

∥
〈
∇x

〉α〈∇y

〉α
f ∗ (ψ1

kδ) ∗ (δψk′)∥L2(dt)L
6
5 (d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

□

Next, we prove a frequency localized sharp result.

Proposition 4.7. Let

Suk = fk

with 0 initial conditions, and assume uk (and thus also fk) is supported,
in Fourier space, at |ξ − η| ∼ 2k. Then

∥uk∥Sx,y ≲
∥∥|∇x+y|

1
2fk
∥∥
L1(d(x−y))L2(dt)L2(d(x+y))

+
∥∥|∂t∣∣ 14fk∥∥L1(d(x−y))L2(dt)L2(d(x+y))

.

Proof. As we did earlier, we decompose uk = u1k + u2k + u3k, where

Su1k = P
10|τ |

1
2≥2k

fk := f 1
k with initial conditions 0

Fu2k =
F
(
P
10|τ |

1
2≤2k

fk

)
τ + |ξ|2 + |η|2

(this no longer has initial conditions 0)

Su3k = 0, a correction so that u2k + u3k has initial conditions 0.
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For u1k the argument is based on the Strichartz and Sobolev estimates
at fixed frequency:

∥u1k∥S ≲ ∥f 1
k∥L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≤ ∥f 1
k∥L 6

5 (d(x−y))L2(dt)L2(d(x+y))

≲ ∥|∇x−y|
1
2f 1

k∥L1(d(x−y))L2(dt)L2(d(x+y)) ≲ 2
k
2 ∥f 1

k∥L1(d(x−y))L2(dt)L2(d(x+y))

≲ ∥|∂t|
1
4f 1

k∥L1(d(x−y))L2(dt)L2(d(x+y))

≲ ∥|∂t|
1
4fk∥L1(d(x−y))L2(dt)L2(d(x+y)).

We used Plancherel and the Fourier support of f 1
k .

For u2k, the denominator is comparable with |ξ − η|2 + |ξ + η|2 ≥
22k ≥ 100|τ |, and

∥u2k∥L2(dtdxdy) ≲ ∥|∇x−y|−
3
2 |∇x+y|−

1
2fk∥L2(dtdxdy)

and

∥|∇x+y|u2k∥L2(dtdxdy) ≲ ∥|∇x−y|−
3
2 |∇x+y|

1
2fk∥L2(dtdxdy)

≲ ∥|∇x+y|
1
2fk∥L1(d(x−y))L2(dtd(x+y)).

Thus, using Lemma 3.2 (Sobolev estimates at an angle) we have

∥u2k∥L2(dt)L6(dx)L2(dy) + ∥u2k∥L2(dt)L6(dy)L2(dx) ≲ ∥|∇x+y|u2k∥L2(dtdxdy)

≲ ∥|∇x+y|
1
2fk∥L1(d(x−y))L2(dtd(x+y)). (40)

Similarly, we have

∥|∂t|
1
2u2k∥L2(dtdxdy) ≲ ∥|∇x−y|−

3
2 |∂t|

1
4fk∥L2(dtdxdy)

≲ ∥|∂t|
1
4fk∥L1(d(x−y))L2(dtd(x+y)).

Unfortunately, the desired L∞(dt) Sobolev estimate is false, so we pro-
ceed slightly differently:

∥u2k∥L∞(dt)L2(dxdy) ≲ 2−
k
2

∥∥∫
τ∈[−22k,22k]

1

|τ | 14
|τ |

1
4 |ξ − η|−

3
2 |f̃k|dτ

∥∥
L2(dξdη)

≲ ∥||τ |
1
4 |ξ − η|−

3
2 |f̃k∥L2(τ∈[−22k,22k]d(ξdη))

= c∥|∇x−y|−
3
2 |∂t
∣∣ 14fk∥L2(dtdxdy) ≲ ∥

∣∣∂t∣∣ 14fk∥L1(d(x−y))L2(dtd(x+y)).

Finally, by interpolation,

∥u2k∥Sx,y ≲ ∥u2k∥L2(dt)L6(dx)L2(dy) + ∥u2k∥L2(dt)L6(dy)L2(dx) + |u2k∥L∞(dt)L2(dxdy)

and we get the desired result for u2k. Since ∥u2k(t = 0)∥L2 = ∥u3k(t =
0)∥L2 , the result for u3k is trivial.

□



GLOBAL ESTIMATES FOR HFB 21

We also record the following version:

Proposition 4.8. Let

Su = N3v(N(x− y)Λ := f

with 0 initial conditions and v ∈ S.

∥u∥Sx,y ≲ logN
(∥∥〈∇x+y

〉 1
2Λ
∥∥
collapsing

+
∥∥|∂t| 14Λ∥∥collapsing) .

The same result holds for the equation

Su = P|ξ|<MP|η|<M

(
N3v(N(x− y)Λ

)
for all M > 0, with implicit constants independent of M .

(see (41) for the definition of P|ξ|<MP|η|<M).

Proof. First we consider P|ξ−η|>Nu, and in this case we get the result
without a log. In that case

∥u∥Sx,y ≲ ∥f∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲ N
1
2∥Λ∥collapsing.

If we localize to the region where |τ | 12 +|ξ+η| > N
10
, the result follows

from Plancherel. Thus we can assume ũ is supported in |τ | 12 + |ξ+η| <
N
10
, |ξ − η| > N and in particular we can solve S by dividing by the

symbol, as in the previous proof. Let u1 be the solution (which differs
from u by a solution to the homogeneous equation). Then we get

∥u1∥L2(dtdxdy) ≲
1

N2
∥f∥L2 ≲

1√
N
∥Λ∥collapsing

and also

∥u1∥L2(dt)L6(dx)L2(dy) + ∥u1∥L2(dt)L6(dy)L2(dx) ≲ ∥|∇x+y|u1∥L2(dtdxdy)

≲
1√
N
∥|∇x+y|Λ∥collapsing ≲

∥∥|∇x+y|
1
2Λ
∥∥
collapsing

and also, using Cauchy-Schwartz in τ ,

∥u1∥L∞(dt)L2(dxdy) ≲
∥∥∫

τ∈[−N2,N2]

1

|τ | 14
|τ |

1
4 |ũ1|dτ

∥∥
L2(dξdη)

≲
√
N∥||τ |

1
4 |ũ1∥L2(τ∈[−N2,N2]d(ξdη)) ≲ ∥

∣∣∂t∣∣ 14Λ∥collapsing.
Next, we consider P|ξ−η|<Nu = P|ξ−η|<1u+

∑
P|ξ−η|∼2iu where the sum

has about logN terms. Proposition 4.7 applies to each term, and the
result follows.

□
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5. Proof of Theorem 2.1

Recall the “projections” P|ξ|>M and P|ξ|<M by

F
(
P|ξ|<MΛ

)
(ξ, η) = ϕ̂

(
|ξ|
M

)
FΛ(ξ, η) (41)

and P|ξ|>M = 1− P|ξ|<M . The function ϕ̂ is a C∞
0 function (which can

change from line to line).
Here F denotes the Fourier transform. These multipliers are bounded

on Lq(dx)L2(dy), Lq(dy)L2(dx) and Lq(d(x − y))L2(d(x + y)) for 1 ≤
q ≤ ∞ (uniformly in M). Also, we adopt the convention that P and ϕ
may change from line to line.

We have to show: If h(t) is the Heaviside function and

SΛ(t, x, y) = h(t)

(
N3β−1v(Nβ(x− y))Λ(t, x, y) +G(t, x, y)

+N3β−1v(Nβ(x− y))H(t, x, y)

)
Λ(0, ·) = Λ0

then∥∥〈∇x

〉α〈∇y

〉α
Λ
∥∥
Sx,y

+
∥∥∣∣∇x+y

∣∣αΛ∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14Λ∥∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+N−ϵ

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+N−ϵ
∥∥∣∣∂t∣∣ 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

+N−ϵ
∥∥∣∣∇x+y

∣∣αH∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2

and N3β−1v(Nβ(x− y) is denoted by vM(x− y), and M is of the form
N1+ϵ for some small ϵ > 0.

Before starting the proof we remark that we have the following
Strichartz estimate (see Theorem 4.1)

∥Λ∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥vM(x− y)Λ∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥vM(x− y)H∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥G∥S′
r
+ ∥Λ0∥L2 .

Using Hölder’s inequality and the fact that ∥vM∥
L

3
2
= O(M−ϵ0) as

M → ∞ (see (28)) we can treat the potential term as a perturbation
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and get

∥Λ∥S ≲ ∥Λ0∥L2 + ∥vM(x− y)H∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥G∥S′
r
(42)

≲ ∥Λ0∥L2 +M−ϵ0∥H∥L2(dt)L6(d(x−y))L2(d(x+y)) + ∥G∥S′
r
.

We can do the same after taking |∇x|α, but we need a suitable Leibniz
rule. Using the outline of [7], [15]. [19], it is possible to prove

Theorem 5.1. Let α, β ≥ 0. Let f(x, y) = v(x− y) with v ∈ S. Then

∥|∇x|α|∇y|β (f(x, y)g(x, y)) ∥Lr(d(x−y))L2(d(x+y))

≲ ∥ < ∇x >
α+β v∥Lp1∥g∥Lq1 (d(x−y))L2(d(x+y))

+ ∥ < ∇x >
α v∥Lp2∥ < ∇y >

β g∥Lq2 (d(x−y))L2(d(x+y))

+ ∥ < ∇y >
β v∥Lp3∥ < ∇x >

α g∥Lq3 (d(x−y))L2(d(x+y))

+ ∥v∥Lp4∥ < ∇x >
α< ∇y >

β g∥Lq4 (d(x−y))L2(d(x+y))

(1
r
= 1

pi
+ 1

qi
, 1 < r, pi, qi <∞). In addition, if v̂ is supported in |ξ| ≤ M

10

and ĝ(ξ, η) is supported in |ξ| > 10M , then the |∇x|α derivatives only
fall on g and we have

∥|∇x|α|∇y|β (f(x, y)g(x, y)) ∥Lr(d(x−y))L2(d(x+y))

≲ ∥ < ∇y >
β v∥Lp3∥ < ∇x >

α g∥Lq3 (d(x−y))L2(d(x+y))

+ ∥v∥Lp4∥ < ∇x >
α< ∇y >

β g∥Lq4 (d(x−y))L2(d(x+y)).

