GLOBAL UNIFORM IN N ESTIMATES FOR
SOLUTIONS OF A SYSTEM OF
HARTREE-FOCK-BOGOLIUBOV TYPE IN THE CASE
b <1

J. CHONG, X. DONG, M. GRILLAKIS, M. MACHEDON, AND Z. ZHAO

ABSTRACT. We extend the results of the 2019 paper by the third
and fourth author globally in time. More precisely, we prove uni-
form in N estimates for the solutions ¢, A and I' of a coupled
system of Hartree-Fock—Bogoliubov type with interaction poten-
tial Viv(z — y) = N3u(NPVy((x — y)) with B8 < 1. The potential
satisfies some technical conditions, but is not small. The initial
conditions have finite energy and the “pair correlation” part sat-
isfies a smallness condition, but are otherwise general functions in
suitable Sobolev spaces, and the expected correlations in A de-
velop dynamically in time. The estimates are expected to improve
the Fock space bounds from the 2021 paper of the first and fifth
author. This will be addressed in a different paper.

1. INTRODUCTION

The general motivation for this paper is the evolution of N Bosons
under a mean-field Hamiltonian

where x; € R3, N is large and
Vn(z) = N3Fy(NPz)

and the potential v is discussed below. (The notation vy (z) will also be
used in sections 2-5 , with a different meaning.) The initial conditions
are (exactly or approximately) a tensor product ¢ ® -+ ® ¢.

The exact evolution of the system is approximated by a construc-
tion involving just two functions: the condensate ¢(t,x) and a pair
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excitation function k(t,z,y), and it is

Cappran = €~V NAG0) ~BHO)) (1)

where
Ag) = / dx {B(a)a, — dla)at} 2)

and e VNAW) ig 4 unitary operator on Fock space, the Weyl operator.
and

B(k) = %/dxdy {k(t, z,y)aza, — k(t, z,y)atal} . (3)
The unitary operator e®*) is the representation of an (infinite dimen-
sional) real symplectic matrix. Also, €2 is the vacuum. See for instance
[10] for background on this construction.

In order for tgpprer to be an approximation to the exact evolution,
¢ and k must satisfy certain PDEs. In the math literature, they were
introduced in [10] and independently and in a different context in [1].
They were studied in [11], [12], [5], as well as [2].

To write down the equations it is convenient to consider a self-adjoint
kernel

I(t,2,9) = 6(t, 2)(t,y) + - (ShOR) o sh(k)) (t,2,9) = . + T,

and a symmetric kernel

Atz y) = 6t 2)o(t, y) + %sh(zk)(t, y) = At A,

where
1 _
sh(k) ::k—i—?kokok—i—... ,
! .
ch(k) ::(5(;U—y)+§kok+...

The functions A and I' have the conceptual meaning of reduced density
matrices. Here, (uov)(z,y) = [u(z,2)v(z,y)dz). There are several
equivalent ways of expressing the equations. In this section we give a
compact, matrix formulation.

For the current paper we separate the condensate part from the pair
interaction part: define I', = ¢ ® ¢, A, = ¢ ® ¢, [, = +sh(k) o sh(k)
and A, = 55sh(2k). Also, denote p(t, z) = T'(t, z, x).

To write the Hartree-Fock-Bogoliubov equations in matrix notation,
define

1
N



GLOBAL ESTIMATES FOR HFB

where

Finally, let

-1 0
50 1)
where [ is the identity operator.

The evolution equations for £ and ¥ (for ¢ > 0, with initial condi-
tions at t = 0) are

20, — [A,5(x — 4)Ss, 9

— —[(Viv  p(t,2))0(a — )55, ] — [V ", 0 (@)

208 — [A,0(0 — )85, ¥ )
1 . 1

= —[(Viv x p)d(x — y) S, W] — =[S, VU] — [V, W] — (S5, Vi @)

In addition, the condensate ¢ satisfies

{fo- 2.} ot

. / dy {ox (s — )Ty 1)} o(1)
_ / dy{v (@1 — y)Ty(y, 21)6(y)
+ /dy{vzv(wl — y)Ap(21,) } o)
Here A*(z,y) = A(y,z), [A,B] = Ao B — BoA and Vy acts by

pointwise multiplication by Vi (x —y). We will write down these equa-

tions in scalar form later, see (67)-(70)). Also, we will write down a
simplified model at the end of the introduction.
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The arguments of this paper will involve non-local fractional time
derivatives, so the values of the solutions at negative times also matter.
It is convenient to replace (4), (5) by

%a@ — [A.6(x — 1) S3, ®] = h(t) x RHS(4) (6)

%at\p — [Az0(x —y)Ss, W] = h(t) x RHS(5) (7)

where h(t) is the characteristic function of [0, c0) and RHS(4) stands
for the right hand side of equation (4). This is the usual solution
one gets from Duhamel’s formula, and solutions to (4), (5) agree with
solutions to (6), (7) fot ¢ > 0, provided they have the same initial
conditions.

Next, we review the conserved quantities of these equations. See [10]
for details. The first conserved quantity is the total number of particles
(normalized by division by N):

tr{T(0)} = ot M7z + %Hsh(’f)(t’ Yoy =1 (8)

The second conserved quantity is the energy per particle

E(t) :=tr{V,, - V,[ (1)} + % /d:cldxz {VN(x1 - xz)IA(t,:vufw)\Q}
(9)
+ % / dx1dxy {VN(% ) (‘F@’xl’ xZ)V +D(t, 21, 20)L (2, xQ’x2)>}

—/dl’ldl’g {VN(ZL‘l—$2)|¢(t,l‘1)|2|¢(t,1‘2|2} .

The above holds for any Schwartz potential v. In addition, in order to
use the estimates of [5], we assume

v is spherically symmetric and (10)

v>0,veCT, —(r)<0.

5 =
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For the initial conditions, we assume there exist a constant C' (inde-
pendent of N) and a > % such that
w{r(0)} < C
E(0)<C (11)
{V2)*(V,)*T(0,2,y)| 12 < C (this follows from the previous condition,
and will be preserved by the time evolution)
(Vo) (V,)*A(0,2,y)||z2 < C (this will also be preserved by the time evolution
for all 3 < a < ayp for some o > %, as was shown in [5])
IV, 1I¥,1A(0, 2, )22 < CN.
The data is also assumed to be in a high H® space (but not uniformly
in N).

In addition, there will be a smallness assumption on the initial con-

ditions for the “pair” components of I' and A. Under the above as-

sumptions, the arguments of [5] imply that for all o > %, sufficiently

close to a > %7 there exists €3 > 0 such that

/||Vx|alvy|aAp(t,x,y)‘dedy < (12)

Nes

uniformly in ¢ and N. This follows by interpolating between (14) in [5]
and Theorem 1.2 in that paper.
In addition, we assume

(V) (V) Tp(0, ) 12 < % (13)

a is a number slightly bigger that %, to be chosen later.
Also, from Proposition 3.4 in [5] we have a Morawetz type estimate

(2, 2)ll2, S 1 (14)
while from conservation of energy and the trace theorem,

T (t, 2, 2)|| oo (@) £2(dw) S 1- (15)

In order to state the main result of this paper in the simplest possible
form, we define the following partial Strichartz norms:

[Alls.., (16)

= sup  [|A|lzewarLa(de) 2y
p,q admissible,

+  sup  [[Allzeanpagay) 2 (an)-

p,q admissible,
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Recall p, g are admissible in 3+ 1 dimensions if z%+§ =3 2<p< .

2 )
Thus

||A||Sz,y ~ ||A||L2(dt)L6(d:v)L2(dy) + ||A||L2(dt)L6(dy)L2(dx) + ||A||L°°(dt)L2(dacdy)-
The main result of this paper is

Theorem 1.1. Let A = Ay + A, I' = T', + I'. be solutions of (6),
(7) (or, equivalently, (67)-(70)), where the potential satisfies (10), and
the initial conditions satisfy (11) and (13). Then we have the a priori
estimates

<
T sy e oy . ey = € (17)
(18)

”v”yr”L8<dt>L°@(d(m—y))L%<d<az+y>) =
and thus also

14 Pl ato-i ey < © (19)

(In what follows, a > %, close to %, will be fized.)

Also, there exists Ny, and o > % and C' independent of N such that
||<vz>a<vy>aA||Sac,y + ||<v$>a<vy>ar”8x,y (20)

+ (V) “ Al L2ty 5 (da—1)) L2 () (21)
1
+ O T All L2 (ar) oo (d(a—y)) L2 (d(a-+9) (22)
+sup H‘V:E+y’aFHL2(dtd(x+y)) <C (23)
=y

for all N > Ny. In addition, if
V)™ (Vi) Vg PAO, ) 2+ [[(V2) (V) Vs PO, ) 2 < €
forallj=1,--- 70, then also
(V) (V) [ Vary P Alls,, + (V) (V) [Vary T s,
(V)™ Al 2ty 2 - L2

l .
+ O3V ey | All 2 ar) oo (da—y)) L2 (d(at9)

+ 8Up [ Variy 7T L2 (atd(+4)) < C.
z—y

The above hold for both the condensate and pair functions.

Remark 1.2. We don’t know if sup,_,, [[|Va1y|*T'l| 22 (dta(z+y)) can be re-
placed by the stronger norm |||V |*T'|| 2(4) Lo (d(—y)) L2 (d(241)) -

For a proof of (17) and (18) see Lemma 6.2. These estimates depend
on initial conditions of trace class (or in a Schatten space) and could
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not be true, even for a linear equation, with just H? initial conditions.
See [9], [8]
We also have a theorem for sh(2k) (without dividing it by N):

Theorem 1.3. Let A, T, ¢ be solutions of (6), (7), where the potential
satisfies (10) and the initial conditions satisfy (11) and (13). Assume
also that

Ish(2£)(0, -, )| 22 + || (sh(k) o sh(k))(0, -, )|z < C.
Then, for all N > Nqy (as in Theorem 1.1)
Ish(28) .., + [FBCR) o sh(k)]ls,,, < C'log N

Also, assume that for all j =1,--- | jo we have
190 PSh(2R)(0, - )52 + Vs GRER 0 8h(R))(0, -, ) 12 < C.
Then also
IV 0l sh(2R) s, + [V (GBTR) o sh(k))]ls.., < Clog N.

Remark 1.4. The above estimates also imply some estimates for sh(k).
In particular,

”Sh(k)HLp(dx)LQ(dy) S O||Sh(2k)||Lp(dr)L2(dy)- (24)
This is because sh(k) = 3sh(2k) o ch(k)~! and ch(k)~! has bounded

operator norm.

Finally, we also have estimates for ¢.
Define the standard Strichartz spaces

|olls = sup  ||9llLriarza(an)-

p,q admissible

Corollary 1.5. Under the assumptions of Theorem 1.1, and the ad-
ditional assumptions ||<V>a+]gb(t =0)||g2 < C forall j=0,1,---, o,
we have

(V) glls < C

We expect the above theorems to have immediate applications to
proving a global improved Fock space estimate. This will be addressed
in a different paper. We expect to be able to prove

[ esact(£) — Bappron (£)||7 = [[¢He™YNAGD) (=BEONQ _ oix(B)~VNAGD) ~BHOI |
CP(t)
<

= 1-8

N =2
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for a polynomial P(¢), and 0 < § < 1. Currently, the best bounds for
Ct
. See

growth in time for the above construction are of the form —5=
N2
6] for the proof and background material.

Finally, we mention the difficulties surrounding equations (4), (5).

Denote
B 10

= —-A,—A

S i 0t * v
10

Si—za—Ax—{—Ay.

