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Overview of the problem:

Approximate symmetric solutions to the many-
body problem

10
;awjv(t,fb‘l, xy) = Hyyn(t,z1, - xn)
YN (0,21, --zn) = (OF ~)do(x1)Po(x2) - - - Yo(xN)

where

N
HN — Z Aa:j _%ZUN(Q%_ZC])
1=1 1<J
N is large but fixed, z;, € R3, v € S, v > 0 (with
additional assumptions) and 0 < 8 < 1 and
on(z) = N3PBy(NPz). Approximate ¥y with
combinations of solutions to a non-linear PDE
in much fewer variables



One answer: NLS and Gross-Pitaevskii, i.e.
NLS with a different coupling constant.
wN(ta 4 :EN) ~ Qb(t, xl)Qb(t, ZCQ) T qb(t? $N)

where ¢ satisfies

10
“—¢—A¢p+clpl?p=0
1 0t

The coupling constant changes from

B<1l(c= [v)
to B =1 (¢ = scattering length of v). Rigorous
work by Elgart, Erdos, Schlein and Yau.



A proposed more detailed answer than NLS:

"Hartree-Fock-Bogoliubov equations”. The ap-
proximation involves not only a ¢(¢,x) but also

a function k(t,x,vy).

A function like k£ (but not the Schrodinger-like
PDE I will talk about) is standard. Usually, ¢
is taken to be a solution to NLS, while k is
determined by an elliptic equation involving ¢.

The HFB equations are a coupled system of
Schrodinger type equations in 3 4+ 1 variables
and 6 + 1 variables.



The equations were derived in a paper by M.
Grillakis and me (2013) and are closely re-
lated to those derived independently by Bach,
Breteaux, T. Chen, Frohlich and Sigal ,
and also Benedikter, Sok, and Solovej (2018).

Our work is based on earlier work with D. Mar-
getis.



HFB equations share common features with
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon),
used by Elgart, Erdos, Schlein and Yau. For v
satisfying

10
;&%\I(t,ﬂ?l, exny) = Hyyn(t,zp, - zN)

Consider Yn(t,x)yn(t,y), average out most
variables, and look at the marginal density " ma-

trices”

’7](\]/'{) (t7 Xk Yk)
— /TZN(t» Xk XN—k)wN(ta Yk XN—k)dXN—k



These satisfy a hierarchy of equations, for all
N 7](\;‘“) "matrices’ :
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Formally, as N — oo, vy — ¢ and

7§ = 48

satisfies the Gross-Pitaevskii hierarchy

10 —
(;a + Agpq — AZyl> 7(1)(t7 T1;91)
= C’?(z)(t;xlyxl;ylaxl)

—(2 :
— C’YZ(\/')(t7ajl)y11 ylayl)

which admits solutions

V) = ¢(t, 21)B(t, y1)
72 = ¢(t, 21)d(t, 22)B(t, y1) B(t, y2)
where
10 >,
T he well-known work of Elgart, Erdos, Schlein

and Yau: this is true for 8 < 1 with ¢ = [,
and c scattering length of v for g = 1.



Heuristically, the change of coupling constant
when 8 = 1 comes from the fact that the true

form of 7](\[2) IS closer to

5,(2)

N

=¢(t,z1)p(t, x2) fn(T1,22)
o(t, y1)o(t, y2) Fn (Y1, y2)

and fp accounts for correlations.
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In previous work, fy (related to our k) is de-
termined by an elliptic equation

( will always refer to objects determined
by this type of elliptic equation, while blue
will be reserved to objects determined through
HFB.)
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The HFB equations are a coupled system of
Schrodinger-type PDEs for for ¢ (denoted ¢,
representing "the condensate”), 'y = I (a
Fock space 7](\[1) matrix)

and An(t,z1,x2) = A(t,x1,x5) which plays the
role of

but also allows the correlations to form dynam-
ically in time.
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The HFB equations are derived in Fock space.

Fock space has been used in order to get es-
timates for the rate of convergence of the ap-
proximation to the exact solution.

First one for marginal densities 7](\1;"): Rodni-
anski and Schlein (2009).

First one for L2(R¥) through Fock space: Gril-
lakis, M, Margetis (2010).