However, for our purposes it is enough to use the following version,
which is easier to prove. We thank Xiaoqi Huang for suggesting this
approach.

Theorem 5.2. Let α, β ≥ 0. Let vM as above with v̂M is supported in
|ξ| ≤ M

10
, and let 1

r
= 1

p
+ 1

q
, 1 < r, p, q <∞. Then

∥|∇x|α (vM(x− y)g(x, y)) ∥Lr(d(x−y))L2(d(x+y)) (43)

≲Mα∥vM∥Lr∥g∥L∞(d(x−y))L2(d(x+y)) (44)

+ ∥vM∥Lp1∥ < ∇x >
α g∥Lq1 (d(x−y))L2(d(x+y)) (45)

and similarly for |∇y|α. Also, if 1
r
= 1

pi
+ 1

qi
, 1 < r, pi, qi <∞,
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∥|∇x|α∇y|β
(
vM(x− y))P|η|>Mg(x, y)

)
∥Lr(d(x−y))L2(d(x+y)) (46)

≲Mα∥vM∥Lp1∥∇y|βg∥Lq1 (d(x−y))L2(d(x+y)) (47)

+ ∥v∥Lp2∥ < ∇x >
α< ∇y >

β g∥Lq2 (d(x−y))L2(d(x+y)) (48)

and also

∥|∇x|α∇y|β
(
vM(x− y))P|η|<MP|η|<Mg(x, y)

)
∥Lr(d(x−y))L2(d(x+y))

≲Mα+β∥vM∥Lp3∥g∥Lq3 (d(x−y))L2(d(x+y)). (49)

Proof. We use standard Littlewood-Paley operators P|ξ|∼2iM , P|ξ|≲2iM .
In the name of simplicity of notation, we allow the implicit constants
in ∼, ≲ to be different in different instances. However, the modified
projections will be denoted by P̄ . Thus, for instance, P̄|ξ|∼2iMP|ξ|∼2iM =
P|ξ|∼2iM . Also, we use the notation |∇|αP|ξ|∼2iMg = (2iM)αP̄|ξ|∼2iMg.

In the first instance, the multiplier is of the form ψ( ξ
M
) with ψ ∈

C∞
0 (Rn), ψ(ξ) = 0 in a neighborhood of 0. In the second case, ψ

is replaced by |ξ|αψ(ξ) which has the same properties. When P̄ is
further modified, it is still denoted P̄ . This is the convention used
in [15]. Finally, denote |∇|αP|ξ|≲Mg = MαP̄|ξ|≲Mg, where the exact
definition of P̄ is seen on the Fourier transform side. The corresponding
multiplier is not smooth near 0, but the corresponding kernel is in L1.
After the modifications described above, the identity g = P̄|ξ|≲Mg +∑∞

i=1 P̄|ξ|∼2iMg is no longer true. Square function estimates have to
be used instead, and the square function operators constructed using
P̄|ξ|∼2iM have the same mapping properties as those using P|ξ|∼2iM .
For (43), decompose g = P|ξ|<Mg+P|ξ|>Mg. Arguing as in the proof

of Bernstein’s inequality,

|∇x|α
(
vM(x− y)P|ξ|<Mg(x, y)

)
= |∇x|αP̄|ξ|≲M

(
vM(x− y)P|ξ|<Mg(x, y)

)
=MαP̄|ξ|≲M

(
vM(x− y)P|ξ|<Mg(x, y)

)
.

Since P̄|ξ|≲M is given by convolution with a kernel which is in L1(dx)
uniformly in M ,

∥P̄|ξ|≲M

(
vM(x− y)P|ξ|<Mg(x, y)

)
∥Lr(d(x−y))L2(d(x+y))

≲ ∥vM(x− y)P|ξ|<Mg(x, y)∥Lr(d(x−y))L2(d(x+y))

≲ ∥vM∥Lr∥g∥L∞(d(x−y))L2(d(x+y))

For P|ξ|>Mg, decompose it as P|ξ|>Mg =
∑∞

i=1 P|ξ|∼2iMg. Then |∇|α
(
vM(x− y)P|ξ|∼2iMg

)
=

(2iM)αP̄|ξ|∼2iM

(
vM(x− y)P|ξ|∼2iMg

)
.
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Proving the estimate by duality involves using a test function H with
∥H∥Lr′ (dx)L2(dy) = 1 and looking at

∫
|∇x|α

(
vM(x− y)P|ξ|>Mg(x, y)

)
h(x, y)dxdy (50)

with h = H ◦R−1, or ∥h∥Lr′ (d(x−y))L2(d(x+y)) = 1 We have

|(50)| =
∣∣∣∣ ∫ vM(x− y)

∑
(2iM)αP|ξ|∼2iMgP̄|ξ|∼2iMh

∣∣∣∣
≤
∫

|vM(x− y)|
(∑

|(2iM)αP|ξ|∼2iMg|2
) 1

2
(∑

|P̄|ξ|∼2iMh|2
) 1

2

≤ ∥vM∥Lp1

∥∥∥∥(∑ |(2iM)αP|ξ|∼2iMg|2
) 1

2

∥∥∥∥
Lq1 (d(x−y))L2(d(x+y))

×
∥∥∥∥(∑ |P̄|ξ|∼2iMh|2

∣∣∣∣) 1
2
∥∥∥∥
Lr′ (d(x−y))L2(d(x+y))

≲ ∥vM∥Lp1

∥∥∥∥(∑ ||∇x|αP̄|ξ|∼2iMg|2
) 1

2

∥∥∥∥
Lq1 (d(x−y))L2(d(x+y))

×
∥∥∥∥(∑ |P̄|ξ|∼2iMh|2

∣∣∣∣) 1
2
∥∥∥∥
Lr′ (d(x−y))L2(d(x+y))

≲ ∥vM∥Lp1∥ < ∇x >
α g∥Lq1 (d(x−y))L2(d(x+y))∥h∥Lr′ (d(x−y))L2(d(x+y)).

This uses the square function estimate in rotated coordinates.
For (46), let 1

r
= 1

p1
+ 1

q1
, 1 < r, p1, q1 <∞. Then, use the same dual-

ity argument as in the previous proof. with ∥h∥Lr′ (d(x−y))L2(d(x+y)) = 1.
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The bound (47) corresponds to

∥|∇x|α|∇y|β
(
vM(x− y))P|ξ|<MP|η|>Mg(x, y)

)
∥Lr(d(x−y))L2(d(x+y))

=

∥∥∥∥ ∞∑
i=1

P̄|η|∼2iM P̄|ξ|≲M

(
MαvM(x− y))P|ξ|<M(2iM)βP|η|∼2iMg(x, y)

)∥∥∥∥
Lr(d(x−y))L2(d(x+y))

=

∣∣∣∣ ∫ ∞∑
i=1

P̄|η|∼2iM P̄|ξ|≲M

(
MαvM(x− y))P|ξ|<M(2iM)βP|η|∼2iMg(x, y)

)
h

∣∣∣∣
=

∣∣∣∣ ∫ ∞∑
i=1

(
MαvM(x− y))P|ξ|<M(2iM)βP|η|∼2iMg(x, y)

)
P̄|η|∼2iM P̄|ξ|≲Mh

∣∣∣∣
≤
∫

|MαvM(x− y))|

(
∞∑
i=1

|P|ξ|<M(2iM)βP|η|∼2iMg|2
) 1

2

×

(
∞∑
i=1

|P̄|η|∼2iM P̄|ξ|≲Mh|2
) 1

2

≤ ∥MαvM∥Lp1

∥∥∥∥
(

∞∑
i=1

|P|ξ|<M |∇y|βP̄|η|∼2iMg|2
) 1

2 ∥∥∥∥
Lq1 (d(x−y))L2(d(x+y))∥∥∥∥

(
∞∑
i=1

|P̄|η|∼2iM P̄|ξ|≲Mh|2
) 1

2 ∥∥∥∥
Lr′ (d(x−y))L2(d(x+y))

and the last factor is ≲ 1.
The bound (48) corresponds to

∥|∇x|α|∇y|β
(
vM(x− y))P|ξ|>MP|η|>Mg(x, y)

)
∥Lr(d(x−y))L2(d(x+y))

≲ ∥vM∥Lp2∥|∇x|α|∇y|βg∥Lq2 (d(x−y))L2(d(x+y)).

To prove this, do a double Littlewood-Paley decomposition P|ξ|>MP|η|>Mg =∑∞
i=1

∑∞
j=1 P|η|∼2iMP|η|∼2jMg and proceed as before, using “double square

function estimates in rotated coordinates”, Lemma 10.8. Finally, the
bound (49) follows from Bernstein’s inequality.

□
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Continuing with the comments preceding the proof of Theorem 2.1,

∥|∇x|αΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

≲Mα∥vM∥
L

6
5
∥Λ∥L2(dt)L∞(d(x−y))L2(d(x+y))

+Mα∥vM∥
L

6
5
∥H∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥vM∥
L

3
2
∥
〈
∇x

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥vM∥
L

3
2
∥
〈
∇x

〉α
H∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α
G∥S′

r
+ ∥
〈
∇x

〉α
Λ0∥L2 .

Using the “Sobolev at an angle” estimate (Lemma 3.2)

∥Λ∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲ ∥
〈
∇x

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

and similarly for H. Using ∥vM∥
L

3
2
+ Mα∥vM∥

L
6
5

= O(M−ϵ0) as

M → ∞ we can treat the two terms involving the potential and Λ
as perturbations and get

∥
〈
∇x

〉α
Λ∥S ≲ ∥

〈
∇x

〉α
Λ0∥L2 (51)

+M−ϵ0
∥∥〈∇x

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α
G∥S′

r
.