Schematically, treating Vy as d and ignoring constants, the equations
become

SA, =T(t,z,2)A(t, z,y)} + Ap(t, z, x)Te(t, 2, y)
Si.=T(t,x,x)l.(t,x,y)} + Ap(t, x,2)A(t, 2, y)

SA, + %AP =D(t,z,2)Ap(t, z,y)} + Ap(t, 2, 2)0 (8, 2, y) — %AC

+ A(t,z,2)Tp(t, 2, y)

S:i:rp - F(tu l’, Z)’J)Fp(t, l’, y) + Ap(ta ZL‘, x>AP(t7 ZL’, y) + ]\c(t’ ZE, x)Ap(ta CL’, y)

Our method for treating the nonlinear terms requires (roughly) Strichartz
estimates for |Vx\%\vy|%Ap or e ]V:c]% |Vy|%Fp ore- But if we apply ]Vx]% ]Vy|%
to the forcing term VWNAC in the equation for A,, we get a singularity

which approached §(z—y)A. which cannot be treated by standard X 2
type techniques.

1.6. Acknowledgment. The second and third authors thank Daniel
Tataru for the suggestion that the resulting singularities mentioned
above are sufficiently special that they can be treated by other methods
[20]. Also, we thank Xiaoqi Huang for suggesting several improvements
to this paper. He is currently working on extending our current results
to the case g = 1.

J. Chong was supported by the NSF through the RTG grant DMS-
RTG 1840314. Z. Zhao was partially supported by the NSF grant of
China (No. 12101046) and the Beijing Institute of Technology Research
Fund Program for Young Scholars.

2. STATEMENT OF THE MAIN LINEAR ESTIMATES

Let z,y € R3 recall S = %%—Am—Ay and h(t) denotes the Heaviside
function. Consider the equation
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SA(t,z,y) = h(t) (N?’ﬁlv(Nﬁ(x — At x,y) + G(t,x,y)

+ N3 (NP(x — y)H(t, 2, y)) (25)

for 0 < f < 1 with v is Schwartz.
Recall the definition of S, , from (16). Also define the full Strichartz
norm (including LP(dt)LI(d(x — y))L*(d(z +y)) )

[Alls (26)

= sup [ Al LrgaLa(an) 22 ay)
p,q admissible

+  sup Al zeana(ay) 22 de)

p,q admissible

+  sup  [[Allze(an Lod@—y) L2 (d(aty)
p,q admissible

and the restricted dual Strichartz norm , excluding the end-points p’ =
2, p/ = 1: let p; large and pg > 2 but close to 2 as above, and define

HGH& = v admissi})lrgpl 2p2p0>2{”GHLP' (dt) LY (dz) L2 (dy)> 1G]l e (dt)Lq'(dy)LQ(dx)}'
The reason for excluding p’ = 2 is that we don’t know if we can flip x
and y in the double end-point case in Theorem 4.1. The reason p’ = 11is
excluded is the failure of sharp Sobolev estimates in L', see for instance
the proof of Lemma 4.6.

Finally, define the “collapsing norms”

[Alcottapsing = HAHL°°(d(zfy))LQ(dt)LQ(d(m+y))'

We will also use the stronger n‘orms HAHL2 (d6) Lo (d(—y)) L2 (d(x-t)) For the
reason we don’t work only with this stronger norm see the comments
regarding (65). For the reason we don’t work only with the collapsing
norms, see Remark (6.3).

The simplest form of our theorem is

Theorem 2.1. Let A satisfy (25), assume v is Schwartz. Let0 < < 1
and o > 1 is sufficiently close to & (so that (28)-(30) hold). Then there
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exists € > 0 (depending on 3 < 1) such that, for N sufficiently large,
[(V=)" (V)" A

Sa,y + H<Vx+y>aA"LQ(dt)LOO(d(x—y))LQ(d(x-i-y))

1
+ H }at| ! AHL2(dt)Loo(d(x—y))L2(d(x+y))
S V) (V) Clls, + N V) (Vo) " H | oy ooy ooy
1 . o
+ NﬁEH }at| 4HHcollapsing +N H <vw+y> HHcollapsing

+[1(Va) (V)" Ao -

Remark 2.2. Notice that the LHS involves the stronger norm
L*(dt)L>=(d(z — y))L*(d(z + y)) , while the RHS has the weaker “col-
lapsing” norm L>®(d(z — y))L?(dt)L?(d(z + y)).

We first reduce the proof to v compactly supported. Let 0 < € <<
1 — B to be chosen below. Start with v € § and ¢ € C§°, supported

in a ball of radius %, and g@ = 1 on a neighborhood of 0 and define
£

Umain a0d vy (depending on N) by Opain = 17(5)172 ( N
(&) <1 —121( 3 )> Since v is Schwartz, for any p, |§C“D£B€;tm-l(§)] <

G
CpasN7P. Thus we also have |22 D5v;,(z)| < CpasN 7P (with a dif-
ferent C, 4 3, of course).

In all calculations that follow, N**~tv,;(N?(z — y)) and its deriva-
tives can be treated as error terms.

It is also simpler to change the notation to M = N®*¢. Then the
Fourier transform of vpaim (N2x) is 9(-<55 )0 (#) and is supported in

NP
€| < 42, Also, define

) and @tail =

vpr(x) = N3P (NPg)
v (z) = N 00 (NP 2)
v3,(x) = N (NP2)

This definition simplifies the notation during the proof of the main
linear theorem (up to section 5). When we deal with the nonlinear
equations (starting with section 6) we will use the notation Vy(z) =
N38y(NPx).
Thus v}, () is slightly less singular than M?v(Mz) as M — oo, and
M

its Fourier transform is supported in |§] < 75, while

(V) visller < CrpN 71 (27)

for any 1 < p < oo, n > 0. The reader willing to assume v is compactly
supported in a small neighborhood of 0 can take M = N.
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1

At this stage we also choose o > 3, a number 14 (slightly bigger

than 1), a number g—l— (slightly bigger than §+) and also €y > 0 so that
Jobll 5 S M (28)

<V >*uyll e S MO oyl o S M

L5+ ~
«@ 2
IVN(V)  vigllrs + (V) vhgll ors (29)
SVNMA o [| s 4+ Mo [| e S M. (30)

The above are also true for v3,, with a bound of M~ on the right hand
side, for any n.

All the implicit constants in < depend on § < 1, (which determines
the numbers «, &y, €, 1+, g—l— described above), and the exponents
p1, po defining and S, but are independent of N (for N large).

3. ESTIMATES IN ROTATED COORDINATES

In order to prove Theorem 2.1 we will need to adapt standard Sobolev,
Bernstein, square function and maximal function estimates to rotated
coordinates.

The argument is based on the following lemma:

Lemma 3.1. Let

-5 )

(where 1 stands for the 3x3 identity matriz) so that || foR|| 1r(dz)La(dy) =

|l 2o (de—y) Lad@ry)) - Let K be a distribution (possibly I* valued') act-
ing in the x variable, and denote K6 = K(x)d(y) and 0K = §(z) K (y)

(tensor products). Assume the following estimate holds, for some 1 <
b1,D2,4 S (S Oh

[(K6) * fllzo (@zyraay) S 1 f1lr2 (de)Laay)
Then
[(K0) * fllzes de—y)zadary)) S 1 lLvz(@@—y))La(dary))

or, equivalently

| ((K68) % (f o R™)) o Rl| o (dwyrady) S 1f Nl w2 doyLa(ay) (32)
Also,

[(OF) * fl Lot (dw—y))La(dtary)) S 1 ILe2 (@@—y))Lo(d(aty))

'In this case, LP' (dz)L9(dy) is replaced by LP'(dx)L9(dy)I?.
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or, equivalently
| ((6K) * (f o R™)) o Rl| w1 (awyra(ay) S I1f w2 (dw)paay) - (33)

Proof. In order to prove (32) we use a nonsingular lower triangular
matrix L; such that

o= (5 1) (34)

Using the invariance of LP'(dx)L4(dy) under transformations given by
lower triangular matrices, (32) is equivalent to

| ((K8)  (f o (RL1)™)) (RLy(2, y)) || o1 (doyLa(ay) S |1 Le2 (d) Lo (ay)

but, by direct calculation (see Lemma 10.6 in the appendix),

((B0) * (f o (RL1)™)) (RLi(2,y)) = ((K06) * f) (=, y).

In order to prove (33) we use the same argument, based on a nonsin-
gular lower triangular matrix Ly such that

_ c 1
)= (5 ) (35)
and the calculation

((0F) * (f o (RL2)™)) (RLa(,y)) = ((K0) * f)(x,y).

A first consequence is the “Sobolev at an angle” estimate

Lemma 3.2. Let a > 0, 1 < p,q, < 0o and assume the Sobolev esti-
mate |[ullzoazy S (V)" || za(ar) holds. Then

ANl 2o (@@ —v)) 22 (d(a+v))

< min{ (V) All naage—y)) 22 d@to) | <Vy>aA||Lq(d<xy))L?(d(Hy))}( )
36

and also
HA”LP(dx)LZ(dy) S ||<Vx+y>aA||LQ(dw))L2(dy)'

Proof. This follows by using K the kernel of (V) ".
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Another consequence is Bernstein’s inequality in rotated coordinates.
Recall the standard Littlewood-Paley decomposition. Let ¢(z) such

that ¢ € C2° and ¢(€) = 1in |€] < 1, (€) = 0 in €] > 2. Define ¢
for k > 0 by ¢r(€) = (%) and denote

2k
Pej<or [ = [ * oy,

so that the inverse Fourier transform of (ﬁ( =) fis P‘£|<2k f.

Next, let ¢ = ¢ and define 1 for k > 1 by (&) = d(&) — d(5

We also denote

)

Bejmar [ = [ x4y,
and note that ZZ:O Up(€) = gzg(é) and

l
S frvn— f (37)
k=0

in all L? spaces (1 < p < o0).
More generally, sometimes we will denote by ¢.(£) = w(z%) for k > 1

and any 1@ € C5°(R?), vanishing on a neighborhood of 0. ¢ = 1)y will
only be required to have C§° Fourier transform. In that case (37) will

not be true, but the Bernstein and square function estimates listed
below still hold.
The classical Bernstein inequalities are

| <V > (% * )| o) S 2% 0k * £l o a)
| <V > (% f)llzogas) ~ 2% tor * flle@e) (ifk > 1)

(a > 0,1 <p < o0). See, for instance, [18]. The (elementary) proof
immediately implies (for 1 < p,q < 00)

| < Vo> ((0r0) * f)||Lr(dz)rady) S < 29| (¢r6) * fll v (axyzaay)
| < Vi > (Wk0) * )| Lo(ayracay) ~ 2** | (Wk0) * [ o (de) La(ay)-

Using Lemma 3.1 we get

Lemma 3.3. The following estimates hold

| < Vi > ((90) * f)|| 1o (d(e—y) La(d(aty) 5 2“'“H(¢k<5) * [l e (@@—y)) Lo (@)
| < Vy > ((66%) * )| 1r@@—y) L@ty S 2°F1(60n) * fll Loda—y)) Lo @@ry)
| < Vo > ((¥r0) * f)|l oago—y)racacry) ~ 2% (W08) * |l 2o(a@—y)) 29(d@+v))
I < Vy > ((00k) * f)|| Loty zaaay ~ 221 (08k) * fll oo(de—y) La(de+v)
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Finally, we state two square function estimates. For a function de-
pending only on z, the classical estimate is (for 1 < p < o0)

1
[ee] 2
H (Z vwﬁ) o) ~ |1F 1)
k=0

The proof can be modified to apply to L? valued functions and we have

Lemma 3.4. Let 1 < p < oo . Define F (P|§_77|N2kf) = f(f,n)@/} (5;—;7)

for k > 1 and F (Pe_yno f) = FE,m)d(E—n). Then the following
estimate holds (for functions which also depend on t)

00 2
| (Z |P|§—n~2kf)|2> | Lo (d(@—y)) L2 (@d@t)dt) ~ |1 Lrd@—y) L2 (daty)dt) -
k=0

The proof is the same as the standard square function estimate.
Also, we have a result for a “double square function” in rotated
coordinates:

Lemma 3.5. Let 1 < p < oo . Then the following estimate holds

1

o} 2
| ( IREICTOR (51/11«/)\2) | Lo (de—y) L2(d@+y)) ~ 1 |-y 2@ y)-

k',k"=0

Proof. For < see Lemma 10.8 in the Appendix. The opposite inequality
is a standard duality argument. U

4. PRELIMINARY ESTIMATES FOR SOLUTIONS TO THE LINEAR
SCHRODINGER EQUATION

We will use the following Strichartz estimate (proved in Theorem
24,25 of [5] ). In 6 + 1 dimensions,

Theorem 4.1. Let Su= f+ g, u(0,-) = ug. Then

lulls < o+ gl + o2

“fHL?(dt)Lg(d(wy))L?(d(ery

In the applications that follow, u will be A (or A, or A, or suitable
fractional derivatives of A), f will be vy(z — y)A(x,y) (or suitable
derivatives) and g will be G (or suitable derivatives).