Efficient direct estimates in L2(R¥) (using Fock

space type estimates) Lewin, Nam and Schlein
(2015).

Inspired by older work of Hepp (1974), Ginibre
and Velo (1979).
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One model (analysts’ Fock space), which sug-
gests useful analogies:

F = L*(R"™)
Jzf?
(Q—=e 2
1 )
* — —_— — .
az B \/§< 8£UZ+$Z>

1 0

*1 —
la;, a3] = 6;;
Exponentials of skew-Hermitian linear in cre-

ation and annihilation (or position and momen-
tum) used for " coherent states”.

Exponentials of skew-Hermitian quadratic ex-
pressions in creation and annihilation opera-
tors: the metaplectic representation. (I learned
these from Folland’s book "Harmonic analysis
in phase space”).
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Switch to physicists’ symmetric Fock space
(different space, same algebra)

F = {(¥o,¥1(x1),¥2(x1,22),9¥3(x1, 22, 23), -+ )}

with [2(L?) inner product and norm. For
f € L?(R3) the (unbounded, closed, densely
defined) creation operator a*(f) : F — F and
annihilation a(f) : F — F are defined by

(@™ ()Yn—1) (x1,20, - ,2n) =
1 n
NG 21 flj)bn—1(z1, - 251,541, 2n)

n ‘—
j_

and

(a’(fy(pn—l—l) (xla LDy ,:En) —
Vi1 [ Y@, o) f@)de
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Also, define the operator valued distributions
ar. and az by

() = [ @)a}de
a(N) = [ F(@)axda

These satisfy the canonical relations

laz, CLZ] =(z —y)

laz, ay] = [a?;;aa;] =0
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1
Hy = /a;Aaxd:c — Q—N/’U(at — y)azayagaydrdy

Hps is a diagonal operator on F which acts on
each component ¢, as a PDE Hamiltonian

n
1
HN,n — Z Ag;j — N Z’U(acz — :U])
1=1 1<
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Let ¢ € L2(R3) Define
A(9) = a(¢) — a™ ()
e~ VNA() (= Weyl operator)

(Stone-von Neumann representation of the " Heisen-
berg group” = L2(R" C) x R with symplectic
inner product & [ fg)

Let = (1,0,0,---) € F and

o~ VNAD) o

N 1/2
— o—N/2 (17... ’<N_> qb(acl)---gb(a:‘n),---)

n!

IS @ coherent state, similar to a wave packet
in classical PDEs/analysis.
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Introduce the pair excitation function k(¢,z,vy)
via

1 _
B = 5/ (k(t, x,y)agay — k(t, z, y)a;aZ) dzxdy

B = metaplectic representation
of the “real” symplectic matrix,

exp 0 k\ _ (ch(k) sh(k)
k 0]~ \sh(k) cn(k)
(k € L?(dzdy)) called Bogoliubov transforma-

tions by
mathematical physicists. The conjugation

eBA(P)e=B = A(symplectic transformation)(d, d)
so this is a kind of Egorov theorem.

(k) (t,,y) = 6 — ) + SR ok +- -

In the analysts’ Fock space, eB is related to
eit (A+|z1*) 3nd the lens transform.
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Interesting to note that the theory of Bogoli-
ubov transformations or metaplectic represen-
tation evolved independently in Physics and
Math.

Shale’'s 1962 paper " Linear symmetries of free
Boson fields”" makes no reference to Bogoli-
ubov.

Bogoliubov's 1947 paper makes no reference
to the Stone and Von Neumann theorem from
1931. This states that any two unitary irre-
ducible representations of the (finite dimen-
sional) Heisenberg group (with an additional
assumption) are conjugated by a unitary " Bo-
goliubov transformation’ .
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Formal derivation of HFEB equations (Grillakis-
M version).