Finally, we can repeat the argument with |∇x|α|∇y|α. Now we are
forced to estimateM2α∥vM∥

L
6
5
= O(M) and get a sub-optimal estimate

1

M
∥
〈
∇x

〉α〈∇y

〉α
Λ∥S ≲

1

M
∥
〈
∇x

〉α〈∇y

〉α
Λ0∥L2 (52)

+M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α
G∥S′

r
.

(53)

This will help control lower order terms.
To continue, we need a frequency decomposition. Let ϕ(x) such that

ϕ̂ ∈ C∞
0 and ϕ̂(ξ) = 1 in |ξ| < 1, ϕ̂(ξ) = 0 in |ξ| > 2.

Theorem 2.1 follows from the next two more detailed theorems.
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Theorem 5.3. Let Λ satisfy (25), and let 1+ denote 1+δ0 with δ0 > 0
satisfying (28), (30). Then, at high frequencies,

∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+Λ

∥∥
S +

∥∥〈∇x

〉α〈∇y

〉α
P|η|>M1+Λ

∥∥
S

+
∥∥∣∣∇x+y

∣∣αP|ξ|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∇x+y

∣∣αP|η|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|ξ|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|η|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 . (54)

In addition, the proof will show

∥
〈
∇x

〉α〈∇y

〉α(
vM(x− y)

(
P|ξ|>M1+Λ

))
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

Proof. Roughly speaking,
∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+

(
v1M(x−y)Λ

)∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

can be treated as a perturbation because
〈
∇x

〉α
only falls on Λ. Rig-

orously, we have

SP|ξ|>M1+Λ = P|ξ|>M1+

(
v1M(x− y)

(
P|ξ|>M1+−MΛ

))
(55)

+ P|ξ|>M1+

(
v2M(x− y)Λ

)
+ P|ξ|>M1+G+ P|ξ|>M1+(vMH). (56)

We used the fact that v̂1M is supported in |ξ| < M
10
. Next we use

the Strichartz estimate of Theorem 4.1 and the collapsing estimate of
Lemma 4.5 and Lemma 4.6.
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∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+Λ

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥∣∣∇x+y

∣∣αP|ξ|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|ξ|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α(
v1M(x− y)

(
P|ξ|>M1+−MΛ

))
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α(
v2M(x− y)Λ

)
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α(
v1M(x− y)

(
P|ξ|>M1+−MH

))
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ∥
〈
∇x

〉α〈∇y

〉α(
v2M(x− y)H

)
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

For the terms involving v1M we use Theorem 5.2 and the fact M1+ −
M > 10M to conclude that the

〈
∇x

〉α
derivative only falls on P|ξ|>M1+−MΛ

and P|ξ|>M1+−MH. Then Hölder’s inequality, “Sobolev at an angle” (see
Lemma 3.2) and our estimates on vM (see (28)) show

∥
〈
∇x

〉α〈∇y

〉α(
v1M(x− y)

(
P|ξ|>M1+−MΛ

))
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

(57)

≲ ∥vM∥
L

3
2
∥
〈
∇x

〉α〈∇y

〉α(
P|ξ|>M1+−MΛ

))
∥L2(dt)L6(d(x−y))L2(d(x+y))

(58)

+Mα∥vM∥
L

6
5+∥
〈
∇x

〉α〈∇y

〉α(
P|ξ|>M1+−MΛ

))
∥L2(dt)L6(d(x−y))L2(d(x+y))

(59)

≲M−ϵ0∥
〈
∇x

〉α〈∇y

〉α
P|ξ|>M1+−MΛ∥L2(dt)L6(d(x−y))L2(d(x+y)). (60)

Similarly,

∥
〈
∇x

〉α〈∇y

〉α(
v1M(x− y)

(
P|ξ|>M1+−MH

))
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲M−ϵ0∥
〈
∇x

〉α〈∇y

〉α
H∥L2(dt)L6(d(x−y))L2(d(x+y))
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while for the term involving v2M we have

∥
〈
∇x

〉α〈∇y

〉α(
v2M(x− y)Λ

)
∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲M−10∥
〈
∇x

〉α〈∇y

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

(and similarly for H). Thus

∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+Λ

∥∥
S

+
∥∥∣∣∇x+y

∣∣αP|ξ|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|ξ|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲M−ϵ0∥
〈
∇x

〉α〈∇y

〉α
P|ξ|>M1+−MΛ∥S

+M−10∥
〈
∇x

〉α〈∇y

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r

+M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

The last four terms on the RHS are acceptable, but the first one must be
estimated further, by repeating the argument(with the same implicit
constants in ≲) as long as M1+ − kM > 10M , which is essentially

log
(

M1+

M

)
times. At the kth step we get

∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+−(k−1)MΛ

∥∥
S

≲M−ϵ0∥
〈
∇x

〉α〈∇y

〉α
P|ξ|>M1+−kMΛ∥S

+M−10∥
〈
∇x

〉α〈∇y

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .
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Putting together the above k estimates we get∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+Λ

∥∥
S +

∥∥〈∇x

〉α〈∇y

〉α
P|η|>M1+Λ

∥∥
S

+
∥∥∣∣∇x+y

∣∣αP|ξ|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∇x+y

∣∣αP|η|>M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|ξ|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|η|>M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲M−kϵ0∥
〈
∇x

〉α〈∇y

〉α
P|ξ|>M1+−kMΛ∥S

+M−10∥
〈
∇x

〉α〈∇y

〉α
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

Once kϵ0 > 1, we use (53) to complete the proof. □

Now we move to the low frequency part. Here the collapsing norm
can be treated perturbatively.

Theorem 5.4. Let Λ satisfy (25), and let 1+ denote 1+δ0 with δ0 > 0
satisfying (28), (30). Then

∥∥〈∇x

〉α〈∇y

〉α
P|ξ|<M1+P|η|<M1+Λ

∥∥
Sx,y

(61)

+
∥∥∣∣∇x+y

∣∣αP|ξ|<M1+P|η|<M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14P|ξ|<M1+P|η|<M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥∣∣∇x+y

∣∣αH∥∥
collapsing

+M−ϵ0
∥∥∣∣∂t∣∣ 14H∥∥collapsing + ∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 . (62)

We first prove the above theorem without including Sx,y on the LHS.

Proof. (excluding the term (61))

SP|ξ|<M1+P|η|<M1+Λ

= P|ξ|<M1+P|η|<M1+h(t) (vM(x− y)(Λ +H)) + P|ξ|<M1+P|η|<M1+h(t)G

= P|ξ|<M1+P|η|<M1+h(t)
(
v1M(x− y)P|ξ|<M1+P|η|<M1+(Λ +H)

)
+ P|ξ|<M1+P|η|<M1+h(t)

(
v1M(x− y)P|ξ| or |η|>M1+(Λ +H)

)
+ P|ξ|<M1+P|η|<M1+h(t)G

+ P|ξ|<M1+P|η|<M1+h(t)
(
v2M(x− y)(Λ +H)

)
.
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We write

P|ξ|<M1+P|η|<M1+Λ = Λ1 + Λ2 + Λ3 + Λ4 + Λ5

= P|ξ|<2M1+P|η|<2M1+ (Λ1 + Λ2 + Λ3 + Λ4 + Λ5)

where Λ1, · · ·Λ5 are defined by

SΛ1 = P|ξ|<M1+P|η|<M1+h(t)
(
v1M(x− y)P|ξ|<M1+P|η|<M1+(Λ +H)

)
SΛ2 = P|ξ|<M1+P|η|<M1+h(t)

(
v1M(x− y)P|ξ| or |η|>M1+P|ξ|<10M1+P|η|<10M1+(Λ +H)

)
SΛ3 = h(t)P|ξ|<M1+P|η|<M1+G

with initial conditions 0, and SΛ4 = 0 with initial conditions P|ξ|<M1+P|η|<M1+Λ0,
and finally

SΛ5 = h(t)P|ξ|<M1+P|η|<M1+

(
v2M(x− y)(Λ +H)

)
with initial conditions 0. Putting together the five propositions below,
we conclude∥∥∣∣∂t∣∣ 14P|ξ|<M1+P|η|<M1+Λ

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∇x+y

∣∣αP|ξ|<M1+P|η|<M1+Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲M−ϵ0

(∥∥∣∣∂t∣∣ 14P|ξ|<M1+P|η|<M1+Λ
∥∥
collapsing

+
∥∥∣∣∇x+y

∣∣αP|ξ|<M1+P|η|<M1+Λ
∥∥
collapsing

)
+M−ϵ0

(∥∥∣∣∂t∣∣ 14P|ξ|<M1+P|η|<M1+H
∥∥
collapsing

+
∥∥∣∣∇x+y

∣∣αP|ξ|<M1+P|η|<M1+H
∥∥
collapsing

)
+
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

The first term on the RHS can be absorbed in the LHS, proving the
result. □

We have to prove the following propositions

Proposition 5.5. Let

SΛ1 = P|ξ|<M1+P|η|<M1+h(t)
(
v1M(x− y)P|ξ|<M1+P|η|<M1+(Λ +H)

)
with zero initial conditions. Then

∥Λ1∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥P|ξ|<M1+P|η|<M1+(Λ +H)
∥∥
collapsing

and similarly

∥|∇x+y|αΛ1∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥P|ξ|<M1+P|η|<M1+ |∇x+y|α(Λ +H)
∥∥
collapsing

∥|∂t|
1
4Λ1∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥P|ξ|<M1+P|η|<M1+ |∂t|

1
4 (Λ +H)

∥∥
collapsing

.
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Since the frequency localization of Λ+H plays no role and only the
frequency localization of v1M(x− y)Λ is important, we record a slightly
more general result, which implies Proposition 5.5 and will also be used
later.