After our paper [5] was published, we learned about [13] which con-
tains closely related results (proved with different methods).

Remark 4.2. Another way of obtaining Strichartz estimates on the LHS
will be given in Propositions 4.7, 4.8 below.
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Using Theorem 4.1 and Lemma 3.2, we can get a (non-sharp) col-
lapsing estimate.

Lemma 4.3. If Su= f+ g, u(0,-) = up, and let a > % Then
|| £2 () Lo (d(w—y)) L2 (d(+)
S [[(Va)" Pl a2 e 2 aessy T 1KVe) " 9llse + (V) toll 2,
ICV) " Il 228 (a2 atosyy T 1Y) 9 llsy + (V) ol 2.}
Proof.
1ll 22ty o= (e 22y S (V) “ll 2200y 15 () 22 (a4 )

N “<Vz>afHL2(dt)L%(d(m—y))LQ(d(Hy))
+[{Va) glls, + (V) “uoll 2,
and, of course, <Vz>a can be replaced by <Vy>a.

We record that the above implies
Lemma 4.4. If Su = f+ g, u(0,-) = ug. Then

(Vo) ull L2ty Lo (- L2 dtar)) + 11V o) " Ull L2(a0) L% (da—p)) L2 (d(a49)

S IV V) I aani eyt T KV (Vo) s
+ (Vo) (V) uol| 2.
We will also need

Lemma 4.5. If Su= f + g, u(0,:) = ug. Then

1{V y) " ull L2 61 Lo (d(a—9)) L2 d(a-41)

N H<Vx>a<vy>af”L2(dt)Lg(d(acfy))L2(d(:v+y)) (V=) (V) gl
+ (V) (V) o]l 2

Proof. The estimate for the homogeneous equation follows from stan-
dard Strichartz estimates and “Sobolev at an angle”, as in the proof
for the inhomogeneous estimate. Thus we can assume uy = 0. Let
u = ka,zo up i be a “double” Littlewood-Paley decomposition v =
u * (P0) * (0¢y) (see Lemma 3.5) so that (€, n) is supported in
€| ~ 28 || ~ 2¥" if k, k' > 1. We only treat the sum over k < k' with
k' > 1 (so x corresponds to the “low” frequency), the remaining part
being similar. We use the standard procedure of reducing a Strichartz
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estimate to a frequency localized estimate, but in the context of mixed

coordinates.

We have

(Vg " ull 22 01 Lo (d(a—9)) L2 (A4

S I(Vasry)" (Vi) tlll 2@y Loy 2oy (Lemma 3.2)
= (Vo) (V)" D a2y a2 ae-v))
0<k<k’
%
S ‘ ( Z (Vi) (Vo) g 2) (square function estimate)
0<k<K L2(dt) L9 (d(z—y))L?(d(z+y))
1
2 3
< Z <Vx+y>"<vm>°“uk,k, > (Minkowski)
0<k<K L2(dt) LS (d(z—y))L?(d(z+y))
2 3
- Z <Vz+y> <Vw> Ble yn<ow Uk >
0<k<k’ L2(dt)LO(d(z—y))L?(d(z+y))
1
2 2
S Z 2k/a<vx>auk,k’ ) (Plancherel)
0<k<k’ L2(dt) LS (d(z—y))L2(d(z+y))
1
2 2
S Z (Vo) (V) g ) (Lemma 3.3 )
0<k<k' L2(dt) LS (d(z—y)) L?(d(z+y))
2 2
(2 ey )
0<k<Kk L5 (d(z—y))L?(d(z+y))
+( AR ) (Thm. 4.1)
0<k<k’
(g o) ...
0<k<k/ L2(dt) L5 (d(z—y))L?(d(z+y))
+ H ( Z (V) (V)" groe ) (Minkowski)
0<k<k’

S VL)V, fHL?(dt (o ))L2(d($+y))+|\< =) (V) glls, (square function estimate).

4
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Lemma 4.6. Let Su= f + g, u(0,-) = ug, and let % < «. Then

1 «@ «@
192l 2@y 2o ata—sn 22(at@) S NEV) (V)" Pl oy 18 ey et
(38)

+ (V) (V) sy + 1{Va) " (Vy) “uol| 2

Proof. The estimate for the homogeneous equation follows from Strichartz
estimates and the fact that || = |{*> 4+ |n|* on the Fourier support
of u, so we can assume ug = 0. Let u = sz’k/zo uy i be a "double”
Littlewood-Paley decomposition u = ws (10)* (01 ) so that @y (£, 1)

is supported in |£| ~ 2%, |n| ~ 2¥ if k, k" > 1. The proof of (38) will
use two additional numbers o/, o satisfying % <o <ad’ < a. Start
by fixing % < o < a. We will prove the frequency localized estimate

1
11067 wk || L2 at) L% (-9 22 d ) (39)

SICVe)" (V)" P a8 ooty 1(V)™ (V)™ gl

Summing the pieces will be easy because o’ < «a. To prove (39),
assume, without loss of generality, 1 < k < k'.

Now we localize uj s in 7. This changes the initial conditions, but
in a controlled way. From Theorem 4.1 we have

(723 (7)™t ey 2t
SV V) il a8 ey zcaosy + 1V (Vi)™ gl

Since B i q9922¢ acts by convolution in time with a function which is
in L' uniformly in &', we also have

(V) (V) Py cxpnzmw e (0, -, ) | )
SV (V)" Ferl o agomyzaery T IV (V)™ gl

We have

SP 1 c10022w Uk e = Pirj 0022 frekr + Prci0022 Gr b
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with initial conditions as discussed above. Using Lemma 3.3 we get

10013 Py 100 220 kot || 2ty Lo (o)) L2 )

S 2% 1Py cso0am e 2y = e 2o 1)
SI(Vy) : Pir | 100224 Weyk || L2(dt) Lo (d(w—y)) L2 (d(+1)
S IV (V)™ ik s ey o)

+ H<Vx>al<vy>a/9k,k'\|s;-

(See Lemma 4.4.)
Next, consider

SPT\>10022k’Uk,k’ = P|T\>10022k’ Jiw + P|T|>10022k/9k,k’

and 2* (the frequency of x) is less than 2* (the frequency of y).
Call either function on the RHS BT|>1002gkr hi. The point is that

S~ <8t> is an elliptic operator on the Fourier support of u; s/, and, at

the level of symbols and on L?(dtdzdy), <8t> > <Vy>2 > <Vx>2.
Let 3 < o < o < a, with o to be chosen later (the choice will be
’ %+2a”

o/ = 2—=—). Using Lemma 3.2,

(a0 B 5100 226 W | L2y L% (d 0 —y)) L2 (d(+1)

S ||<at>i<v50>3alP\T|>10022’f’uk7k’||L2(dtdxdy)

< IO (V) S Py ot 2y

= ”<at>_%<Vx>3alp|f|>1oozzk’hk,k/HLQ(dtdxdy)

=l <<at>_i<vm>3a/_2a”> (Vo) (V)™ Prrpsrooanw hae L2 ey

_1 o o
§||<at> 2<Vw> <Vy> P\r|>10022k’hk,k’||L2(dtdxdy)

_1 /_ 17
since the choice of o insures 3o’ — 2" = % so that <8t> 4 <Vx>3a 2
is bounded on L? on the Fourier support of P 100220 Tk -
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By applying Sobolev estimates in ¢t or x, y or x — y , and recalling

() 2 (V2 (T, (3) = (Tay v gt
||<3t>_§<Vx>aﬂ<Vy>aﬁpﬂ>10022k’hkak’||L2(dtdmdy)

< min {H<Vz>au<vy>anplr>10022k’ hi e lls.

H<V > <Vy> P|T|>10022’“’hk k/“L? (dt) L8 (d(z— y))LQ(d(a:—&-y))}

Recalling the definition of hj s the above is dominated by

V) (V)" Prrooasss fuwell | HI{V)™ (V)™ Prpsronzow gnels;

L2(dt)L5 (d(z—y)) L2 (d(z+y))

To sum the pieces, use o’ < «.. For instance,

k; H<Vm>a <Vy>a f’ka’HLZ(dt)L%(d(z—y))L"’(d(Hy))

Z ANV (V) (F 5 (0k0) 5 (58D o sy 1.8 syl
k,k'=

5 Skukl? ||< $> <vy> * (77Z)k ) (5¢k/)||L2(dt Lg(d( ))LQ(d(x—i-y))

S <v27>0l<vy>0lf||L2(dt)Lg (d(z—y)) L (d(z+y))”

Next, we prove a frequency localized sharp result.
Proposition 4.7. Let
Sup = fi

with 0 initial conditions, and assume uy (and thus also fy) is supported,
in Fourier space, at |& —n| ~ 2%, Then

ks, v o~ |||Vﬂc+y| kaLl d(z—y))L2(dt) L2(d(z+y)) + HI&:\ kaLl(d (z—y))L2(dt) L2(d(z+y))’
Proof. As we did earlier, we decompose uj, = uj + u2 + u}, where
Suj, =

P10\T|%z2k fx == fi with initial conditions 0

Fu? — F( 10|T\2<2kf’“)
C TR+ P

Suj = 0, a correction so that uj + u} has initial conditions 0.

(this no longer has initial conditions 0)
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For u;, the argument is based on the Strichartz and Sobolev estimates
at fixed frequency:

lwills S 1 ell 2 a8 e z2caersy S Wl L8 eogyyz2can 2o

S MNVal? Fll it ae-spzzan ) S 221 £ ate—y 20 2 )
S 1007 £l o2 @@y

S 1186 Frll 2 i) 22 () 22 )

We used Plancherel and the Fourier support of f.
For u?, the denominator is comparable with [€ — n|?> + |€ + n|> >
228 >100|7], and

_3 1
il 2 (atdzdyy S MVa—yl ™2 1 Varyl ™2 fill L2(dtdnay)
and
_3 1
|Hv9€+y’ui”L2(dtdwdy) 5 |Hvx—y’ 2 |vx+y’2fk”L2(dtd:cdy)

1
S MV aiy 2 frll 2 @@—v)) 22 (dtd(@tv)) -

Thus, using Lemma 3.2 (Sobolev estimates at an angle) we have
||Ui||L2(dt)L6(dx)L2(dy) + ||ui||L2(dt)L6(dy)L2(d:c) Sl |vx+y|ui”L2(dtdmdy)
S Va2 fill oz atdtos- (40)
Similarly, we have
10412} 2oy S IV amy |2 10U Fill 2t

1
S |||8t|4fk||L1(d(x—y))L2(dtd(J:+y))'

Unfortunately, the desired L>(dt) Sobolev estimate is false, so we pro-
ceed slightly differently:

1 ~
<273 1!TI%Iﬁ—Wffg\fk’dTHm(dsdn)

[ || oo (aty 12 (dway) T
re[-22k 224 |74

1 37
ST = 0|72 | frll L2 (re =22k 228 aean))

_3 1 1
= ||| Vaey|2|0| * fill r2(atdway) S 1|0 Full L1 dto—y))r2(dtd(ars)) -
Finally, by interpolation,

HUiHSM N HUiHB(dt)LG(d:p)L?(dy) + HquLQ(dt)LG(dy)LQ(dz) + |uiHL°°(dt)L2(dxdy)

and we get the desired result for u7. Since |[ui(t = 0)||z2 = |Jui(t =

0)|| 2, the result for u3 is trivial.
0
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We also record the following version:
Proposition 4.8. Let
Su= N*v(N(x —y)A := f

with 0 initial conditions and v € S.

||u||g” S log N (||<vz+y>%AHcollapsing + H|at|iAHcollapsing) :
The same result holds for the equation
Su = Pj<ar Py<ar (N*o(N(z = y)A)
for all M > 0, with implicit constants independent of M.
(see (41) for the definition of Pej<nsPyj<nr).

