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Overview of the problem:

Approximate symmetric solutions to the many-

body problem

1

i

∂

∂t
ψN(t, x1, · · ·xN) = HNψN(t, x1, · · ·xN)

ψN(0, x1, · · ·xN) = (or ∼)ϕ0(x1)ϕ0(x2) · · ·ψ0(xN)

where

HN =
N∑
j=1

∆xj −
1

N

∑
i<j

vN(xi − xj)

N is large but fixed, xk ∈ R3, v ∈ S, v ≥ 0 (with

additional assumptions) and 0 < β ≤ 1 and

vN(x) = N3βv(Nβx). Approximate ψN with

combinations of solutions to a non-linear PDE

in much fewer variables
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One answer: NLS and Gross-Pitaevskii, i.e.

NLS with a different coupling constant.

ψN(t, x1, · · ·xN) ∼ ϕ(t, x1)ϕ(t, x2) · · ·ϕ(t, xN)

where ϕ satisfies

1

i

∂

∂t
ϕ−∆ϕ+ c|ϕ|2ϕ = 0

The coupling constant changes from

β < 1 (c =
∫
v)

to β = 1 (c = scattering length of v). Rigorous

work by Elgart, Erdös, Schlein and Yau.

3



A proposed more detailed answer than NLS:

”Hartree-Fock-Bogoliubov equations”. The ap-

proximation involves not only a ϕ(t, x) but also

a function k(t, x, y).

A function like k (but not the Schrödinger-like

PDE I will talk about) is standard. Usually, ϕ

is taken to be a solution to NLS, while k is

determined by an elliptic equation involving ϕ.

The HFB equations are a coupled system of

Schrödinger type equations in 3 + 1 variables

and 6+ 1 variables.
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The equations were derived in a paper by M.

Grillakis and me (2013) and are closely re-

lated to those derived independently by Bach,

Breteaux, T. Chen, Fröhlich and Sigal ,

and also Benedikter, Sok, and Solovej (2018).

Our work is based on earlier work with D. Mar-

getis.
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HFB equations share common features with

BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon),

used by Elgart, Erdös, Schlein and Yau. For ψ

satisfying

1

i

∂

∂t
ψN(t, x1, · · ·xN) = HNψN(t, x1, · · ·xN)

Consider ψ̄N(t,x)ψN(t,y), average out most

variables, and look at the marginal density ”ma-

trices”

γ
(k)
N (t,xk,yk)

=
∫
ψ̄N(t,xk,xN−k)ψN(t,yk,xN−k)dxN−k
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These satisfy a hierarchy of equations, for all

N γ
(k)
N ”matrices”:(

1

i

∂

∂t
+∆x1 −∆y1

)
γ̄
(1)
N (t, x1; y1)

=
N − 1

N

∫
vN(x1 − x2)γ̄

(2)
N (t, x1, x2; y1, x2)dx2

−
N − 1

N

∫
vN(y1 − y2)γ̄

(2)
N (t, x1, y2; y1, y2)dy2
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(
1

i

∂

∂t
+
(
∆x1,x2 −

1

N
vN(x1 − x2)

)

−
(
∆y1,y2 −

1

N
vN(y1 − y2)

))
γ̄
(2)
N (t, x1, x2; y1, y2)

=
N − 2

N

∫
vN(x1 − x3)γ̄

(3)
N (t, x1, x2, x3; y1, y2, x3)dx3

+
N − 2

N

∫
vN(x2 − x3)γ̄

(3)
N (t, x1, x2, x3; y1, y2, x3)dx3

−
N − 2

N

∫
vN(y1 − y3)γ̄

(3)
N (t, x1, x2y3; y1, y2, y3)dy3

−
N − 2

N

∫
vN(y2 − y3)γ̄

(3)
N (t, x1, x2y3; y1, y2, y3)dy3

· · ·

8



Formally, as N → ∞, vN → δ and

γ
(k)
N → γ(k)

satisfies the Gross-Pitaevskii hierarchy(
1

i

∂

∂t
+∆x1 −∆y1

)
γ̄(1)(t, x1; y1)