Proposition 5.6. Let

Su = P|ξ|<M1+P|η|<M1+h(t) (vM(x− y)Λ)

with zero initial conditions. Then

∥u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥Λ∥collapsing
and similarly

∥|∇x+y|αu∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥|∇x+y|αΛ
∥∥
collapsing

∥|∂t|
1
4u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥|∂t|

1
4Λ
∥∥
collapsing

.

Proof. Using Sobolev estimates and Theorem 4.8 we get

∥u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲≲M−ϵ0∥Λ∥collapsing.
No modifications are needed to prove

∥|∇x+y|αu∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥|∇x+y|αΛ∥collapsing.

However, the estimate for |∂t|
1
4u requires extra care because time deriva-

tives don’t preserve initial conditions. To simplify notation, let F =
P|ξ|<M1+P|η|<M1+ (vM(x− y)Λ). Let E the fundamental solution of the
Schrödinger equation supported in t ≥ 0, and recall h is the Heaviside
function. The usual solution to

Su = F

with 0 initial conditions is given (in the region t > 0) by

u = E ∗ (hF ).
From the first part of this proof we get

∥|∂t|
1
4u∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲M−ϵ0∥|∂t|

1
4 (hF )∥L∞(d(x−y))L2(dt)L2(d(x+y)).

It is easy to show

∥|∂t|
1
4 (hF )∥L∞(d(x−y))L2(dt)L2(d(x+y)) ≲ ∥(|∂t|

1
4F )∥L∞(d(x−y))L2(dt)L2(d(x+y)).

(63)

This can be done by taking Fourier transform in t and using A2 theory
(see [17]), or else the equivalent definition (for 0 < k < 1):

∥u∥2
Ḣk =

∫ ∫
|u(t)− u(s)|2

|t− s|1+2k
dtds (64)
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and the generalized Hardy’s inequality from [21].
We remark that the corresponding estimate for the stronger norm

∥Λ∥L2(dt)L∞(d(x−y))L2(d(x+y)) might not be true. We do not know if

∥|∂t|
1
4 (hF )∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲ ∥(|∂t|

1
4F )∥L2(dt)L∞(d(x−y))L2(d(x+y))

(65)

is true.
□

Proposition 5.7. Recall Λ satisfies (25) and

SΛ2 = P|ξ|<M1+P|η|<M1+

(
h(t)v1M(x− y)P|ξ| or |η|>M1+P|ξ|<10M1+P|η|<10M1+(Λ +H)

)
with zero initial conditions. Then

∥
〈
∇x

〉α〈∇y

〉α
Λ2∥S + ∥

〈
∇x+y

〉α
Λ2∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4Λ2∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲M−ϵ0∥
〈
∇x

〉α〈∇y

〉α
G∥S′

r

+M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

Proof. Consider (by slight abuse of notation) just one of the contribu-
tions to Λ2 with P|ξ|>M1+ .

SΛ2 = P|ξ|<M1+P|η|<M1+

(
v1M(x− y)PM1+<|ξ|<10M1+P|η|<10M1+(Λ +H)

)
.

(66)

Using Theorem 4.1 and Lemmas 4.5, 4.6 we have

∥
〈
∇x

〉α〈∇y

〉α
Λ2∥S + ∥

〈
∇x+y

〉α
Λ2∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4Λ2∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≲ ∥

〈
∇x

〉α〈∇y

〉α
RHS∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

Here we can estimate the RHS directly (using the fractional Leibniz
rule and the fact that

〈
∇x

〉α
only falls on Λ +H)∥∥〈∇x

〉α〈∇y

〉α (
v1M(x− y)P|ξ|>M1+(Λ +H)

) ∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
P|ξ|>M1+(Λ +H)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

.

This is in the high frequency range, and using Theorem 5.3, the above
is

≲M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r
+M−ϵ0

∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2

+M−ϵ0
∥∥〈∇x

〉α〈∇y

〉α
H
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

.

□
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Proposition 5.8. Recall

SΛ3 = P|ξ|<M1+P|η|<M1+G

with zero initial conditions. Then

∥
〈
∇x

〉α〈∇y

〉α
Λ3∥S + ∥

〈
∇x+y

〉α
Λ3∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4Λ3∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α
G∥S′

r
.

Proof. This follows immediately from Theorem 4.1 and Lemmas 4.5,
4.6. □

Proposition 5.9. Recall

SΛ4 = 0

with initial conditions Λ0. Then, for any α > 1
2
,

∥
〈
∇x

〉α〈∇y

〉α
Λ4∥S + ∥

〈
∇x+y

〉α
Λ4∥L2(dt)L∞(d(x−y))L2(d(x+y)) + ∥|∂t|

1
4Λ4∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2 .

Proof. This follows from Strichartz estimates, see for instance the proof
of Lemma 5.3 in [11]. □

Proposition 5.10. Recall Λ satisfies (25) and

SΛ5 = P|ξ|<M1+P|η|<M1+

(
v2M(x− y)(Λ +H)

)
with initial conditions 0. Then

∥
〈
∇x

〉α〈∇y

〉α
Λ5∥S + ∥

〈
∇x+y

〉α
Λ5∥L2(dt)L∞(d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4Λ5∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲M−9∥
〈
∇x

〉α〈∇y

〉α
G∥S′

r
+M−9

∥∥〈∇x

〉α〈∇y

〉α
G
∥∥
S′
r

Proof. Using Proposition 5.8, we have

∥
〈
∇x

〉α〈∇y

〉α
Λ5∥S + ∥

〈
∇x+y

〉α
Λ5∥L2(dt)L∞(d(x−y))L2(d(x+y)) + ∥|∂t|

1
4Λ5∥L2(dt)L∞(d(x−y))L2(d(x+y))

≲ ∥
〈
∇x

〉α〈∇y

〉α
P|ξ|<M1+P|η|<M1+

(
v2M(x− y)Λ

)
∥S′

r
.

Here we use the Leibniz rule and (51), (53) and the smallness of v2M to
conclude the above is

≲M−9
(
∥
〈
∇x

〉α〈∇y

〉α
G∥S′

r
+
∥∥〈∇x

〉α〈∇y

〉α
Λ0

∥∥
L2

)
.

□

To finish the proof the Theorem 2.1, we also need
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Theorem 5.11. Let

SΛ1 = P|ξ|<M1+P|η|<M1+

(
v1M(x− y)P|ξ|<M1+P|η|<M1+Λ

)
with 0 initial conditions. Then∥∥∣∣∇x

∣∣α∣∣∇y

∣∣αP|ξ|<2M1+P|η|<2M1+Λ1

∥∥
Sx,y

≲
∥∥〈∇x+y

〉α
Λ
∥∥
collapsing

+
∥∥〈∂t〉 1

4Λ
∥∥
collapsing

.

Proof. This follows from Proposition 4.8 and Bernstein’s inequality.
□

6. Estimates for the nonlinear equation, step 1

Recall the notation

S± =
1

i

∂

∂t
−∆x +∆y

From now on, VN(x) = N3βv(Nβx). As in [5] we assume the poten-
tial satisfies (10) and the initial conditions satisfy (11) and (13), and
also (12) holds.

Define Γ = Γc + Γp, Λ = Λc + Λp, where Γc = ϕ̄ ⊗ ϕ, Λc = ϕ ⊗ ϕ,

Γp =
1
N
sh(k) ◦ sh(k) and Λp =

1
2N

sh(2k). Let ρ(t, x) = Γ(t, x, x).
The 4 relevant equations are

SΛp + {VN ∗ ρ,Λp}+
VN
N

Λp (67)

+
(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

+
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

= −VN
N

Λc

S±Γp + [VN ∗ ρ,Γp] +
(
(VNΓp) ◦ Γp + (VN Λ̄p) ◦ Λp

)
skew

+
(
(VNΓc) ◦ Γp + (VN Λ̄c) ◦ Λp

)
skew

= 0 (68)

SΛc + {VN ∗ ρ,Λc}+
(
(VN Γ̄p) ◦ Λc + (VNΛp) ◦ Γc

)
symm

= 0 (69)

S±Γc + [VN ∗ ρ,Γc] +
(
(VNΓp) ◦ Γc + (VN Λ̄p) ◦ Λc

)
skew

= 0. (70)

Here (A(x, y))symm = A(x, y) + A(y, x) and (A(x, y))skew = A(x, y) −
Ā(y, x)

The norms used for Λp and Λc are called N (Λ) and are

∥Λ∥N (Λ) =
∥∥〈∇x

〉α〈∇y

〉α
Λ
∥∥
Sx,y

+
∥∥∣∣∂t∣∣ 14Λ∥∥L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥〈∇x+y

〉α
Λ
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

.
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Because of the quarter time derivative, these norms cannot be localized
in an obvious way, and we will devise a way to get around that. The
norms for Γ, Γp, Γc and also Λc are

∥F∥N 1 = sup
p,q admissible

∥
〈
∇x

〉α〈∇y

〉α
F∥Lp(dt)Lq(dx)L2(dy)

+ sup
p,q admissible

∥
〈
∇x

〉α〈∇y

〉α
F∥Lp(dt)Lq(dy)L2(dx)

+
∥∥|∇x+y|αF

∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

.

The estimates for the linear part of the Λ equations have been studied
in the previous sections. For the Γ equation we will only use older,
standard estimates

Proposition 6.1. Let

S±Γ = F

Γ(0, ·) = Γ0

Then

sup
p,q admissible

∥Γ∥Lp(dt)Lq(dx)L2(dy)

+ sup
p,q admissible

∥Γ∥Lp(dt)Lq(dy)L2(dx)

≲ ∥Γ0∥L2 + inf
p,q admissible,p≥p0>2

{∥F∥Lp′ (dt)Lq′ (dx)L2(dy), ∥F∥Lp′ (dt)Lq′ (dy)L2(dx)}

sup
z

∥|∇x|αΓ(t, x+ z, x)∥L2(dtdx)

≲ ∥
〈
∇x

〉α〈∇y

〉α
Γ0∥L2

+ inf
p,q admissible,p≥p0>2

{∥
〈
∇x

〉α〈∇y

〉α
F∥Lp′ (dt)Lq′ (dx)L2(dy), ∥F∥Lp′ (dt)Lq′ (dy)L2(dx)}.