Proof. First we consider P¢_,~nu, and in this case we get the result
without a log. In that case

<
||u||Szy ~ ||f||L2 dt L5(d(:p y))L2( (r+y)) N2 ”AHCOUGPSWQ

If we localize to the region where |7|2 +[€ 47| > & the result follows

from Plancherel. Thus we can assume @ is supported in |7]2 + € +7] <
X, 1€ —n| > N and in particular we can solve S by dividing by the
symbol, as in the previous proof. Let u; be the solution (which differs
from u by a solution to the homogeneous equation). Then we get

el S 373111 S At
and also
||U1HL2 dt) L6 (dz) L2 (dy) T |1 || 2@y 28 (dy) 2 (de) S N1 Veryltr ]| 22 (atdzay)
S \/—HIwalAHcouapsmgN [\ XY —

and also, using Cauchy-Schwartz in T,

ettty oy < | /
N?] IT

1
S \/NHHT|Z|u1HLQ(Te[fN?,NQ]d(&dn)) < 10| * Allcotiapsing-

Next, we consider Pe_,j«nu = Ple_yj<1t+ Y Ple_yw2iu where the sum
has about log NV terms. Proposition 4.7 applies to each term, and the
result follows.

T 7| ’u1|dTHL2 (dedn)

O



22 J. CHONG, X. DONG, M. GRILLAKIS, M. MACHEDON, AND Z. ZHAO

5. PROOF OF THEOREM 2.1

Recall the “projections” P~y and Py by

F (Pe<urh) (§:m) = (E) FA(E,n) (41)

and P¢sy = 1 — Pg<pr. The function ngS is a Cg° function (which can
change from line to line).

Here F denotes the Fourier transform. These multipliers are bounded
on Li(dz)L*(dy), LY(dy)L*(dz) and Li(d(z — y))L*(d(z + y)) for 1 <
q < oo (uniformly in M). Also, we adopt the convention that P and ¢
may change from line to line.

We have to show: If h(t) is the Heaviside function and
SA(t, 2, ) = h(1) (N%-lv(Nﬂ(x — )AL, y) + Gt 2, y)

+ N3 (NP(x — y))H (t, y))

then
(V)" (V) A

+ |Hvz+y| AHL2 dt) L (d(z—y)) L2(d(z+y))

Say

+ H }at| 4 AHLQ(dt)L<>O (d(z—y))L2(d(z+y))
S V) (V) Gl s, + NCVa) (Vo) H| gy o aomsyy 2 o

1
+ N_EH }8t| 4H||L°°(d(x—y))LQ(dt)LQ(d(:c+y))

+ N_EH }vg”"‘y|aHHLoo(d(x—y))LQ(dt)LQ(d(x-i-y))
+ (V)" (V) Bol[ 2

and N*~1y(NP(z — y) is denoted by vy (x — ), and M is of the form
N for some small € > 0.

Before starting the proof we remark that we have the following
Strichartz estimate (see Theorem 4.1)

HAHL2(dt)LG(d(z—y))LZ(d(x+y)) 5 HUM(x - y)AHL2(dt)L%(d(z—y))L2(d(m+y))
+ HUM(SC

- y)HHL2(dt)L%(d(a:—y))LQ(d(;v—i-y)) + ||GH$; + HA0||L2'
Using Holder’s inequality and the fact that [loyll 3 = O(M™®) as

M — oo (see (28)) we can treat the potential term as a perturbation
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and get

1Alls < 8ol + llons(z — 1) H] L +IGHs (42)

L2(dt) L8 (d(a—y)) L2 (d(z+y
S Aol 2 + M HI| L2(at) 18 (d(w—y)) L2 (d(a+y)) T |G| s2-

We can do the same after taking |V,|*, but we need a suitable Leibniz
rule. Using the outline of [7], [15]. [19], it is possible to prove

Theorem 5.1. Let o, 5 > 0. Let f(z,y) = v(x —y) withv € S. Then

|||Vx|a|vy|ﬂ (f(fﬂa y)g(x, y)) ||Lr(d(z—y))L2(d(x+y))

S < Ve > 0l gl 2o (ate—y) 22(da+9))

| < Ve >0l || < Vy > gll oz (ae—y) 2 (ae1))
+ 1 < Vy > 0l < Vo > gll o da—y) 2210
+ [[vllzea || < Vi >< Vy > gl posaay)) 22 (dta+9))

(% = I%—i—i, 1 <7, pi,q < o0). In addition, if O is supported in |&| < 1—]%
and §(&,m) is supported in |&| > 10M, then the |V.|* derivatives only
fall on g and we have

11Vl IVl (f (2, 9)9(z, 9)) || L (da—y)) L2 d(a+))
S < Vy > 0lles | < Vi > gl 2es (@o—y)r2(d+v)
+ [[ollzeall < Vo >*< Vy > gll Las @@y 22(d(+4))-

However, for our purposes it is enough to use the following version,
which is easier to prove. We thank Xiaoqi Huang for suggesting this
approach.

Theorem 5.2. Let o, § > 0. Let vy as above with Uy is supported in

€] < I—Ag, and let%:%—ké, 1<rpqg<oo. Then

11Vl (var(z = 9)9(2,9)) || L (dge—y) L2 (d1y)) (43)
S M oarll gl Lo (@@—y)) 22 (d(+9)) (44)
+ lloallze | < Ve > gll Lo (e —y) 22 da 1)) (45)

and similarly for |V, |*. Also, zf% =

1 1
_E_}_Z; 1<T7pi7Qi<OO;
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1IV2l*Vy|? (var(x = 9)) Puise9(2,9)) @@y z2@@ry)  (46)

< M arlleo 1V 1P g1l por (ae—y) 2 (d(19) (47)
+ [[ollze2 || < Vo >*< Vy >P gl o2 @@y 22(d(0+9)) (48)
and also

IVl *V |7 (var (2 = 9)) Pojers Pj<amrg (2, 9)) | ae—y)) 22 (e +9))
< MO ol pos || gl| Las (do—y)) 22 (d(w)) - (49)

Proof. We use standard Littlewood-Paley operators Pejwoins, Plej<oin-
In the name of simplicity of notation, we allow the implicit constants
in ~, < to be different in different instances. However, the modified
projections will be denoted by P. Thus, for instance, 35|N2iMP|§|N21M =
Plejmaing- Also, we use the notation |V|* Pl oinig = (2iM)°‘]5|§|N2ng.
In the first instance, the multiplier is of the form w(%) with ¢ €
CP(R™), ¥(§) = 0 in a neighborhood of 0. In the second case, v
is replaced by [£]“(€) which has the same properties. When P is
further modified, it is still denoted P. This is the convention used
in [15]. Finally, denote |V|*Pg<prg = M*Pg<mg, where the exact
definition of P is seen on the Fourier transform side. The corresponding
multiplier is not smooth near 0, but the corresponding kernel is in L.
After the modifications described above, the identity g = 15|£\5 vy +
Pyl p|£|,\,2i umg is no longer true. Square function estimates have to
be used instead, and the square function operators constructed using
15|§|N2¢ » have the same mapping properties as those using Plejwoi -
For (43), decompose g = Pej<mg + Pej>nmg. Arguing as in the proof

of Bernstein’s inequality,
Vol (vnr(z = y) Pej<mg(2,9)) = [Val* Pejn (vm(z — ) Pej<arg(,y))
= M®Pezn (vm(x — y) Pgemg(,y)) -
Since Pgj<ps is given by convolution with a kernel which is in L'(dz)
uniformly in M,

1Pe<ar (031 (@ = v) Pei<arg (%, 9)) Il a(e—y) £2(a(a+0))

S lloa (@ — y) P« 9(2, 9) | Lr (d(a—y)) 22 (d(atv))

S loaller gl e ey 22 @@ o))

Fo'r Pe>m9, decompose it as Pejsarg = > oo q Pejaineg. Then [V|* (UM($ — y)H£|N2ng) =
(2'M)* Pgjains (var (2 = ) Pgjoringg).
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Proving the estimate by duality involves using a test function H with
HHHLT’ (dx)Lz(dy) =1 and looking at

/ V" (0ar( — 9) Pegoarg () bz, y)ddy (50)

Wlth h = H (0] R_l, or HhHLT/(d(mfy))L2(d(x+y)) =1 We have

1(50)] = \ [owta—v Z(TM)an.NQngPQNW-Mh‘

1 1
/|UM T - (Z| (2'M P|§\~2ng|2)2 (Z |15|5|~2Z‘Mh|2>2
(D12 M) Pyl

(Z | Pgaiarh]’ D

" (d(z—y) )LQ( (z+y))
<Z Hvx‘ap|£|~2ng|2) :
(Z|P|£|~21Mh1 D

S loallpo [| < Vo > gl Ln @y 2 @) 12l £ (@@ -y 200 +9))

< lvarllze

L91 (d(z—y)) L2(d(z+y))

S Jvarllze

L9 (d(z—y))L*(d(z+y))

L7 (d(z—y)) L2 (d(z+y))

This uses the square function estimate in rotated coordinates.
For (46), let % = pil—i—qil, 1 <7, p1,q1 < oo. Then, use the same dual-

ity argument as in the previous proof. with [|A[| .7 4, y)r2(d(ery)) = 1-
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The bound (47) corresponds to

V211V 17 (0ar(z = 4)) Pejerr P> 1192, 9)) L (do—y)) 22(d(a-41)

> PyroarPesu (MD‘UM(%‘ — ) Pej<rs (2"M)° Pyjzineg (@, y))

i=1

L7 (d(z—y))L?(d(z+y))

B / > By Bezu (M%M(x — ) Pej<ar(2' M)’ Pyjoinrg y)) "
=1

= /Z <M%M($ - y))P|s<M(2iM)ﬁP|n|~2iM9(%y)>15|n~2iMpa|5Mh'
=1
i=1

s 3
< /|M%M(9€ —y))| (Z |P£|<M(2iM>ﬁPnl~2"Mg|2>

%
X (Z |pn|~2"Mp|§|§Mh|2>

=1

N|=

g (Z |P5|<M|vy|ﬁf5m~wg|2>
i=1 L (d(z—y)) L2 (d(z+y))
o0 3
H (Z |Pn|~2iMP|£|5Mh|2>
i=1 L™ (d(z—y)) L (d(z+y))

and the last factor is < 1.
The bound (48) corresponds to

11Vl *1Vy 17 (var(z = 4)) P ar P> 119(2, 9)) |2 (do—y)) L2 (d(a+9)

S Noatllzez 11Vl * Vi P gl Lo (a—y)) L2 (a@10)) -

To prove this, do a double Littlewood-Paley decomposition P¢s s Pyjsarg =
Yoy Zj; Pipj~2i v Plpj~2i g and proceed as before, using “double square
function estimates in rotated coordinates”, Lemma 10.8. Finally, the
bound (49) follows from Bernstein’s inequality.