Start with initial conditions which are pure ten-
sor products

o~ VNA(b0)

N\ 1/2
— o—N/2 (1’ . (N_> bo(x1) -+ do(zn), - )

n!

or more general initial conditions which include
correlations

o~ VNA(¢0) B(ko)y — (2,22,--+)

(similar to the above, but also include th(k)(x;, x)),
coming from the " LDU"” decomposition of eft.
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Evolve these under the exact Hamiltonian

wexact — eitHNe_\/NA(CbO)eB(kO)Q

and impose two PDEs for ¢ and k sO Weyact
IS approximated, in Fock space, by

Wappron = e~ VNA@®) ~B®)

(The linear PDE in N variables is approxi-
mated by PDEs in 3 and 6 variavles)
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Benedikter, de Oliveira and
Schlein (2015), Bocatto, Cenatiempo and
Schlein (2017), and Caraci, Oldenburg and
Schlein (2024) : Impose the expected NLS
equation for ¢ and define k by an explicit for-
mula. For 8 = 1, the formula is in the spirit of

where 1 — w, called f earlier,

while for 8 < 1 this has to be modified but is
similar in spirit.
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Then Wappror = e~ VNAWGD)e~BK)Q provides
an approximation for W....t in the sense of
marginal densities if 3 =1. Also Wgppror Mod-
ified by an additional unitary transformation
provides a Fock space norm approximation if
B < 1. This seemed best possible. Very re-
cently (2024), Caraci, Oldenburg and Schlein
made a version of this approach give Fock
space estimates in the case = 1. There is a
story herel

k accounts for correlations, and these have to
be present in the initial conditions (pure tensor
products won't work).
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Our approach: the Hartree-Fock-Bogoliubov
PDEs:

||€it'H€—\/NA(¢O)€_B(k(O))Q — €_mA(¢(t>)e_B(k(t))QH
B(k(1)) ,VNA($(1)) it H ,—VNA(¢0) ,—B(k(0)) o _ Q||

= [e

This leads to
U, (1) = eBED)VNAGD)) gitH o~V NA(¢o) o~ B(k(0))

which satisfies an evolution equation in Fock
space:

10
(_._ — Hred) Ured(t)Q =0
Ureq(0)$2 = Q2

( Hyeq =" reduced Hamiltonian, can be com-
puted explicitly.)
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U,oq(1)2 = € would correspond to an exact
solution, which would follow if €2 satisfied the
same equation as U,eq(t)$2, namely

10
(—.— — Hred) Q =(Xo, X1, X2, X3,X4,0,--)

(X; = X,;(¢p,k), can be computed explicitly).
Impose 2 equations in 2 unknowns (¢ and k).

10
<_. — Hred) Q _ — HredQ
:(X07 07 Oa X37 X47 07 T )
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X1 =0 and Xo = 0.

are the time-dependent Hartree-Fock-Bogoliubov
equations in abstract form.

Based on just this one can see that the ex-
pected number of particles

(mVIAG~BHDIG pre—VFAGD)~BHDG)

(where N = [akazdx is the number operator),
as well as the energy

(= VRAGD)~BIO)Q, 3=V NAGD) ~BHD))

are preserved by the approximate evolution.
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Also, the equations are E.L. equations for [ Xj.

Similar results were obtained by Bach, Breteaux,
Chen, Frohlich and Sigal.
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In their concrete form , the HFB equations are
expressed in terms of the " generalized marginal
density matrices” (fix some of the variables,
average in the rest)

Cm,n(t,ilil, ey Imy Y1y - - ,yn) L=

1 —vVNA_—B
n m<ax1’.’a$me e ~€2, Ay1,

N 2

ayne

—\/NAQ—BQ>
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Also, it turns out that

Lo1(t,2) = 6(t,2)
L11(t,2,9) = 6t 2)6(t,y) + - (Sh() 0 Sh(K)) (1,2, )
=TIt z,vy)

Lo2(t,y) = B(t,2)6(t, ) + 5 -SN(2K) (1,2, )
=N, z,y)

and all the higher £ matrices can be expressed
in terms of these.
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Explicitly, the HFB equations are:

10
9 AL ) Lot
(iat :131) 0,1(t, 1)

= — /'UN(xl — 332>£1,2(t7752; xlaxQ)de

10
(__ _I_ Aacl _ Ayl) 'Cl,l(ta xl; yl)

1 Ot
= /’UN(331 —x2)Lo o(t, 1,22, y1,22)dT>
- /”UN(yl —y2) L2 2(t, 21, Y2, y1,Y2)dy2

(BBGKY, with £;; = ~+V1)
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10 1
(;a — Dgpy — Dgy + N’UN(-Tl — 332)) 50,2(75, T1,%2)
= — /UN($1 — y)£1,3(tay; $17x27y)dy