Proof. For a proof of the homogeneous estimate, see Lemmas 5.1, 5.3 in
[11], and also [4]. The inhomogeneous estimate follows from the Christ-
Kiselev lemma. Let T1 = eit∆± , so T1 : L2(R6) → Lp(dt)Lq(dx)L2(dy)
and T ∗

1 : Lp′(dt)Wα,q′(dx)Hα(dy) → Hα(dx)Hα(dy). Fix z and let T2 :
Hα(dx)Hα(dy) → L2(dt)Ḣα(dx) be the operator f →

(
eit∆±f

)
(t, x, x+

z). Then the inhomogeneous estimate follows by applying the Christ-
Kiselev lemma to T2T

∗
1 .

□

The first step in the analysis of the nonlinear equations uses a priori
estimates for Γ(t, x, x), see (14) and (15).
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Lemma 6.2. Under the assumptions of Theorem 1.1 we have

∥Γ∥
L8(dt))L∞(d(x−y))L

4
3 (d(x+y))

≲ 1 (71)

∥∇x+yΓ∥L8(dt))L∞(d(x−y))L
4
3 (d(x+y))

≲ 1 (72)

and thus, for any ϵ2 > 0 there exist n = n(ϵ2) intervals [Ti, Ti+1] cov-
ering [0,∞) such that

sup
z

∥
〈
∇x

〉α
Γ(t, x+ z, x)∥

L8([Tj ,Tj+1])L
4
3 (dx)

≤ ϵ2. (73)

The idea of proving estimates for NLS by using such a localization
in time goes back to Bourgain [3].

Remark 6.3. Notice that the ”collapsing estimate” supz ∥
〈
∇x

〉α
Γ(t, x+

z, x)∥L2(dtdx) ≲ 1 does not imply there exist n = n(ϵ2) intervals [Ti, Ti+1]
covering [0,∞) such that

sup
z

∥
〈
∇x

〉α
Γ(t, x+ z, x)∥L2([Tj ,Tj+1])L2(dx) ≤ ϵ2.

Proof. We have a pointwise estimate

||Γ(t, x+ z, x− z)| ≤ |Γ(t, x+ z, x+ z)|
1
2 |Γ(t, x− z, x− z)|

1
2

and also

||∇xΓ(t, x+ z, x− z)|

≤ |E1(t, x+ z, x+ z)|
1
2 |Γ(t, x− z, x− z)|

1
2 + |E1(t, x− z, x− z)|

1
2 |Γ(t, x+ z, x+ z)|

1
2

where E1(t, x) = ∇x ·∇yΓ(t, x, y)
∣∣
x=y

is the kinetic energy density, with∫
|E1(t, x)|+Γ(t, x, x)dx uniformly bounded in time and ∥Γ(t, x, x)∥L4(dt)L2(dx) ≲

1. (71) and (72) follow by applying Hölder’s inequality, and these imply
(73). □

The above estimates hold for Γc and Γp separately. Since Γc = ϕ̄⊗ϕ
and Λc = ϕ ⊗ ϕ, they also hold for Λc. No such a priori estimates
are available for Λp. However, we assume initial conditions for Λp are
small. Also, the forcing term in the equation for Λp is VN

2N
Λc, and this

is small in suitable norms, thus ∥Λp∥N (Λ) will stay small. Here are the
details:

In order to use the smallness of the above quantities, we have to
localize our estimates to these intervals. However, the necessary norms
involve a non-local term, so we have to proceed carefully. Also, we will
use a continuity argument, so the right end of the interval must be a
variable T ∈ [Ti, Ti+1]. Define Λi,T

c Λi,T
p , Γi,T

c , Γi,T
p be the solution to

the standard equations with the RHS multiplied by χ[Ti,T ]:
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SΛi,T
p +

VN
N

Λi,T
p (74)

= χ[Ti,T ]

(
− {VN ∗ ρ,Λp} −

(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

−
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

− VN
N

Λc

)
S±Γ

i,T
p = χ[Ti,T ]

(
− [VN ∗ ρ,Γp]−

(
(VNΓp) ◦ Γp − (VN Λ̄p) ◦ Λp

)
skew

−
(
(VNΓc) ◦ Γp − (VN Λ̄c) ◦ Λp

)
skew

)
(75)

SΛi,T
c = χ[Ti,T ]

(
− {VN ∗ ρ,Λc} −

(
(VN Γ̄p) ◦ Λc − (VNΛp) ◦ Γc

)
symm

)
(76)

S±Γ
i,T
c = χ[Ti,T ]

(
− [VN ∗ ρ,Γc]−

(
(VNΓp) ◦ Γc − (VN Λ̄p) ◦ Λc

)
skew

)
(77)

with Λi,T
c (Ti, ·) = Λi−1,Ti

c (Ti, ·) = Λc(Ti, ·), and similarly for the other
three functions. Also, Then Λi,T

c = Λc, etc. in [Ti, T ] (but not outside
this interval), and similarly for the other three functions. Also, Λi,Ti

c ,
etc. satisfies a homogeneous linear equation.

We continue by estimating the four functions on the LHS. The most
difficult one is Λi,T

p .
Later it will be convenient to have norms which can be made small

on small time intervals, so we introduce the restricted Strichartz norms

∥F∥Sr
x,y

= ∥F∥L2(dt)L6(dx)L2(dy) + ∥F∥L2(dt)L6(dy)L2(dx)

+ ∥F∥L4(dt)L3(dx)L2(dy) + ∥F∥L4(dt)L3(dx)L2(dy).

Notice this is not dual to S ′
r, the restrictions on the exponents are

different.

Theorem 6.4. Let [Tj, T ], Ti ≤ T ≤ Ti+1, and ϵ2 be as in (73). There
exists a universal constant C such that

∥Λi,T
p ∥N (Λ) ≤ C

∥∥〈∇x

〉α〈∇y

〉α
Λi,T

p (Tj, ·)
∥∥
L2 + Cϵ2∥Λi,T

p ∥N (Λ)

+ Cϵ2∥Γi,T
p ∥N 1 + C∥Λi,T

p ∥N (Λ)∥Γi,T
p ∥Sr

x,y

+ CN−ϵ1∥Λi,T
c ∥N (Λ).
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Remark 6.5. Of course ∥Γi,T
p ∥Sr

x,y
≤ ∥Γi,T

p ∥N 1 , but ∥Γi,T
p ∥Sr

x,y
can also be

made small on small time intervals. This will be useful when estimating
higher order derivatives.

The proof is based on Theorem 2.1: there exists a constant C and
ϵ1 > 0 such that

∥Λi,T
p ∥N (Λ)

≤ C

(∥∥〈∇x

〉α〈∇y

〉α
χ[Ti,T ]

(
{VN ∗ ρ,Λp}+

(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

+
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

)∥∥
S′
r

+N−ϵ1
∥∥〈∇x

〉α〈∇y

〉α
χ[Ti,T ]Λc

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+N−ϵ1
∥∥∣∣∂t∣∣ 14χ[Ti,T ]Λc

∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

(78)

+N−ϵ1
∥∥∣∣∇x+y

∣∣αχ[Ti,T ]Λc

∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α
Λp(Ti)

∥∥
L2 .

)
For all terms other than (78), the superscript i, T can be trivially added
to Λ, Γ on the RHS. In (78),∥∥∣∣∂t∣∣ 14 (χ[Ti,T ]Λc

)∥∥
L∞(d(x−y))L2(R)L2(d(x+y))

=
∥∥∣∣∂t∣∣ 14 (χ[Ti,T ]Λ

i,T
c

)∥∥
L∞(d(x−y))L2(R)L2(d(x+y))

≲
∥∥∣∣∂t∣∣ 14Λi,T

c

∥∥
L∞(d(x−y))L2(R)L2(d(x+y))

(as explained for (63))

≤
∥∥∣∣∂t∣∣ 14Λi,T

c

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≤ ∥Λi,T
c ∥N (Λ).

In the lemmas that follow, we estimate the norms of the nonlinear
terms in suitable dual Strichartz norms, using the bound (73) whenever
possible.

Lemma 6.6. Let [Ti, T ] be as above. There exists a universal constant
C such that∥∥〈∇x

〉α〈∇y

〉α({VN ∗ ρ,Λi,T
p }+ VN Γ̄

i,T ◦ Λi,T
p

)∥∥
L

8
5 ([Ti,T ])L

4
3 (dx)L2(dy)

≤ Cϵ2∥
〈
∇x

〉α〈∇y

〉α
Λi,T

p ∥Sr
x,y
.
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The result depends on the a priori bounds for Γ, but is true with Λi,T
p

replaced with any other function).

Proof. The proof is easily reduced to estimating

sup
z

∥
〈
∇x

〉α〈∇y

〉α(
Γ(t, x, x+ z)Λi,T

p (t, x+ z, y)
)
∥
L

8
5 ([Ti,T ])L

4
3 (dx)L2(dy)

≤ Cϵ2∥
〈
∇x

〉α〈∇y

〉α
Λi,T

p ∥Sx,y .

Using the fractional Leibniz rule (see the proof of Theorem 5.1) we
have the following estimate, uniformly in z:

∥
〈
∇x

〉α〈∇y

〉α(
Γ(t, x, x+ z)Λi,T

p (t, x+ z, y)
)
∥
L

8
5 ([Ti,T ])L

4
3 (dx)L2(dy)

≤ C∥
〈
∇x

〉α
Γ(t, x, x+ z)∥

L8([Ti,T ])L
4
3 (dx)

∥
〈
∇y

〉α
Λi,T

p ∥L2(dt)L∞(dx)L2(dy)

+ ∥Γ(t, x, x+ z)∥
L8([Ti,T ])L

12
7 (dx)

∥
〈
∇x

〉α〈∇y

〉α
Λi,T

p ∥L2(dt)L6(dx)L2(dy)

≤ C∥
〈
∇x

〉α
Γ(t, x, x+ z)∥

L8([Ti,T ])L
4
3 (dx)

∥
〈
∇x

〉α〈∇y

〉α
Λi,T

p ∥L2(dt)L6(dx)L2(dy)

≤ C2ϵ2∥
〈
∇x

〉α〈∇y

〉α
Λi,T

p ∥L2(dt)L6(dx)L2(dy).