O
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Continuing with the comments preceding the proof of Theorem 2.1,

11V ]* Al L2(at) L6 (d(@—)) 2(d(a-+1)

S MO loarll ¢ Al 22 ) Lo (a@—y)) L2 (@(a+9))
+ MJoall g [1H 1] L2 at Lo (aa—y) 22 (d(a-+1)
+ lloarll 5 1{Va) " All L2(at) 6 () 22 A2 +0))
+ lloall 3 1(Va) ™ H | 22 (at) 16 (a9 22 1))
+ (V)" Glls; + 11{Va)" Aol 22

Using the “Sobolev at an angle” estimate (Lemma 3.2)

| Al L2(dt) Lo (d(z—y)) L2 (d(z+y)) S <Vz >aAHL2(dlt)LG(d(:rw))L2 (d(z+y))

and similarly for H. Using [vml|, 3 + M*|lomll,s = OM™) as
M — oo we can treat the two terms involving the potential and A
as perturbations and get

(V)" Alls S (V)" Aoll2 (51)
+ M_m||<VI>O{H|’LQ(dt)LG(d(x—y))LQ(d(:r:+y)) T ”<Vx>aGHSL-

Finally, we can repeat the argument with |V,|*|V,|*. Now we are
forced to estimate MQO‘HUMHL;;, = O(M) and get a sub-optimal estimate

%|I<Vx>a<vy>”/\lls S %IIWQ“(VQ“AOHLZ (52)

+ M_€O||<VI>O{<V?J>O{HHL2( )) + H<Vx>a<vy>aGH54‘
(53)

dt) LS (d(z—y)) L2 (d(z+y

This will help control lower order terms.

To continue, we need a frequency decomposition. Let ¢(z) such that
¢ € Cg° and ¢(§) = 1in [§] < 1, ¢(§) = 0 in [{] > 2.

Theorem 2.1 follows from the next two more detailed theorems.
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Theorem 5.3. Let A satisfy (25), and let 14+ denote 1+ d0¢ with dg > 0
satisfying (28), (30). Then, at high frequencies,

V)" (V)" Pgoars Al + [[(Va) " (V)" P Al

+ H |Vx+y| P|f|>M1+A}|L2(dt)L°°(d(xfy))LQ(d(a:er))

+ H |Vx+y|aP|77|>M1+A||L2(dt)L°°(d(xfy))L2(d(l“ﬂ,l))

+ H |8t‘ P\£I>M1+AHL2 dt)L> (d(z—y)) L2 (d(z+y))

+ H |at’ P\W\>M1+A"L2(dt)Loo(d(m—y))L2(d(x+y))

5 H<v$>a<vy>aGH$; + M_eoH<vm>a<vy>aH”LQ(dt)L6(d(x—y))L2( (z+y))
+ (V)" (V)" Bo| (54)

In addition, the proof will show

1(72)"()" < <P'f'>M”A))”L2 (@0)L5 (d(a—y)) L2(d(+))

SV (Vi) Gl + MTN(Ve)™ (Vo) B oy ey
+{1(V2)" (Vo) Ao |

Proof. Roughly speaking,

<VI>0[<vy>0413|§|>Ml+ (v&(w—y)/\) HLZ(dt)L%(d(x—y))L2(d(z+y))

can be treated as a perturbation because <Vx>a only falls on A. Rig-
orously, we have

SP|E|>M1+A = Pejsane (Uzlw(m - 3/)(P|£>M1+MA)> (55)

+ Plejsan+ (Uﬁ(l‘ - y)/\> + Peppan+ G + Pepsan+ (o). (56)

We used the fact that @}, is supported in [£] < 2. Next we use

the Strichartz estimate of Theorem 4.1 and the collapsing estimate of
Lemma 4.5 and Lemma 4.6.
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H< > < > P|£|>M”A||L2(dt LS(d(z—y))L2(d(z+y))
+ H ‘vxﬂ/‘ P\§|>M“A|‘L2(dt)L°°(d(az—y))L2(d(:c+y))

1
+ H \@\ 4P|f|>M1+AHL2(dt)L°°(d(xfy))LQ(d(:rer))

S IV (Vy)" (v&(l‘ -y (P5|>M1+MA)) 22y 28 tate -y 2201

+ (V) (Vy)" ( )”m (d6) L8 (d(z—y)) L2 (d(z-+y))
+ (V)" (Vy)" ( Ble>n+- MH>)||L2<dt>L§<d<xy))L?(d(ﬁy))
+ H<v < Y ( )HL2 dt) L5( (z—y))L2(d(z+vy))

+{1(V2)" (Vs “G13,+H<V> (V)" ol -

For the terms involving v}, we use Theorem 5.2 and the fact M+ —
M > 10M to conclude that the <Vx>a derivative only falls on Plejs pi+ —pr A
and P>+ pH. Then Hélder’s inequality, “Sobolev at an angle” (see
Lemma 3.2) and our estimates on vy (see (28)) show

1{v2)"(V)" (U}W (=) <P'5>M“‘MA)) I oyt -y
(57)

S Mol g H<Vx>a<Vy>a(P|e|>Ml+—MA)) lz2(at) L5 (d(a—9) L2(d(ar+ )
(58)

+ Mol g+ |!<Vx>a<Vy>a(P|s>M1+MA)) 22(at) 25z —y) L2 (1))
(59)
S MN(Va) (V)" P ars—a A £2an) 28 (a(e—9)) L2 (a0 (60)

Similarly,

1{V2)" (V)" (”}4 (= y)(Pepsrre—n H )) 22028 (s 22 )

S M0(V2) (V) H | 221 (ata—y) 22 da-+2)
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while for the term involving v3, we have

@

||<V > <Vy> (UM r=y )HLQ(dt L3 (d(z—y))L2(d(z+y))

< ML) (V) Ml ooy

(and similarly for H). Thus

H <vw>a<vy>aplﬁ\>Ml+AHs

+ [ Vasy| " Pes are Al o gy oo (ao—yy 20w 0))

1
+ H ’at 4PI£\>M1+A"Lz(dt)Loo(d(x_y))L2(d(m+y))
S M|(Ve)"(Vy)" Besan+—nAls

+ MOV (V)" Al 22y 15 (dw—) 22 (d(a+))
+[[(Va) (v
+M||(Ve)™(V, > H|| 12 iy p6 aa—y) 2 da )
+{[(Va) (Vi) Ao -

The last four terms on the RHS are acceptable, but the first one must be
estimated further, by repeating the argument(with the same implicit
constants in <) as long as M'* — kM > 10M, which is essentially

log ( ) times. At the kth step we get

(V) (V)" Peisans —e-nur| g
S M=|[(Ve) (V)" Pesarrs—iarhlls

+ M_IOH <vz>a<vy>QAHL2(dt)LG(d(a:—y))L2(d(x+y))
+[{Va) (Vi) Gl + M|V

[1(V2)" (V)" Ao

x>a<v > HHL2 dt) L8 (d(z—vy)) L2 (d(z+v))
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Putting together the above k estimates we get

V)" (Vi) Pesare Al g + [[(Va) (V)" P ar Al g
+ H’Very’ PI£I>M1+A||L2 dt) Lo (d(z—y)) L2 (d(z+y))

+ ‘Hvxﬂ/’ P|77|>M1+A||L2 dt) Lo (d(z—y))L2(d(z+y))

+ H ‘at‘ P|f\>M1+A"L2(dt)L°°(d(m—y))LQ(d(ac—i-y))

1

+ H ’at‘4f)|n\>M1+AHL2(dt)Loo( d(z—y))L2(d(z+y))

S M7Y(Va) (V)" P art —arhlls

+ M7O(V2) (V)" Al 22ar) 15— 12 4)

+ (V) (V) "G5, + M|V

+ [[{V2)" (V)" Bo| -
Once keg > 1, we use (53) to complete the proof. O

x>a<v > HHL2 dt) L8 (d(z—vy)) L2 (d(z+v))

Now we move to the low frequency part. Here the collapsing norm
can be treated perturbatively.

Theorem 5.4. Let A satisfy (25), and let 1+ denote 1+ 6y with oy > 0
satisfying (28), (30). Then
H<Vw>a<vy>aP|£|<M1+Plnl<M1+A”sm (61)
+ H |Vx+y|aP|£\<M1+P\77I<M”A||L2(dt)Loo(d(x—y))LQ(d(x+y))
1
+ H|at|4P\£|<M1+P|n\<M1+AHL2(dt
S V2"V

+ M

Lo (d(z—y)) L (d(z+y))
e a
M= || ‘vz+y} HHcollapsing

L « «
‘8t‘4HHcollapsing + ||<v$> <vy> AOHLQ' (62)
We first prove the above theorem without including S, ,, on the LHS.

Proof. (excluding the term (61))

SPgj<ari+ Pyj<ar+ A
el<arr+ Plyj<an+h(t) (var(x — y) (A + H)) + Pej<an+ Py<an+h(t)G
<+ Poeansh(t) (Vi (x = y) Pgeans Byjaan+ (A + H))

+ Plgj<ar+ Plyjaan+h(t) (var(z = y) Pelor py>ar+ (A + H))

+ Bejcar+ Pyjcan+h(t)G

+ Pejaan+ Pyaan+h(t) (v (z — y)(A + H)) .
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We write
Pejerrtt Prjarnt A = Ay + Ao+ Az + Ay + As

= Pejconr+ Pyjconn+ (A + Ag + Ag + Ay + As)
where Ay, --- Ay are defined by

SA1 = P+ Pypaar+h(t) (i (& = y) Plgars Pycars (A + H))
SAs = Pejenr Pyjcars h(8) (Vi (% = ) Pletor oi>arr+ Plt<aonsrs Pocionn+ (A + H))

SAs = h(t) Pigj<ari+ Piyj<ar+ G
with initial conditions 0, and SA4 = 0 with initial conditions P¢j<asi+ Pyj<ar+ Ao,
and finally
SA5 = h(t)P|§|<M1+P‘n|<M1+ (U%/I(l’ — y)(A + H))

with initial conditions 0. Putting together the five propositions below,
we conclude

1
H ’at ‘ ! P|f\<M1+P|77|<M1+A||L2(dt)Lw(d(xfy))LQ(d(x+y))
+ H ‘ Vaty ‘QJD\£I<M1+ Blyj<ar+ A ‘ ‘ L2(dt) Lo (d(z—y)) L2 (d(z+y))

S M (H 10T Pgaari+ Pcar+ A +| \Vx+y\aP£I<M”P|’7<M”AHCO”GP””9)

collapsing

1 «
+ M (H ‘at‘ 4P|f‘<M1+P‘77|<M1+HHcollapsing + H ‘Vx+y‘ Pf|<M1+P|7]<M1+H||collapsing)
(V) (Vi) Cllsy + (V)" (V)" ol -

The first term on the RHS can be absorbed in the LHS, proving the
result. U

We have to prove the following propositions
Proposition 5.5. Let
SA1 = Pejcar+ Pyjcar+h(t) (vn (@ = y) Bgaars Pyj<an+ (A + H))

with zero initial conditions. Then

1Al 2@ty 2o @ 22t S M Pearn+Puicars (A4 H)|| oyapsing
and similarly

1V oyl Asll 2y o (e 2ty S M Pgg<nrs Pjcars [ Vasy |*(A + H)|

collapsing

i —€ 1
1015 Av | 2ty Lo @te-wpye2atas S Ml Pej<ars Pycarr+ 0,5 (A + H|

collapsing’
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Since the frequency localization of A + H plays no role and only the
frequency localization of v},(z — y)A is important, we record a slightly
more general result, which implies Proposition 5.5 and will also be used
later.