~ [on(e2 =) L1 3t yi 21,2, 9)dy
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The equation for A, which rules out k£ = O:

1 1
<;(9t — Qg — Dgpy + N’UN(CUI - xQ)) A(z1,72)

- (/ vy (21 — y)symr(y,y)dy> N(z1, o)
_ / (UN(Cvl - y))sym(/\(an,y)l_(y,a:Q))Symdy

+2 [dy{(on(er - ), [6W)P(1)é(w2) |

(f(@1,22)sym = f(w1,72) + f(22,71)),
oy (z) = N3By(NPr)
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In simplified form, as N — oo, and vy — 0 On
RHS,

1 1
0 — Dy — Dy + on(e1 — 2) ) A(w1,22)

1
—I(t,x1,z1)N(x1,20) + - -
with

7 N

r(t,x1,22)

= §(t,21)8(t,72) + - (Sh(E) 0 Sh(k)) (¢, 71, 2)
A(t,x1,x0)

1
— Qb(t, ZB]_)Qb(t, ZCQ) + ﬁ5h<2k)(t7 L1, 332>
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If we neglect v and k, and ¢ satisfied NLS, then
A and [ satisfy the at{ove elquation. The non-
linearity requires |V,|2|V,|2 derivatives for well-
posedness, and the natural coordinates for the
nonlinearity are x1 and x».
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For the linear part, if v is " nice” and/or small
and 8 =1,

Ton(z —y) = N20(N(z —y)) is in the critical
space L%(R3) uniformly in N and decay and
Strichartz estimate are available (going back
to Journe, Soffer and Sogge, and later Yajima,
and more recent results, including those for v
in the Kato class.)

But taking |vm|%|Vy|% changes the potential in
the equation for A to (essentially)
N3u(N(z — y)) for which Strichartz type esti-
mates do not apply - but have a special form,
as pointed out by Daniel Tataru.
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Also, the natural coordinates for the linear part
are x1 — x> and x1 + xo.

Part of the proof is going back and forth be-
tween z1, x> coordinates and z1 — x> and x1 +

To.
Another part is getting estimates with a RHS

in LY(d(z — y))L2(dtd(z + v)) (with additional
smoothness in time and x 4+ vy).
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Conserved quantities: Conservation of the num-
ber of particles and energy, and an interaction
Morawetz estimate

The total number of particles (divided by N)
IS

1
| Tz @)de = 18013240y + 1 ISNE OIF 2400

This allows, in principle, for ||5h(k)(t)||%2(dxdy)

to become as large as N in finite time, which
seems wrong, if one believes

1
where ¢ satisfies NLS with H2 data, and w is

bounded and w(Nz) ~ ﬁ if N|z| is large.

The main theorem shows that in fact, for
24,3 _3
2+5=32<p<oo
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with corresponding estimates for |V 4, |sh(k)
and o;sh(k). (B < 1. Chong, Dong, Gril-
lakis, M. and Zhao).

And, if B3 =1 (the critical case)

IShCEY O o ary La(aw) L2 (ay) < C

(but no time derivatives yet). Due to Xiaoqi
Huang.
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Ingredients in the proof

(Elementary) Sobolev, Bernstein, square func-
tion estimates in rotated coordinates.

The argument is based on the following lemma:

1 (T 1
Rzﬁ(-l I)

so that [[foR|| rp(dwyLa(dy) = I/l Lp(d(z—y)) L9(d(a+y))-
Let K = K(x) and denote Ké = K(x)i(y)
(tensor product).