□

Since Λc satisfies the same a priori estimates (based on interaction
Morawetz and conservation of energy) as Γ, by the exact same argu-
ment we get

Lemma 6.7. Let [Ti, T ] be as above. There exists a universal constant
C such that

∥
〈
∇x

〉α〈∇y

〉α (
(VNΛc) ◦ Γi,T

p

)
∥
L

8
5 ([Ti,T ])L

4
3 (dx)L2(dy)

≤ Cϵ2∥
〈
∇x

〉α〈∇y

〉α
Γi,T
p ∥Sx,y .

The result depends on the a priori bounds for Λc, but is true for any
function Γi,T

p = Γi,T
p (t, x, y).

We continue estimating nonlinear terms.

Lemma 6.8. There exists a universal constant C such that

∥
〈
∇x

〉α〈∇y

〉α (
(VNΛ

i,T
p ) ◦ Γi,T

p

)
∥
L

4
3 (dt)L

3
2 (dx)L2(dy)

≤ C∥
〈
∇x+y

〉α
Λi,T

p ∥L∞(d(x−y))L2(dt)L2(dx)∥
〈
∇x

〉α〈∇y

〉α
Γi,T
p (t, x, y)∥L4(dt)L3(dx)L2(dy).

This result can be localized to any time interval [Ti, Ti+1] and is true
for any two functions, not just Λi,T

p and Γi,T
p .

Proof. It suffices to estimate

sup
z

∥
〈
∇x

〉α〈∇y

〉α (
Λi,T

p (t, x, x+ z)Γi,T
p (t, x+ z, y)

)
∥
L

4
3 (dt)L

3
2 (dx)L2(dy)

.
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The following holds, uniformly in z:

∥
〈
∇x

〉α〈∇y

〉α (
Λi,T

p (t, x, x+ z)Γi,T
p (t, x+ z, y)

)
∥
L

4
3 (dt)L

3
2 (dx)L2(dy)

≲ ∥
〈
∇x

〉α
Λi,T

p (t, x, x+ z)∥L2(dt)L2(dx)∥
〈
∇y

〉α
Γi,T
p (t, x, y)∥L4(dt)L6(dx)L2(dy)

+ ∥Λi,T
p (t, x, x+ z)∥L2(dt)L3(dx)∥

〈
∇x

〉α〈∇y

〉α
Γi,T
p (t, x, y)∥L4(dt)L3(dx)L2(dy)

≲ ∥
〈
∇x

〉α
Λi,T

p (t, x, x+ z)∥L2(dt)L2(dx)∥
〈
∇x

〉α〈∇y

〉α
Γi,T
p (t, x, y)∥L4(dt)L3(dx)L2(dy).

□

We continue with estimates for ∥Λi,T
c ∥N (Λ). This is an easy version

of the previous theorem. Using the previous lemmas and the trivial
version of Theorem 2.1 (without the potential term) we get

Theorem 6.9. Let [Ti, T ] be as above. There exists a universal con-
stant C such that

∥Λi,T
c ∥N (Λ) ≤ C

∥∥〈∇x

〉α〈∇y

〉α
Λi,T

c (Ti, ·)
∥∥
L2 + Cϵ2∥Λi,T

c ∥N (Λ)

+ C∥Λi,T
p ∥N (Λ)∥Γi,T

c ∥Sr
x,y
.

Using Strichartz estimates for S±, and Lemmas 6.6-6.8 we get

Theorem 6.10. Let [Ti, T ] be as above. There exists a universal con-
stant C such that

∥Γi,T
c ∥N 1 ≤ C

∥∥〈∇x

〉α〈∇y

〉α
Γi,T
c (Ti, ·)

∥∥
L2 + Cϵ2∥Γi,T

c ∥N 1

+ C∥Λi,T
p ∥N (Λ)∥Λi,T

c ∥N (Λ)

∥Γp∥N 1 ≤ C
∥∥〈∇x

〉α〈∇y

〉α
Γi,T
p (Ti, ·)

∥∥
L2 + Cϵ2∥Γi,T

p ∥N 1

+ Cϵ2∥Λi,T
p ∥N 1 + C∥Λi,T

p ∥N (Λ)∥Λi,T
p ∥N (Λ).

At this stage we take Cϵ2 <
1
2
. This determines the number of inter-

vals in the list Ti, Ti+1. Call that number n, and notice it is independent
of N . Also, for T ∈ [Ti, Ti+1] denote

Xi(T ) = ∥Λi,T
c ∥N (Λ) + ∥Γi,T

c ∥N 1

Yi(T ) = ∥Λi,T
p ∥N (Λ) + ∥Γi,T

p ∥N 1 .

Since we trivially have bounds on ∥Λp or c∥L∞[0,T ]Hs(dxdy) and ∥Γp or c∥L∞[0,T ]Hs(dxdy)

(for any s) which can grow with T and N , then we do know Xi, Yi are
continuous.

We have established the following estimate for Ti ≤ T ≤ Ti+1:

Corollary 6.11. The functions Xi, Yi are continuous and satisfy

Xi(T ) ≤ C
∥∥〈∇x

〉α〈∇y

〉α
Λc(Ti, ·)

∥∥
L2 + C

∥∥〈∇x

〉α〈∇y

〉α
Γc(Ti, ·)

∥∥
L2 + CXi(T )Yi(T )

Yi(T ) ≤ C
∥∥〈∇x

〉α〈∇y

〉α
Λp(Ti, ·)

∥∥
L2 + C

∥∥〈∇x

〉α〈∇y

〉α
Γp(Ti, ·)

∥∥
L2

+ CY 2
i (T ) + CN−ϵ1Xi(T ).
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Now we can state and prove the main theorem of this section.

Theorem 6.12. Assume Λ, Γ and ϕ are smooth solutions to the HFB
system, with finite energy per particle, uniformly in N (see (9)). In
particular,∥∥〈∇x

〉α〈∇y

〉α
Λc(0, ·)

∥∥
L2 +

∥∥〈∇x

〉α〈∇y

〉α
Γc(0, ·)

∥∥
L2 ≤ C.

Assume, in addition,∥∥〈∇x

〉α〈∇y

〉α
Γp(0, ·)

∥∥
L2 ≤

C

N ϵ3

(ϵ3 as in (12); the corresponding estimate for Λp holds globally in time).
Let ϵ > 0. There exists N0 such that, if N ≥ N0, then

∥Λc∥N (Λ) + ∥Γc∥N 1 ≲ 1

∥Λp∥N (Λ) + ∥Γp∥N 1 ≤ ϵ.

Proof. Starting at T1 = 0, we have X1(0) ≤ C and Y1(0) ≤ CN−ϵ3 ,
and

X1(T ) ≤ C + CX1(T )Y1(T )

Y1(T ) ≤ CN−ϵ3 + CY1(T )
2 + CN−ϵ1X1(T ).

In the second line, either Y1(T ) ≤ 2CY1(T )
2, but by continuity we

rule this out, or else Y1(t) ≤ 2(CN−ϵ3 + CN−ϵ1X1(t)), and if we plug
this in the first line we get

X1(T ) ≤ C + C
(
N−ϵ3 +N−ϵ1X1(T )

)
X1(T ).

If N is sufficiently large, we get X1(T ) ≤ 2C. We continue to the next
interval, [T2, T3]. The argument is the same, the initial conditions for
X2 have the same bound, but the initial conditions for Y2 have grown:

Y2(T2) ≤ CN−ϵ3 + CN−ϵ1 .

We can repeat the argument as long as Yi(Ti) is sufficiently small.
This will be the case if N is sufficiently large, because n, the number
of intervals, is independent of N . □

7. Higher order derivatives

Next, we refine the argument to include x+ y derivatives. This sec-
tion uses additional smallness results. Denote Sr

x,y[T1, T2] the standard
Strichartz norms subject to the restriction 2 ≤ p ≤ p1 < ∞ for some
large p1 <∞ and t ∈ [T1, T2].
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Lemma 7.1. Under the assumptions of Theorem 6.12, given ϵ > 0, we
can divide [0,∞) into finitely many intervals (depending only on ϵ and
the above implicit bounds, as well as those used for (73)) such that

∥
〈
∇x+y

〉α
Γp and c

∥∥
L∞(d(x−y))L8([Tj ,Tj+1])L

4
3 (d(x+y))

≤ ϵ

∥
〈
∇x+y

〉α
Λp and c

∥∥
L2([Tj ,Tj+1])L∞(d(x−y))L2(d(x+y))

≤ ϵ∥∥〈∇x

〉α〈∇y

〉α
Γp and c∥Sr

x,y [Tj ,Tj+1] ≤ ϵ∥∥〈∇x

〉α〈∇y

〉α
Λp and c∥Sr

x,y [Tj ,Tj+1] ≤ ϵ.

Proof. The first estimate is (73). Using Theorem 6.12 we know the
following quantities are bounded:

∥
〈
∇x+y

〉α
Λp and c

∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

≲ 1∥∥〈∇x

〉α〈∇y

〉α
Γp and c∥Sx,y ≲ 1∥∥〈∇x

〉α〈∇y

〉α
Λp and c∥Sx,y ≲ 1

and the result follows. □

Remark 7.2. However, it is not clear we can insure

∥|∇x+y|αΓp and c

∥∥
L∞(d(x−y))L2(t∈[T1,T2])L2(d(x+y))

≤ ϵ

which is why we use L∞(d(x−y))L8(t ∈ [T1, T2])L
4
3 (d(x+y)) for which

we have an a priori estimate, and which has the same scaling.