Proposition 5.6. Let
Su = Pgj<ar+ Pyj<an+h(t) (vm(z — y)A)

with zero initial conditions. Then

[ull 2@y oo (d@—vp 22 @) S M~ cottapsing

and similarly

11V 1“0l 22 (at) Lo (o)) 20 ) S MO Vaty| “A]

collapsing

1 e 1
11050l 22 (aty oo (-9 22 Aty S M N|:]TA|

collapsing”
Proof. Using Sobolev estimates and Theorem 4.8 we get
| 2(dt) Lo (d(w—y)) L2 (d () SIS MO A| cottapsing-
No modifications are needed to prove
11V asy“ull L2 @ty Lo (a2 (@) S M TN Vary|* Ml cottapsing-

However, the estimate for |9 iu requires extra care because time deriva-
tives don’t preserve initial conditions. To simplify notation, let F' =
Pej<rr+ Ppjenn+ (var(x — y)A). Let E the fundamental solution of the
Schrédinger equation supported in ¢ > 0, and recall h is the Heaviside
function. The usual solution to

Su=F
with 0 initial conditions is given (in the region ¢ > 0) by
u=Ex(hF).
From the first part of this proof we get
1 e 1
1107 2ull L2 aty oo (aa—w)) 22 r0)) S MO (RF) | oo (a@—9)) 22 ) L2 (a0 -

It is easy to show

1 1
1106 (RE) || oo (aa—y)) 22 (at 2 (da+)) S (103 F) HLM(d(zy))LQ(dt)L?(d(z(+y)3 :
63

This can be done by taking Fourier transform in ¢ and using As theory
(see [17]), or else the equivalent definition (for 0 < k < 1):

ol = [ [ (64

’t _ S|1+2k
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and the generalized Hardy’s inequality from [21].
We remark that the corresponding estimate for the stronger norm
HA\]Lz(dt)Loo(d(x,y))Lz(d(Hy)) might not be true. We do not know if

1 1
110e]% (R E)[| L2ty Lo (d(a—)) L2 (d ) S ([0 3 F) ||L2(dt>L°°(d<x—y>>L2(d(z(+y)3
65

1s true.

U
Proposition 5.7. Recall A satisfies (25) and
SAa = Pcarrs Byearse (1003w = )Pt or oaris s+ Pyctons (A + H)

with zero initial conditions. Then

1(V2)" (V)" Nalls + I Vary) Al L2 (dt) L% (d(a—v)) 22 (@ 1)
1

+ 11106 Al 2 (at) oo (d(w—y)) L2 (d(a+))

SM (V) (V) Clls;

+ M) (V) H| + M7[(Va) (V) Ao o

dt) LS (d(z—y)) L2 (d(z+y))
Proof. Consider (by slight abuse of notation) just one of the contribu-
tions to A2 with P|£|>Ml+.

SAz = Pecan+ Pycars (v (z = y) Pans<ig<ions+ Pyj<ionn+ (A + H)) -
(66)

Using Theorem 4.1 and Lemmas 4.5, 4.6 we have
1(V2)" (V) Aalls + [{Vary) " Aol L2 o (ata—y) 22(dte+v))

1 o o
+ 11041 Aall 2@t L@y 2w S 1CVa) (Vo) BRHS o 18 oo r2 s

Here we can estimate the RHS directly (using the fractional Leibniz
rule and the fact that (V,)" only falls on A + H)

1KV2) (V)" (vas (@ = 9)Pigsans (A D) [| a8 oy 2o

S M7|(Va) (V)" Petoars (A + H)|| 12 ) 16 da—) 22w

This is in the high frequency range, and using Theorem 5.3, the above
is

S MY(V2) (V) Gl + M0 (V)" (V) Ao
+ MO[(Va) (V) H|

dt) L8 (d(x—y))L2(d(z+y))’
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Proposition 5.8. Recall
SAs = Pecan+ Pyjcan+ G
with zero initial conditions. Then
(V)" (V) " Aslls + I Vary)” Asll L2ty 2o (da—y)) 22 +))
- 111061 Al 2 aty o< (a0 2200
S IKVa)" (Vi) Glls;.

Proof. This follows immediately from Theorem 4.1 and Lemmas 4.5,
4.6. U

Proposition 5.9. Recall
SA4 == 0
with initial conditions Ng. Then, for any o > %,
« « o 1
(V)" (V)" Aalls + [{Vary) Aall 220y 00 (a(e—y) 22y + 110617 Al 2208 L0 (@) 22 (0 )
S V) (Vi) o] -

Proof. This follows from Strichartz estimates, see for instance the proof
of Lemma 5.3 in [11]. O

Proposition 5.10. Recall A satisfies (25) and
SA5 = P\§|<M1+P|n\<M1+ (’U%(l’ — y)(A + H))
with initial conditions 0. Then
(V) (V) Aslls + 1KV aty) " Asl L2ty oo (atw—y)) 2 a4 9))

+ 10015 As | ey Lo a9y 22 )
S M7|(Ve) (V) Gllsy + M7|[(Va) (V) G|

S
Proof. Using Proposition 5.8, we have
« « o 1
H<V:1:> <Vy> Aslls + ”<Vm+y> A5HL2(dt)LOO(d(:E—y))LQ(d(x+y)) + H|8t’4A5"LQ(dt)L‘X’(d(x—y))L2(d(x+y))
S IKVa) (Vi) Pgaars Pyjcans (vig(@ = 9)A) s,

Here we use the Leibniz rule and (51), (53) and the smallness of v3, to
conclude the above is

S M7 (V) (Vi) Clls + [[(Ve) (Vo) Mol 1) -

To finish the proof the Theorem 2.1, we also need
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Theorem 5.11. Let

SA1 = Pejears Pyjcars (03 (x = y) Plggerris Pyjcan+ A)
with 0 initial conditions. Then

” ‘vz‘a|vy|aplﬁ\<2M1+P|n\<2M1+A1

S (Vo)A

Proof. This follows from Proposition 4.8 and Bernstein’s inequality.
O

ls..,
+[1{0) Al

collapsing collapsing’

6. ESTIMATES FOR THE NONLINEAR EQUATION, STEP 1

Recall the notation

19
Sy = P — A+ A,

From now on, Vy(z) = N3 v(N?z). As in [5] we assume the poten-
tial satisfies (10) and the initial conditions satisfy (11) and (13), and
also (12) holds.

Define ' = T.+ T, A = A, + Ay, where I', = ¢ ® ¢, A, = ¢ ® ¢,
I, = +sh(k) osh(k) and A, = 5sh(2k). Let p(t, ) = T'(t, z, x).

The 4 relevant equations are

VN

SAp +{Vw *p, A} + — N (o7
+ ((VNFP> o Ap + (VNAP) © Fp)symm
Vi
+ (VnTe) o Ay + (VwA) o Ty) o= __NA

Sily + [Viv * p, Tp] + ((VNFIJ) ol + (VNAp) © Ap)
+ (WwTe) oDy + (ViAo) o Ay) =0 (
SA:. + {Vn xp, A}t + ((Vpr) oA+ (VwA,) o Fc)symm =0
Sile+ [V # p, D] + ((VaTp) o T + (VA 0 Ac) o = 0. (70)
Here (A(2,9))symm = Al2,y) + Ay, 2) and (A(z,y)) ey = A7,y
Ay, )
The norms used for A, and A, are called N'(A) and are

1ALy = [[{V2)"(V

skew

symm skew

+ H‘at‘ AHL2 dt) Lo (d(z—y)) L2 (d(z+y)) + H<Vx+y> AHL2 dt) L (d(z—y)) L2 (d(z+y))
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Because of the quarter time derivative, these norms cannot be localized
in an obvious way, and we will devise a way to get around that. The
norms for I', I'y, I'; and also A, are

IFllvr = sup (V) (V) Fll oy oy 22 ay)

p,q admissible

+  sup (V) (V) Fll Loar) Ly £ (do)

p,q admissible

+ H [Vaay|*F H Loo(d(z—y)) L2(dt) L2 (d(z+y))

The estimates for the linear part of the A equations have been studied
in the previous sections. For the I' equation we will only use older,
standard estimates

Proposition 6.1. Let

S.I'=F
F(O, ) - FO

Then

sup ||| Lo ary Lo (da) L2(dy)
p,q admissible
+  sup ||U{| o) pa(dy) L2 (dx)
p,q admissible
S Tollzz + inf UEN 2 @y (amy 22y 1 2o ay o (a2 (amy ¥

p,q admissible,p>po>2

sup [|[Ve| “T(t, = + 2, 2)|| 2 (atao)

S IKVa)" (Vi) Toll 2
+ inf {H<Va:>a<vy>aF||Lp’(dt)Lq’(dx)L2(dy)» ||F”LP’(dt)Lq’(dy)L?(dx)}-

p,q admissible,p>po>2

Proof. For a proof of the homogeneous estimate, see Lemmas 5.1, 5.3 in
[11], and also [4]. The inhomogeneous estimate follows from the Christ-
Kiselev lemma. Let Ty = 2+ so Ty : L(R®%) — LP(dt)L4(dx)L?(dy)
and Ty : L' (dt)W? (dx) H*(dy) — H*(dx) H*(dy). Fix z and let T} :
He(dz)H*(dy) — L*(dt)H*(dz) be the operator f — (™A% f) (t,x, 2+
z). Then the inhomogeneous estimate follows by applying the Christ-
Kiselev lemma to 1577

O

The first step in the analysis of the nonlinear equations uses a priori
estimates for I'(¢, z, z), see (14) and (15).
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Lemma 6.2. Under the assumptions of Theorem 1.1 we have

s <1 (71)

HFHLS(dt))LOO(d(z—y))L (d(z+y)) ™

<
IVar yFHLS(dt))Lm(dw—y»L%(d(w+y>) S 1

and thus, for any e; > 0 there exist n = n(ey) intervals [T;, Tiv1] cov-
ering [0,00) such that

sup (V)T (t, 7 + 2, 2)] <o (1)

Ls([Tj7Tj+1])L% (dac) -

The idea of proving estimates for NLS by using such a localization
in time goes back to Bourgain [3].

Remark 6.3. Notice that the ”collapsing estimate” sup, [|[{V,) T'(t, z+
2,7)|| 12(atdz) S 1 does not imply there exist n = n(ez) intervals [T;, Tjy1]
covering [0, c0) such that

sup H<Vz>a1“(t, x+z, x)”LQ([Tj,TjJrl])LQ(d:):) < €.

Proof. We have a pointwise estimate

[NIE

Dtz + 2,2 — 2)| < Tt @ + 2,2+ 2)|2|D(t,x — 2,2 — 2)]
and also
|V.I(t,z+ 2,2 — 2)|
<|Ei(ta+za+ 22Ttz — 2,2 —2)|2 + |Ei(t,x — 2,0 — 2)|2[D(t, 2 + 2,2 + 2))|
where E,(t,2) = V,-V,['(t,z,y) ‘x:y is the kinetic energy density, with
[ |Ev(t, z)|+D(t, 2, )dz uniformly bounded in time and ||T(¢, 2, ) || 14 4t 12 (dx)

1. (71) and (72) follow by applying Holder’s inequality, and these imply
(73). 0

~Y

The above estimates hold for T, and T, separately. Since I'. = ¢ ® ¢
and A, = ¢ ® ¢, they also hold for A.. No such a priori estimates
are available for A,. However, we assume initial conditions for A, are
small. Also, the forcing term in the equation for A, is ;/—]J\V]Ac, and this
is small in suitable norms, thus ||A,[[ara) Will stay small. Here are the
details:

In order to use the smallness of the above quantities, we have to
localize our estimates to these intervals. However, the necessary norms
involve a non-local term, so we have to proceed carefully. Also, we will
use a continuity argument, so the right end of the interval must be a
variable T' € [T}, Ti41]. Define A" AL, T0T, T5T be the solution to
the standard equations with the RHS multiplied by x(r, 7):

[NIE
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i Vy i,
SAG A (74)
= ~ (v} = (AT 08y + (Vi) 0Ty,
_ Vi

— (VL) 0 Ay o+ (Viehe) 0 T), ., = A

SiF;T = X[13,1] ( — [V xp, Tp] = ((VNFP> 0T, — (Vnhy) o Ap)skew

B ((VNFC) © Fp B (VN]\C) © Ap)sk:ew > (75)

SAY" = Xy ( —{Vnxp, Ak = (VaTp) o Ae — (VAp) o T) Symm>
(76)

SiT" = X ( — [V #p,T] = (VwTp) o T — (VvAy) o Ac) skew)
(77)

with AYT(T;,-) = ASVE(T;, ) = Al(Ty,+), and similarly for the other
three functions. Also, Then AT = A, etc. in [T}, T] (but not outside
this interval), and similarly for the other three functions. Also, A%T:,
etc. satisfies a homogeneous linear equation.