Let

If
ICKS) * fllLp1(az)La(dy) S W Lp2(de)Lady)
Then

|(K3) * fllLp1 (d(xz—y))L1(d(x+7y)) N ||f||Lp2(d(a:—y))Lq(d(x—|—g
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Consequence: “Sobolev at an angle” estimate

Leta > 0,1 <p,q, < ocoand assume the Sobolev
. (8%
estimate [|ul| pp(gz) < ||<V;C> | La(dag) Olds. Then

N Ze(d(z—y)) L2(d(@4))
< min{l{Vae) Al Logage—y) 22(de+4)):
1(V5) Mlaate—p)22(aG+o))}
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There are similar Bernstein estimates ""at an
angle”. Also, estimates for a “double square
function” in rotated coordinates:

Let 1 <p<oo. Then

1
2

2
| k/z];// |P|€|N2k7 |n|N2k’f| HLP(d(:U—y))LQ(d(w—I—y))

~ Wl Lo ae—y)) L2 (d(a4y))
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Another ingredient: Collapsing estimates, mix-
and-match inhomogeneous Strichartz estimates,
and "new” estimate:

Let (10; — Agy + Dyy) T =0,
(or 26, — [A,T] = 0)

Collapsing estimates, using space-time Fourier
transform: going back to estimates for the
wave equation from the early 90s Klainerman-
M, Beals-Bezard -around the same time as
Chris made the local smoothing conjecture for
the wave equation.
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Collapsing estimate:

(8% (0%
1Vl Tt 2, 2) ) 2 anaey < CIVe) (Vo) Toll L2 ¢y

True for a > 3, likely not true for o = 5. More
generally,

|| |vac—|-y|ar||L00(d(x—y))L2(dtd(iC+y))
< ClI{Va) (Vy) Toll L2(dway)

The method was further developed by Thomas
Chen, Younghun Hong and Natasa Pavlovic,
and several other authors.
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A side remark: One cannot lower the LP(dtdx)
norm on the LHS (Xiumin Du, M.)

If

V1T &z 2) | poany pacdz) S 1T 0(@ W s (dedy)
for some o> 0,s > 0. Then p>2 and g > 2.

The proof uses estimates for sums of wave
packet solutions.



Another approach for

||I_(t7 L, x)HLP/Q(dt)LQ/Q(dx) N |||_O||Schatten norm

due to Frank and Sabin. (p,q Strichartz ex-
ponents).

(Restriction theorems for orthonormal functions,
strichartz estimates and uniform Sobolev esti-
mates)

If T(t,z,y) = &(t,x)p(t,z) with ¢ satisfying a
linear Schrodinger equation, the LHS can be
estimates by Strichartz.

If the compact self-adjoint operator I has a
diagonalization (¢, z,y) = 3521 Ao (t, z)¢(t, )
with ¢; orthonormal, the estimate

Hr(tvxax)HLp/Q(dt)LQ/Q(dx) N Z ‘>‘Z| — HI_OHSchatten(l)
follows trivially. Such an estimate is not true

(without extra derivatives on the LHS and RHS)
with the RHS in L2 = H — § = Schatten(2).
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Frank and Sabin found the optimal range of p, q
and the optimal Schatten space. Their proof
IS based on Stein interpolation proof of the
restriction theorem. Their method gives dif-
ferent types of results from the K-M method(
except in 1 4+ 1 dimensions, where they almost

agree).

Their paper also extends uniform Sobolev es-
timates of Kenig, Ruiz, and Sogge in Schatten

spaces.
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The corresponding sharp collapsing estimate
for the ++4 Schrodinger equation holds (with
the same type of proof):

If (10¢ — Day — Day) A=0,

1/2
| |V|a;{|_y/\||L00d((x—y))L2(dtd(w-|—y))

1/2 1/2
SNIVI 219152 Ao(@ )12 dway)

a7



Another ingredient: Generalized Strichartz es-
timates.

If
1
i
(z € R3), 2 < p< o and

2 3 3
4T ==

p q 2
then

lull Lreaey La(dz) < Clluoll g2
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It is straightforward to generalize this to u(t, z, y)
satisfying

1
(/
then

lull Lo aey La(de) 22(dy) < Clluollz2

Such spaces were used by Xuwen Chen and
Justin Holmer in the context of BBGKY.
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In the proof of the main theorem, one needs
"mix-and-match” inhomogeneous estimates: Let

1
1

(with initial conditions 0). Then
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max {||u||L2(dt)L6(de)L2(dy)’ lull L2ty L6 (ay) £2(dz)-

lull 2(a) 16 (d(2—y)) L2 (d(a4y)) }

< min {I|f|l LAl

L2(a) L (dz)L2(dy) " " L2(dt) L8 (dy) L2(dx)

||fIILQ(dt)Lg(d(x_y>)L2(d(a:+y))}

All quantities on the LHS can be estimated
easily for the homogeneous equation, and the

non-endpoint inhomogeneous estimate follows
by Christ-Kiselev.
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Some of the double end-point results follow
the Keel-Tao strategy, based on