Theorem 7.3. Under the assumption of Theorem 6.12, if we also have∥∥〈∇x

〉α〈∇y

〉α∇j
x+yΛp and c(0, ·)

∥∥
L2 +

∥∥〈∇x

〉α〈∇y

〉α∇j
x+yΓp and c(0, ·)

∥∥
L2

≲ 1

for j = 1, · · · , j0, then

∥∇j
x+yΛc∥N (Λ) + ∥∇j

x+yΓc∥N 1 ≲ 1 (79)

∥∇j
x+yΛp∥N (Λ) + ∥∇j

x+yΓp∥N 1 ≲ 1. (80)

Proof. (Sketch) At this stage, we don’t have to distinguish between
Λp and Λc, or Γp and Γc and we work directly with Λ = Λp + Λc,
Γ = Γp + Γc. Schematically, the equations are

SΛ +
VN
N

Λ = VNΛ ◦ Γ + VNΓ ◦ Λ

S±Γ = VNΛ ◦ Γ + VNΛ ◦ Λ.
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Apply ∇x+y and localize the RHS to [Ti, Ti+1]:

S∇x+yΛ
i +

VN
N

∇x+yΛ
i

= χ[Ti,Ti+1]

(
VN∇x+yΛ ◦ Γ + VN∇x+yΓ ◦ Λ + VNΛ ◦ ∇x+yΓ + VNΓ ◦ ∇x+yΛ

)
:= RHS(1) (81)

S±∇x+yΓ
i

= χ[Ti,Ti+1]

(
VN∇x+yΓ ◦ Γ + VN∇x+yΛ ◦ Λ + VNΛ ◦ ∇x+yΓ ◦ Γ + VNΛ ◦ ∇x+yΛ

)
:= RHS(2) (82)

with initial conditions at Ti, so ∇x+yΛ
i = ∇x+yΛ and ∇x+yΓ

i = ∇x+yΓ
in [Ti, Ti+1]. By slight abuse of notation,∇x+yF is the function (x, y) →
∇x+yF (x, y). Now we can use and use Theorems 2.1 and Theorem 6.1:

∥∥〈∇x

〉α〈∇y

〉α∇x+yΛ
i
∥∥
Sx,y

+
∥∥〈∇x+y

〉α∇x+yΛ
i
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥∣∣∂t∣∣ 14∇x+yΛ

i
∥∥
L2(dt)L∞(d(x−y))L2(d(x+y))

+
∥∥〈∇x

〉α〈∇y

〉α∇x+yΓ
i
∥∥
Sx,y

+
∥∥|∇x+y|α∇x+yΓ

i
∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

≲
∥∥〈∇x

〉α〈∇y

〉α
RHS(1)

∥∥
S′
r
+
∥∥〈∇x

〉α〈∇y

〉α
RHS(2)

∥∥
S′
r

+
∥∥〈∇x

〉α〈∇y

〉α∇x+yΛ(t = Ti)
∥∥
L2

+
∥∥〈∇x

〉α〈∇y

〉α∇x+yΓ(t = Ti)
∥∥
L2 .

We have to estimate
〈
∇x

〉α〈∇y

〉α
applied to the 8 terms on the

RHS. We will show they are all ≤ CϵLHS, so if Cϵ ≤ 1
2
, the theorem

is proved. In the above compositions, the estimates are the same re-
gardless whether the second term is Λ or Γ, so we call the second term
B. The estimates are the same estimates as those of Lemmas 6.6 and
6.8, but now we can also use the estimates of Lemma 7.1. If ∇x+y falls
on B,

∥∥〈∇x

〉α〈∇y

〉α(
VNΓ

i ◦ ∇x+yB
i

)∥∥
L

8
5 ([Ti,Ti+1])L

4
3 (dx)L2(dy)

≤ ϵ∥
〈
∇x

〉α〈∇y

〉α∇x+yB
i∥Sr

x,y
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and

∥
〈
∇x

〉α〈∇y

〉α (
(VNΛ

i) ◦ ∇x+yB
i
)
∥
L

4
3 ([Ti,Ti+1])L

3
2 (dx)L2(dy)

≤ ∥
〈
∇x+y

〉α
Λi∥L∞(d(x−y))L2([Ti,Ti+1])L2(d(x+y))∥

〈
∇x

〉α〈∇y

〉α∇x+yB
i∥L4(dt)L3(dx)L2(dy)

≤ ϵ∥
〈
∇x

〉α〈∇y

〉α∇x+yB
i∥L4(dt)L3(dx)L2(dy).

If ∇x+y falls on VNΓ,∥∥〈∇x

〉α〈∇y

〉α(
(VN∇x+yΓ

i) ◦Bi

)∥∥
L

4
3 ([Ti,Ti+1])L

3
2 (dx)L2(dy)

≤ ∥∇x+yΓ
i∥L∞(d(x−y))L2(dt)L2(d(x+y))∥

〈
∇x

〉α〈∇y

〉α
Bi∥L4([Ti,Ti+1])L3(dx)L2(dy)

≤ ϵ∥∇x+yΓ
i∥L∞(d(x−y))L2([Tj ,Tj+1])L2(d(x+y))

and similarly∥∥〈∇x

〉α〈∇y

〉α(
(VN∇x+yΛ

i) ◦Bi

)∥∥
L

4
3 ([Ti,Ti+1])L

3
2 (dx)L2(dy)

≤ ∥∇x+yΛ
i∥L∞(d(x−y))L2([Tj ,Tj+1])L2(d(x+y))∥

〈
∇x

〉α〈∇y

〉α
Bi∥L4([Ti,Ti+1])L3(dx)L2(dy)

≤ ϵ∥∇x+yΛ
i∥L∞(d(x−y))L2(dt)L2(d(x+y)).

The proof for ∇j
x+y is the same.

□

8. Estimates for sh(2k), p2 = sh(k) ◦ sh(k) and sh(k)

Proof. (of Theorem 1.3). The equations for sh(2k) = NΛp and p2 =
NΓp are

S sh(2k) + {VN ∗ ρ, sh(2k)}+
(
(VNΓ

T ) ◦ sh(2k) + (VNΛ) ◦ p2
)
symm

= −VN
2
Λ

S̄±p2 + [VN ∗ ρ, p2] +
(
(VNΓ) ◦ p2 + (VN Λ̄) ◦ sh(2k)

)
skew

= 0.

Let ϵ > 0. As in the previous proofs, use (73) and divide [0,∞) into
finitely many intervals [Ti, Ti+1] so that

sup
z

∥Γ(t, x+ z, x)∥
L8([Ti,Ti+1])L

12
7 (dx)

< ϵ

and

sup
z

∥Λ(t, x+ z, x)∥L2([Ti,Ti+1])L3(dx) < ϵ

and estimate the dual Strichartz norms

∥(VN ∗ ρ(t, x))sh(2k)(t, x, y)∥
L

8
5 ([Ti,Ti+1])L

4
3 (dx)L2(dy)

+ ∥(VNΓT ) ◦ sh(2k)∥
L

8
5 ([Ti,Ti+1])L

4
3 (dx)L2(dy)

≤ C sup
z

∥Γ(t, x+ z, x)∥
L8([Ti,Ti+1])L

12
7 (dx)

∥sh(2k)∥L2([Ti,Ti+1])L6(dx)L2(dy)

≤ Cϵ∥sh(2k)∥L2([Ti,Ti+1])L6(dx)L2(dy)
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and similarly

∥(VN ∗ ρ(t, x))p2(t, x, y)∥L 8
5 ([Ti,Ti+1])L

4
3 (dx)L2(dy)

+ ∥(VNΓ) ◦ p2∥L 8
5 ([Ti,Ti+1])L

4
3 (dx)L2(dy)

≤ Cϵ∥p2∥L2([Ti,Ti+1])L6(dx)L2(dy).

Also,

∥(VNΛ) ◦ p2∥L 8
5 (dt)L

4
3 (dx)L2(dy)

≤ C sup
z

∥Λ(t, x+ z, x)∥L2([Ti,Ti+1])L3(dx)∥p2∥L4([Ti,Ti+1])L3(dx)L2(dy)

≤ ϵ∥p2∥L4([Ti,Ti+1])L3(dx)L2(dy).

We get, using the estimates of Theorem 1.1 as well as proposition 4.8
and standard Strichartz estimates,

∥sh(2k)∥Sx,y [Ti,Ti+1] + ∥p2∥Sx,y [Ti,Ti+1]

≤ C((∥sh(2k)(t = Ti)∥L2 + ∥p2(t = Ti)∥L2)

+ Cϵ(
(
∥sh(2k)∥Sx,y [Ti,Ti+1] + ∥p2∥Sx,y [Ti,Ti+1]

)
+ C logN.

Thus, if Cϵ ≤ 1
2
we get the desired result on each interval [Ti, Ti+1].

The number of such intervals is finite (bounded by universal constants),
and the result follows.

The proof for ∇j
x+y is similar.

□

9. Estimates for the condensate ϕ

The non-linear equation for ϕ can be regarded as a linear equation on
a background given by Γ and Λ, for which we already have estimates:{

1

i
∂t −∆x1

}
ϕ(x1)

= −
∫
dy {vN(x1 − y)Γ(y, y)}ϕ(x1) (83)

−
∫
dy
{
vN(x1 − y)Γp(y, x1)ϕ(y) (84)

+

∫
dy
{
vN(x1 − y)Λp(x1, y)

}
ϕ(y). (85)

Define the standard Strichartz spaces

∥ϕ∥S = sup
p,q admissible

∥ϕ∥Lp(dt)Lq(dx).