We continue by estimating the four functions on the LHS. The most
difficult one is AT

Later it will be convenient to have norms which can be made small
on small time intervals, so we introduce the restricted Strichartz norms

1Flls;., = F L2 Loawy22dy) + 11| n2(an) 28 (ay) 22 de)
+ ||| La(ary 28 (dz) L2 (dy) + |1 F| 14 () 13 (dw) 12 (dy) -

Notice this is not dual to S., the restrictions on the exponents are
different.

Theorem 6.4. Let [T;,T)], T; <T < Ty, and € be as in (73). There
exists a universal constant C' such that

1A vy < IV (V) AT (T30 || 12 + Ceall AT v

+ CellT a4+ ClIAG vy 1T Mz,

+ CON" AL vy
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Remark 6.5. Of course ||T57 ||s; < [[T57]|ar, but |57 |s;  can also be
made small on small time intervals. This will be useful when estimating
higher order derivatives.

The proof is based on Theorem 2.1: there exists a constant C' and
€; > 0 such that

15T arca)
< C<H<v2>a<vy>ax[Ti,T} ({VN 0, A} + ((VNFP) oAy + (VnA,) o Fp)

+ ((VwTe) o Ay + (ViAo Ty) )|
+ N (Va) (Vi) X1

symm

S
T;,T) Ac ‘ ‘ L2(dt) LS (d(z—y)) L2 (d(z+y))

1
+ N7 ” ‘at } ! XI[T;,T] AC||L°°(d(zfy))LQ(dt)L2(d(x+y)) (78)

+ N7 Vara | Xim 18 | Lo ooy 22y 2oy
ISARCHRNCHI P

For all terms other than (78), the superscript ¢, 7" can be trivially added
to A, I" on the RHS. In (78),

1

H |8t ‘ ! (X[TuT} AC) HL<>°(d(mfy))LQ(R)LQ(d(ery))
1 .

- H }at| ! (X[TivT] AQT) }|L°°(d(z—y))LQ(R)LQ(d(z—&-y))
1.

S {0 AL oo oy 2@y 22401

(as explained for (63))

1 .
< [0 * AT 2y e ey 22
< A I ava)-

In the lemmas that follow, we estimate the norms of the nonlinear
terms in suitable dual Strichartz norms, using the bound (73) whenever
possible.

Lemma 6.6. Let [T;,T| be as above. There exists a universal constant

C such that

[(92)"(V)° ({VN *p, AETY 4+ VAT o A T) | s
< Ce|[(Va) (V) AT

LE ([T:,T) )L3 (dz)L2(dy)

.
S-Tay
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The result depends on the a priori bounds for I', but is true with A;';T
replaced with any other function).

Proof. The proof is easily reduced to estimating
sup ||<Vx>a<Vy>a(F(t, T, T+ z)A;’T(t, x4+ z, y)) [

L3(m.r)Ls

(dz) L2 (dy)
< Ceol[ (Vo) (V) AT s, -

Using the fractional Leibniz rule (see the proof of Theorem 5.1) we
have the following estimate, uniformly in z:

1Y) (V)" (T 20+ 20T 62+ 298 1, 9,8 oy

< O||<Vz>a t,x,x + Z)”Lg (17,1 L 3 (dz) ||< y> ApT||L2(dt)L°°(dac)L2(dy)
T 2,2+ 2 s 9,22 a1V ) V)" A 2 o 2an)

< OV T, @ 4 2 o iy ) 1KV (V) "85 aan ooy e

< Caa|[{Va) (V) Ao | L2ty 16 (d) L2 () -
O

Since A. satisfies the same a priori estimates (based on interaction
Morawetz and conservation of energy) as I', by the exact same argu-
ment we get

Lemma 6.7. Let [T;,T] be as above. There exists a universal constant
C such that

(V=) (V)" (VNA O T8 om0 ey 2
< Cal|(V,)(V,)"

The result depends on the a priori bounds for A., but is true for any
function TG =TT (t, x,y).

z,y "

We continue estimating nonlinear terms.
Lemma 6.8. There exists a universal constant C' such that
«a «a i, T i, T
||<vw> <vy> ((VNAP )o Iy ) ||L§ dt)L3 (dz) L(dy)
< CH<vaz+y>aA;;THLOO(d(a:—y))Lz(dt)Lz(dx)H< ) <Vy>aF$T(tax>y)|’L4(dt)L3(da:)L2(dy)-

This result can be localized to any time mterval [T;, Ti+1] and is true
for any two functions, not just A;;T and F;;T.
Proof. 1t suffices to estimate

SgPH<Vx> (V)" (AT (2, a4+ 2)0T (e + 2,y) I,4 3 (a3 (de)L2(dy)”
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The following holds, uniformly in z:

(V)™ (Vi)™ (A7 (a2 + )T (o + 2,)) HL%(dt)L%(dm)LQ(dy)

S IV AT (8, 2+ 2| 2 p2an (V) T (8 2, ) a6 )y 22 (ay)

+ ||A;’T(ta T, T+ Z)||L2(dt)L3(dx)||<Vm>a<vy>aFZ’T(7% T, Y)|| L4 (dt) L3 (da) L2 (dy)

S V) AT (2w + 2| cagan 2@ [V a) (Vo) Ty (6 2, 9) sy oy 22(ay)-
O

We continue with estimates for ||A%7|[y(a). This is an easy version
of the previous theorem. Using the previous lemmas and the trivial
version of Theorem 2.1 (without the potential term) we get

Theorem 6.9. Let [T;,T] be as above. There exists a universal con-
stant C' such that

1A vy < Cl(V) (V) AT (T3 ) || o + Ceal AGT [[wveay
+ CIA v 1T Nlsy, -
Using Strichartz estimates for Sy, and Lemmas 6.6-6.8 we get

Theorem 6.10. Let [T;,T] be as above. There exists a universal con-
stant C' such that

I I < Cl(Va)™ (V) T (T, )] 12 + Ceal T || an
+ O v 1A vy

ITollar < CI(V) (Vi) T3 (T )| 2 + Ceal T3
+ Ceal AT I + OIS v 1A sy

At this stage we take Ces < % This determines the number of inter-
vals in the list 7T}, T}, 1. Call that number n, and notice it is independent
of N. Also, for T € [T}, T;1+1] denote

Xi(T) = IAZ" vy + 1757 | an
Yi(T) = [[AST vy + 1057w

Since we trivially have bounds on || Ay op c|| Loo[o, 1182 (dzdy) A0 |Tp or ¢l Loo 0, 7785 (dady)
(for any s) which can grow with 7" and N, then we do know X;, Y; are
continuous.

We have established the following estimate for T; < T < T}, :

Corollary 6.11. The functions X;, Y; are continuous and satisfy

XT) < CI(V T, AT 2 + T (9, Tl + CXATIV(T)
Yi(T) < 0H<vw>a<vy>QAP(Ti= ')||L2 + C’H<V$>O‘<Vy>al“p(ﬂ, ')HL2

+ CYA(T) + CN~“ X;(T).
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Now we can state and prove the main theorem of this section.

Theorem 6.12. Assume A, I and ¢ are smooth solutions to the HFB
system, with finite energy per particle, uniformly in N (see (9)). In
particular,

(V)" (V)" 2e(0, )| o+ [1(V2) (V) L0, ) o < €.

Assume, in addition,

(0% o C
H<Vx> <Vy> FP(O">HL2 < Nes

(€5 as in (12); the corresponding estimate for A, holds globally in time).
Let € > 0. There exists Ny such that, if N > Ny, then
[Acllarca) + [Feflan S 1
[Apllaay + Tl < e
Proof. Starting at T3 = 0, we have X;(0) < C and Y;(0) < CN~,
and
Xi(T) < C+CXq(T)YA(T)
Yi(T) < CN~% + CY(T)* + ON~“ X (T).
In the second line, either Y (T') < 2CY;(T)?, but by continuity we

rule this out, or else Y;(t) < 2(CN~% + CN~“1X,(t)), and if we plug
this in the first line we get

Xi(T) < C+C(N~®+ N X (T)) X:1(T).

If N is sufficiently large, we get X;(7") < 2C. We continue to the next
interval, [Ty, T3]. The argument is the same, the initial conditions for
X5 have the same bound, but the initial conditions for Y5 have grown:

Yy(T3) < CN~% + CN~.

We can repeat the argument as long as Y;(7;) is sufficiently small.
This will be the case if N is sufficiently large, because n, the number
of intervals, is independent of V. O

7. HIGHER ORDER DERIVATIVES

Next, we refine the argument to include x + y derivatives. This sec-
tion uses additional smallness results. Denote Sy ,[T7, T3] the standard
Strichartz norms subject to the restriction 2 < p < p; < oo for some
large p; < oo and t € [Ty, Ts).



44 J. CHONG, X. DONG, M. GRILLAKIS, M. MACHEDON, AND Z. ZHAO

Lemma 7.1. Under the assumptions of Theorem 6.12, given € > 0, we
can divide [0, 00) into finitely many intervals (depending only on € and
the above implicit bounds, as well as those used for (73)) such that

[e7
H<vz+y> I‘p“mlc}|L°°(d(ﬂc—y))Lg([TjvTj+1])L%(d(av+y)) s ¢

H<v‘”y> Apa"dc|’LQ([TJ':Tj+1])L°°(d(x*y))LQ(d(ny)) =S¢

”<vx>a<vy>arptmdc||S£,y[ijTj+1] <e
(V) (V) Apandellsy 11,140 < €.

Proof. The first estimate is (73). Using Theorem 6.12 we know the
following quantities are bounded:

” <Vx+y>aApandc"LQ(dt)LOO(d(zfy))LQ(d(gngy)) 5 1
(V)" (Vy) Tpanaclls.., S 1

H<v»’0>a<vy>aApandC||$m,y 5 1
and the result follows. O
Remark 7.2. However, it is not clear we can insure

”’Vx+y|arpandc|’Loo(d(x—y))m(te[:r’l,TQ])L2(d(x+y)) <e

which is why we use L*(d(z —y))L3(t € [T}, T3]) L3 (d(z+y)) for which
we have an a priori estimate, and which has the same scaling.