1
Il oo gy L2(ay) = 37 MO L (a(e—y)) L2(a(+y)

But the dispersive estimate does not hold when
flipping x and y - yet Strichartz still works. The
proof of this last case has not appeared in print

yet.
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Regarding

1
[ oo (ary2(ay) = 372 1O L (da—y)) L2(ACa+y)
after some reductions, this follows from, for
any ug,

sup || Z (eitAuk) JRIZA
v orthonormal

1 1
S @H (2 lurl?)? HLl(R3)'

UkHLQ(]R3)
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For any A € S(R3), let

e R A(z)e*™ = A(xz + 2tD) where

D=p= %a%' computed by Weyl quantization
to have the kernel

L 1 ~ (—X -|- Y —iﬁ Zﬁ
Ki(z,y) = (47Tt)3A ( Dt ) ¢ med
|22 [yl?

— Bt’x(y)e_zTQth

Notice

C

|Btll 12¢qy) = 3 All L2-
£2
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If ||Al|;2 = 1, compute, by duality,

= /ZeitAuk(x)A(:I;)eitAvk(w)dw
=) < By, Aet Py, >= > < uy, e HA At By >
=) < uy, A(a:- + 2tD)v; >

|y|?

= 3 [ e u (@) Bra ) oy ) dy

from which the estimate follows after addi-
tional standard reductions.
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As an application of this type of mix-and-match
end-point Strichartz estimates, if Ng is fixed,
v IS small, one can show that solutions to

1 Ng Ng
(.875 - Z A:cz- + Z NQU(N(QZ‘Z' — m])) u=20

¢ i=1 i =1
satisfy

HUHLP(dt)Lq(dxl)LQ(d:cQ---dazn) 5 ||U(O)||L2
(uniformly in N)

T he original result of this type is due to Younghun
Hong (2017), using X and Y spaces.

Our method also gives Strichartz estimates for
the inhomogeneous equation.
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"New' estimates, going beyond Strichartz Let
1
(fat_Ax_Ay)uzf
1

where f stands for N3uv(N(z—y)A(t, z,vy). Then

||u||L2(dt)L6(dx)L2(dy)

1
S MO Fll L1 caca—y)) £2¢at) d(z+y))

1
+ IV 4y A L (a—y)) L2t d(at9)))

Dyadic version, and non-shart global version :
Chong, Dong, Grillakis, M., Zhao.

Strategy: divide by the symbol away from the
characteristic set, in the spirit of X$? spaces,
and use Strichartz estimates when 7 >> [£]2 +

In|?

Sharp version, using clever additional dyadic
decompositions: Xiaoqi Huang.
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Linear estimate (Xiaoqi's sharp version) Let

%(% — Dy — Dy + N2v(N(x — y))>/\(t, T,y)
=G

(v compactly supported, small). Then
1 1
1{V2)?( V) > Ml Loaey oy 12 (ay)
1
+ 1V aty) *Nel Inls v Lo (e —9)) L2 ety
1
+ 1101 * Mgl oo (a9 L2+t

5 HGHnon—end—pOint dual Strichartz
1 1

+ 11{V2)2(Vy)?Aoll 12
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As things stand, the (UMD-affiliate) answer
to the original approximation problem is: let

O0<e< % Then for all N sufficiently large,

. rt
sup ||Yexact(t) — €' Jo XO(S)dSwaDDr(ﬂHFock
te[0,T]
1
< NS4+ N1Ta+1)2.
In view of the results of Caraci, Oldenburg and

Schlein, the truth (for 1 < 8 < 1) is probably
something like

. rt
SUD || Yexact(t) — €' Jo X0 sy o (O] Fock
te[0,T]

< C(ON%

assuming %<Vx>%<v:y>%/\0 c L2 or, equiva-
lently, (—Am—Ay—l—sz(N(a:—y)))<Vx>%<vy>%/\o e

L2 uniformly in N,
which imposes non-trivial but natural restric-
tions on the initial conditions.



This is work in progress!