We prove the estimates of Corollary 1.5.
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Proof. Using (19) and (21) we split [0,∞) into finitely many intervals
so that

∥
〈
∇x+y

〉α
Γ∥

L8(dt)L∞(d(x−y))L
4
3 (d(x+y))

≤ ϵ

∥
〈
∇x+y

〉α
Λ∥L2(dt)L∞(d(x−y))L2(d(x+y)) ≤ ϵ

Using the fractional Leibniz rule, we easily estimate the RHS of the
equation for ϕ:

∥
〈
∇
〉α
(83)∥

L
8
5 ([Ti.Ti+1])L

4
3 (dx)

≤ Cϵ∥
〈
∇
〉α
ϕ∥L2[Ti.Ti+1)L6(dx)

∥
〈
∇
〉α
(84)∥

L
8
5 [Ti.Ti+1)L

4
3 (dx)

≤ Cϵ∥
〈
∇
〉α
ϕ∥L2[Ti.Ti+1)L6(dx)

∥
〈
∇
〉α
(85)∥L1[Ti.Ti+1)L2(dx) ≤ Cϵ∥

〈
∇
〉α
ϕ∥L2[Ti.Ti+1)L6(dx)

thus

∥
〈
∇
〉α
ϕ∥S[Ti,Ti+1] ≤ C∥

〈
∇
〉α
ϕ(t = Ti)∥L2 + 3Cϵ∥

〈
∇
〉α
ϕ∥L2[Ti.Ti+1)L6(dx).

By taking 3ϵ < 1
2
, the result for j = 0 follows. Next, differentiate the

equation and use the same splitting. If the derivative falls on ϕ, the
argument is the same. If the derivative falls on Γ, use

sup
x−y

∥|∇x+y|α+1Γ∥L2(dtd(x+y)) ≲ 1.

While we don’t know if this term can be made small by localizing to
time intervals, such a term is coupled with ϕ without extra derivatives,
which has been estimated already. For instance,∫

dz|vN(z)|∥
(
|∇x|α+1Γp(x, x− z)

)
ϕ(x− z)∥L1[Ti.Ti+1)]L2(dx)

+

∫
dz|vN(z)| (|∇x|Γp(x, x− z))

〈
∇
〉α
ϕ(x− z)∥L1[Ti.Ti+1)]L2(dx)

≲ sup
x−y

∥|∇x+y|α+1Γp∥L2L2∥||∇|αϕ∥L2(dt)L6(dx) ≤ C

thus we get

∥
〈
∇
〉α+1

ϕ∥S[Ti,Ti+1] ≤ C∥
〈
∇
〉α+1

ϕ(t = Ti)∥L2 + 3Cϵ∥
〈
∇
〉α+1

ϕ∥L2[Ti.Ti+1)L6(dx) + C

which proves the result. The case of higher j is similar. □

10. Proof the square function estimates

10.1. The double square function in standard coordinates. This
subsection covers well-known results, and is included for the reader’s
convenience. Let ψk (k ≥ 1) be any functions satisfying ψ̂k = ψ̂( ·

2k
)

with ψ̂ ∈ C∞
0 vanishing in a neighborhood of 0. Let ψ̂0 ∈ C∞

0 .
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Define
−→
K (x) be the infinite column vector

−−→
ψ(x) = (ψk(x))k≥0. This

satisfies the standard estimates for a Calderón-Zygmund operator: in

particular (in three space dimensions) |
−−→
ψ(x)| ≲ 1

|x|3 ,

|
−−−−−→
ψ(x+ y)−

−−→
ψ(x)| ≲ |y|

|x|4 if |x| > 2|y|. Convolution with
−→
K (x) is bounded

from L2 to L2l2 by orthogonality.
Denote

−→
K 1f(x, y) =

∫ −→
K (x′)f(x− x′, y)dx′

−→
K 2f(x, y) =

∫ −→
K (y′)f(x, y − y′)dy′.

We review the following known results

Lemma 10.2. Let 1 < p, q <∞. Then

∥
−→
K 1f∥Lp(dx)Lq(dy)l2 ≲ ∥f∥Lp(dx)Lq(dy)

∥
−→
K 2f∥Lp(dx)Lq(dy)l2 ≲ ∥f∥Lp(dx)Lq(dy).

Remark 10.3. The above inequalities are just ”linear” formulation of
the square function estimate

∥S1f∥Lp(dx)Lq(dy) = ∥

(
∞∑
k=0

|f ∗ (ψkδ)|2
) 1

2

∥Lp(dx)Lq(dy) ≲ ∥f∥Lp(dx)Lq(dy)

(86)

∥S2f∥Lp(dx)Lq(dy) = ∥

(
∞∑

k′=0

|f ∗ (δψk′)|2
) 1

2

∥Lp(dx)Lq(dy) ≲ ∥f∥Lp(dx)Lq(dy).

Proof. The estimate for
−→
K 2 (or S2) follows right away from the stan-

dard square function estimate in y (for fixed x), followed by Lp in x.

The operator
−→
K 1 is a Calderón-Zygmund operator. It is bounded

from Lp(dx)Lq(dy) to Lp(dx)Lq(dy)l2. See [19], Theorem 2.1 and Corol-
lary 2.3. For the main case we need, q = 2, this also follows from Section
5, Chapter 2 in [16]

□

In fact we can do more: Let
−→
K be the infinite column kernel

−−→
ψ(x)

as before, but now we multiply it with l2 vectors
−→
fj :

−→
ψ ⊗

−→
f = (ψkfj)j,k .

It maps l2 → l2l2 with norm given by |
−→
ψ |l2 , and we repeat the argu-

ment, and get
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Lemma 10.4. Define
−→−→
K 1(

−→
f )(x, y) =

∫ −→
K (x′)⊗

−→
f (x− x′, y)dx′ (87)

Then, if 1 < p, q <∞,

∥
−→−→
K 1

−→
f ∥Lp(dx)Lq(dy)l2l2 ≲ ∥

−→
f ∥Lp(dx)Lq(dy)l2 (88)

and thus

∥
−→−→
K 1(

−→
K 2f)∥Lp(dx)Lq(dy)l2l2 ≲ ∥

−→
f ∥Lp(dx)Lq(dy)l2 (89)

or, equivalently

∥S1S2f∥Lp(dx)Lq(dy) = ∥

(
∞∑

k′,k′′=0

|f ∗ (ψk′δ) ∗ (δψk′′)|2
) 1

2

∥Lp(dx)Lq(dy) ≲ ∥f∥Lp(dx)Lq(dy).

The result is also true, uniformly in M , if the dyadic intervals 2i defin-
ing the square functions are replaced by 2iM .

10.5. The double square function in rotated coordinates. Recall

R =
1√
2

(
1 1
−1 1

)
and L1, L2 non-singular matrices satisfying satisfying

(RL1)
−1 =

(
1 a
0 b

)

(RL2)
−1 =

(
c 1
d 0

)
.

Lemma 10.6. Let K, f be functions or distributions on R3 so K ∗ f
is defined, and let Kδ be K(x)δ(y), and δK δ(x)K(y). Then(

(Kδ) ∗ (f ◦ (RL1)
−1)
)
(RL1(x, y)) = ((Kδ) ∗ f)(x, y) (90)(

(δK) ∗ (f ◦ (RL2)
−1)
)
(RL2(x, y)) = ((Kδ) ∗ f)(x, y) (91)

Proof. We have∫
K(x′)δ(y′)f((x, y)− (RL1)

−1(x′, y′))

=

∫
K(x′)δ(y′)f(x− x′ − ay′, y − by′)dx′dy′

=

∫
K(x′)f(x− x′, y)dx′
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and ∫
δ(x′)K(y′)f((x, y)− (RL2)

−1(x′, y′))

=

∫
δ(x′)K(y′)f(x− cx′ − y′, y − x′)dx′dy′

=

∫
K(y′)f(x− y′, y)dy′.

□

This calculation also works if K is an l2 valued function, such as
−→
K .

Using this remark, we obtain

Lemma 10.7. Let
−→
K 1,

−→
K 2 as above. Let R be the linear transforma-

tion defined by (31)
Then

∥
−→
K 1,2(f ◦R−1)(R(x, y))∥Lp(dx)Lq(dy)l2 ≲ ∥f∥Lp(dx)Lq(dy). (92)

Proof. The proof uses only the invariance of Lp(dx)Lq(dy) under lower
triangular invertible matrices: ∥f∥Lp(dx)Lq(dy) = c∥f ◦L1∥Lp(dx)Lq(dy) and
(92) is equivalent to

∥
−→
K 1(f ◦ (RL1)

−1)(RL1(x, y))∥Lp(dxLq(dy)) ≲ ∥f∥Lp(dx)Lq(dy).

For
−→
K 1 we are convolving with

−→
K (x)δ(y). Using (90) we have

−→
K 1(f ◦ (RL1)

−1)(RL1(x, y)) =
−→
K 1(f)(x, y)

and we already know from Lemma 10.2 this is bounded on Lp(dx)Lq(dy).

The argument for
−→
K 2 is similar, but uses L2:

−→
K 2(f ◦ (RL2)

−1)(RL2(x, y))

=

∫ −→
K (x′)f(x− x′, y)dx′ =

−→
K 1(f)(x, y)

which is bounded on Lp(dx)Lq(dy), as in the previous case.
□

Next, recall
−→−→
K 1 defined by (87). The same proof as before gives

Lemma 10.8. Let 1 < p, q <∞. Then

∥
−→−→
K 1,2(

−→
f ◦R−1)(R(x, y))∥Lp(dx)Lq(dy)l2l2 ≲ ∥

−→
f ∥Lp(dx)Lq(dy)l2 (93)
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and, as a corollary,

∥
−→−→
K 1(

−→
K 2(f ◦R−1)(R(x, y))∥Lp(dx)Lq(dy)l2l2 ≲ ∥

−→
f ∥Lp(dx)Lq(dy)l2 (94)

(95)

or, equivalently,

∥(S1S2f) ◦R∥Lp(dx)Lq(dy)

= ∥

(
∞∑

k′,k′′=0

|f ∗ (ψk′δ) ∗ (δψk′′) ◦R|2
) 1

2

∥Lp(dx)Lq(dy) ≲ ∥f ◦R∥Lp(dx)Lq(dy).

In other words, we have the double square function estimate in x−y,
x+ y coordinates.
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