Theorem 7.3. Under the assumption of Theorem 6.12, if we also have

(V)™ (V) Ve sy Apanac(0: )| o + (V)" (Vi) "V panac 0, )] o
<1

forj=1,--- 790, then

V2 Acllaray + Va4 Pellan S 1 (79)
Vi Aplln) + 1Vesy pllar S 1. (80)

Proof. (Sketch) At this stage, we don’t have to distinguish between
A, and A, or I', and I', and we work directly with A = A, + A,
I' =T, +I'.. Schematically, the equations are

SA—F%A:VNAOF—FVNFOA

S.I'=VyAol' +VyAoA.
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Apply V.., and localize the RHS to [T}, T;44]:

VN

SV A+ Vo A

= X[T},T;41] (VNVz—i-yA ol'+ VNVz-‘ryF oA+ VyAo Vz—i—yr + Vnal'o vx-i—yA)
— RHS(1) (81)
S.V,.,I

= X[Ti,TH-I} (VNVIB-l-yF ol + VNV:E—I—yA ©) A -+ VNA ©) V$+yF ol —+ VNA ¢} vm+yA)
:= RHS(2) (82)
with initial conditions at T;, so V4, A" = VA and V. , " =V, [

in [T}, T;41]. By slight abuse of notation, V., F is the function (z,y) —
VaiyF(z,y). Now we can use and use Theorems 2.1 and Theorem 6.1:

I(V2) ™ (V)" Vary A

+1/|0] VA | 22ty oo )y 22 )

+ (V) (Vi) Ve, + 11Vars* Vors Tl e ute 2 ay r2ate))
S KV (V) RES()||g, + [(V2) (V)" RES(2)]
+H{[(Va) (V) Vary At = T) |

+ (V)" (Vy) Vo Ut = T1)| -

Sa,y + H <Vx+y>avx+yAi | ’ L2(dt)L>°(d(z—y))L?(d(z+y))

sl

We have to estimate <vz>“<vy>°“ applied to the 8 terms on the
RHS. We will show they are all < CeLHS, so if Ce < %, the theorem
is proved. In the above compositions, the estimates are the same re-
gardless whether the second term is A or I', so we call the second term
B. The estimates are the same estimates as those of Lemmas 6.6 and

6.8, but now we can also use the estimates of Lemma 7.1. If V., falls
on B,

(V)" (V)" (eri o vaBi) |22 et ez

< e(V.) (9, Vs, B

-
Sﬂ?ay
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and

(V)" (V)" (VAT) 0 Vs BY) ] 4

3 (1T, T L3 (da) L2 (dy)

< N{(Vary) " Al pota@-wpyr2mme 22 @) 1K Va) (Vo) " Vary Bl 14 a0y 18 ) 2
< el (V) (Vi) " Vary Bl (a1 L3 (o) L2 ()

If Vo, falls on VT,

(V)" (V)" <(VNVI+yFi) ° Bi) 124 22 ey 23 a2

<N Vs Ul oo aa—w 22ty 22 e+ 1V ) (V) Bl (21241 28 ) 12(ay)
< el Vory Il Lo @@y 2217 111 22(d 0 0)

and similarly

(V)" (V)" <(VNVI+yAi> ° Bi) 12 0 o

<V Al oo aayy 227,15 2D 22 ) 1V &) (V) " B L (13 1301 28 () 22 ()

< €Hvx+yAiHL°° d(z—y))L2(dt)L?(d(z+y)) -

The proof for V7, +y 18 the same.
O
8. ESTIMATES FOR sh(2k), ps = sh(k) osh(k) AND sh(k)
Proof. (of Theorem 1.3). The equations for sh(2k) = NA, and py =
NT', are
Ssh(2k) + {Viv * p,sh(2k)} + ((VNT") o sh(2k) + (VwA) o ps) 0 = —%A

SipZ + [VN * p7p2] + ((VNF) O P2 + (VN]\) © Sh(2k))skew =0.

Let € > 0. As in the previous proofs, use (73) and divide [0, co) into
finitely many intervals [T}, T;;1] so that

sup Ltz + z,2)| <€

L3([T3.Tis1)) L7 (da)
and

sup [|A(t, @ + 2, 2) | 2 mp o) < €
and estimate the dual Strichartz norms
(Vi * p(t, ))sh(2k) (¢, z, )| 5
< Csup Ltz + z,2)|

o T |(VaTT) o sh(2k)||

LY (T Toea)) L3 (o) L2(d L3 (I3, T 1)) L 3 (da) L2(dy)

LT T LY HSh(?"f)HL? (T ) L8 (do) L2 ()

< 06||8h(21€)||L2<[Ti,Ti+1})L6(dx)L2(dy>
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and similarly

||(VN * p(t l’))p2<t T y>||L5(T T1+1])L3(d:1:)L2 (dy) + ||(VNF) Op2||L5(T Tl+1])L3(dI)L2(dy)
< Ce|lpa|lz2 ([T3,Ty41]) L6 (d) L2 (dy) -
Also,

|| (VNA) O P2 ||L% (dt)L% (d:E)LQ(dy)

< Csup [[A(t x + 2, )| L2 (1 13000 23 ) || P2l £ 72017y 23 (a2) 2 )
< ellp2ll o 1101 L3 (o) 22 -
We get, using the estimates of Theorem 1.1 as well as proposition 4.8
and standard Strichartz estimates,
HSh(zk)HSa:,y[Ti,Ti-;-l] + ||p2HSw,y[Ti7Ti+1]
< C(([Ish(2k)(t = T2 + [[p2(t = T3)]|12)
+ CE((||Sh(2k)||sa;,y[Ti7Ti+l] + ||p2||sz,y[Ti7Ti+1]) + ClOg N.

Thus, if Ce < % we get the desired result on each interval [T}, T;4].

The number of such intervals is finite (bounded by universal constants),

and the result follows.

The proof for V?_ , is similar.

r+y

O

9. ESTIMATES FOR THE CONDENSATE ¢

The non-linear equation for ¢ can be regarded as a linear equation on
a background given by I and A, for which we already have estimates:

{%at - Am} o(1)

. / dy {on (21 — 9T (4, 9)} o) (83)
_ / dy{on (1 — )Ty, 21)0(y) (84)
+/dy{vN(x1 — y)Ap(z1,9) }o(y) (85)

Define the standard Strichartz spaces

olls = sup |l LranLo(an)-

p,q admissible

We prove the estimates of Corollary 1.5.
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Proof. Using (19) and (21) we split [0, c0) into finitely many intervals
so that
[{Var)'T sty oo ey £ dr) < €
IVat) " All 2ty L @) 22 o)) < €
Using the fractional Leibniz rule, we easily estimate the RHS of the
equation for ¢:
H<V> (84) H g < CE”<v>a¢|’L2[Ti-Ti+1)L6(da:)

L5 T T+1)L3(d27
||<V> 85 ||L1[Ti~Ti+1)L2(d$) < OEH<V>a¢||L2[Ti‘Ti+1)L6(dx)
thus
H<v>a¢||'5[TiaTi+1] < C||<v>a¢(t = 711>HLZ + BC‘EH<V>Q¢HL2[T¢-T1+1)L6(d$)'

By taking 3e < %, the result for j = 0 follows. Next, differentiate the
equation and use the same splitting. If the derivative falls on ¢, the
argument is the same. If the derivative falls on I'; use

SUP [[| Va4 |* T[] L2ty S 1-
T—y
While we don’t know if this term can be made small by localizing to

time intervals, such a term is coupled with ¢ without extra derivatives,
which has been estimated already. For instance,

/dZ|UN(Z)||| (V"M Tp(z, 2 — 2)) ¢(x — 2)|| g, 1)L (de)

+ /dZIUN(Z)I (IValTp(z,x = 2)) (V) 6(z — 2) | iz

S sup |||V [* Tl 22| VGl 20ty 15 () < C

z—y
thus we get
a+1 a+1 a+1
H<V> " ¢||S[Ti7T¢+1] < C||<V> ! ot =T;)z2 + 3C€||<V> ! QSHLQ[Ti.TiH)LG(dz) +C
which proves the result. The case of higher j is similar. U

10. PROOF THE SQUARE FUNCTION ESTIMATES

10.1. The double square function in standard coordinates. This
subsection covers well-known results, and is included for the reader’s
convenience. Let ¢, (k > 1) be any functions satlsfylng Uy = ¢(2k)

with ¢ € C§° vanishing in a neighborhood of 0. Let @Do € Cg°.
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Define I_g(x) be the infinite column vector w(x) = (VYx(2))g>0. This
satisfies the standard estimates for a Calderén—Zygmund operator: in

particular (in three space dimensions) [(z)| < \wIS’

(x4 y)—v(a)] < ‘M if |x| > 2|y|. Convolution with l_g ) is bounded

x|t

from L? to L?I? by orthogonality.
Denote
Rif(ey) = [ R~ oy
Ruf(ey) = [ Ry~ )i

We review the following known results
Lemma 10.2. Let 1 < p,q < oco. Then
||]_()1f||LP(dm)Lq(dy)l2 N ||f||LP(dx)L‘Z(dy)

H?QfHLP(dx)Lq(dy)IQ 5 HfHLP(dw)Lq(dy)'

Remark 10.3. The above inequalities are just "linear” formulation of
the square function estimate

00 3
151 f || 2o (@) za(ay) = |l (Z | f * (¢k5)l2> | e @z Latay) S 11 v (da)pady)
k=0
(86)

2

152 f | o (dzyLaay) = | (Z |f * (5%')!2> 2o (o) Laay) S 11 Lr () paay)-
k'=0

Proof. The estimate for I_(>2 (or S5) follows right away from the stan-
dard square function estimate in y (for fixed z), followed by L? in x.

The operator [_gl is a Calderén-Zygmund operator. It is bounded
from LP(dz)L4(dy) to LP(dz)L(dy)l*. See [19], Theorem 2.1 and Corol-
lary 2.3. For the main case we need, ¢ = 2, this also follows from Section
5, Chapter 2 in [16]

O

In fact we can do more: Let ? be the infinite column kernel Qm

as before, but now we multiply it with * vectors f;:
vaf= ¢m]k

It maps (> — %12 with norm given by |¢ |12, and we repeat the argu-
ment, and get
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Lemma 10.4. Define

R = [Reye T (87

Then, if 1 < p,q < 0o,

1B T limmaen < 17 v o (58)

and thus

||? 2f M e (azyaayyze S ||?”LP d) L9 (dy)1? (89)

or, equivalently

1
2
||5152f||m<dx>m<dy>=!|(Z |f o (Pwd) * 5¢k,,)|2> I Le(dzyrady) S N f Il o) Lagay)-

k' k"=0

The result is also true, uniformly in M, if the dyadic intervals 2¢ defin-
ing the square functions are replaced by 2°M .

10.5. The double square function in rotated coordinates. Recall

o)

and L, L, non-singular matrices satisfying satisfying

= (o 5)

(RL,) "' — (2 (1]) |

Lemma 10.6. Let K, f be functions or distributions on R? so K * f
is defined, and let K6 be K(2)0(y), and 6K 6(x)K (y). Then

((K0) * (f o (RL1)™)) (RLi(z,y)) = ((K0) * f)(z.y)  (90)
((OK) * (f o (RL2)™")) (RLa(z,y)) = ((K8) * f)(z,y)  (91)
Proof. We have

/ K()6(y/) f((.9) — (RL) ™ ()

/K flx — 2 —ay',y — by )da'dy/

_ /K(a:’)f(m — 2/, y)de’
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and
/ 5@V K (/) f((,y) — (RL2) (&)
— [ W) o~ e’ = ooy~ )iy

- / K()f(x— o y)dy.
]

This calculation also works if K is an [? valued function, such as [_g
Using this remark, we obtain

Lemma 10.7. Let ?1, [?2 as above. Let R be the linear transforma-
tion defined by (31)
Then

H?m(f o R (R(z,y)) || e(awy Lotz S I f || v (deynagay)- (92)

Proof. The proof uses only the invariance of L?(dz)L%(dy) under lower
triangular invertible matrices: || f{|Lr(az)La(dy) = ¢ll.fo L1 || (de)La(ay) and
(92) is equivalent to

1K1 (f 0 (RL) ™R, 9) |avaorniany S 1 lloaorsoan.
For ?1 we are convolving with l_g(x)é(y) Using (90) we have
RA(f o (RL)™)(RL(x,y) = R () (@)

and we already know from Lemma 10.2 this is bounded on LP(dx)L9(dy).
The argument for [_gz is similar, but uses Ls:

Ka(f o (RLy) V) (RLa(z,y))
/]_() x—x’,y)dx’=?1(f>(x,y>

which is bounded on LP(dx)L%(dy), as in the previous case.
U

Next, recall ?1 defined by (87). The same proof as before gives

Lemma 10.8. Let 1 < p,q < oco. Then

H?m(? © Rfl)(R(ma y))HLP(dx)Lq(dy)l212 S H?HLP(dx)Lq(dy)ZQ (93)
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and, as a corollary,

||4’:(31(f_(>2(f o R™Y)(R(x, y))|l Lo (deyLo(ayzee. S ||7||Lp(dm)Lq(dy)l2 (94)

(95)
or, equivalently,
[(S152f) © Rl|Le(de) La(ay)
=I{ D 1f* (Wwd) « (0w) o RI* | lioamyzoway) S [1F © Rl o) Lagay)-
k' k=0

In other words, we have the double square function estimate in x —y,
x + y coordinates.
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