= cγ̄(2)(t, x1, x1; y1, x1)

− cγ̄
(2)
N (t, x1, y1; y1, y1)

· · ·

which admits solutions

γ̄(1) = ϕ(t, x1)ϕ̄(t, y1)

γ̄(2) = ϕ(t, x1)ϕ(t, x2)ϕ̄(t, y1)ϕ̄(t, y2)

where (
1

i

∂

∂t
+∆

)
ϕ− c|ϕ|2ϕ = 0

The well-known work of Elgart, Erdos, Schlein

and Yau: this is true for β < 1 with c =
∫
v,

and c scattering length of v for β = 1.
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Heuristically, the change of coupling constant

when β = 1 comes from the fact that the true

form of γ(2)N is closer to

γ̄
(2)
N

=ϕ(t, x1)ϕ(t, x2)fN(x1, x2)

ϕ̄(t, y1)ϕ̄(t, y2)fN(y1, y2)

and fN accounts for correlations.
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In previous work, fN (related to our k) is de-

termined by an elliptic equation(
−∆+

1

2N
vN(x)

)
fN(x) = 0

lim
x→∞ fN(x) = 1

(Green will always refer to objects determined

by this type of elliptic equation, while blue

will be reserved to objects determined through

HFB.)
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The HFB equations are a coupled system of

Schrödinger-type PDEs for for ϕN (denoted ϕ,

representing ”the condensate”), ΓN = Γ (a

Fock space γ(1)N matrix)

and ΛN(t, x1, x2) = Λ(t, x1, x2) which plays the

role of ϕN(t, x1)ϕN(t, x2)fN(x1, x2),

but also allows the correlations to form dynam-

ically in time.
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The HFB equations are derived in Fock space.

Fock space has been used in order to get es-

timates for the rate of convergence of the ap-

proximation to the exact solution.

First one for marginal densities γ
(k)
N : Rodni-

anski and Schlein (2009).

First one for L2(RN) through Fock space: Gril-

lakis, M, Margetis (2010).

Efficient direct estimates in L2(RN) (using Fock

space type estimates) Lewin, Nam and Schlein

(2015).

Inspired by older work of Hepp (1974), Ginibre

and Velo (1979).
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One model (analysts’ Fock space), which sug-

gests useful analogies:

F = L2(Rn)

Ω = e−
|x|2
2

a∗i =
1√
2

(
−
∂

∂xi
+ xi

)

ai =
1√
2

(
∂

∂xi
+ xi

)
[ai, a

∗
j ] = δij

Exponentials of skew-Hermitian linear in cre-

ation and annihilation (or position and momen-

tum) used for ”coherent states”.

Exponentials of skew-Hermitian quadratic ex-

pressions in creation and annihilation opera-

tors: the metaplectic representation. (I learned

these from Folland’s book ”Harmonic analysis

in phase space”).
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Switch to physicists’ symmetric Fock space

(different space, same algebra)

F = {(ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), · · · )}

with l2(L2) inner product and norm. For

f ∈ L2(R3) the (unbounded, closed, densely

defined) creation operator a∗(f) : F → F and

annihilation a(f̄) : F → F are defined by(
a∗(f)ψn−1

)
(x1, x2, · · · , xn) =

1
√
n

n∑
j=1

f(xj)ψn−1(x1, · · · , xj−1, xj+1, · · ·xn)

and (
a(f)ψn+1

)
(x1, x2, · · · , xn) =√

n+1
∫
ψ(n+1)(x, x1, · · · , xn)f(x)dx
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Also, define the operator valued distributions

a∗x and ax by

a∗(f) =
∫
f(x)a∗xdx

a(f) =
∫
f(x)axdx

These satisfy the canonical relations

[ax, a
∗
y] = δ(x− y)

[ax, ay] = [a∗x, a
∗
y] = 0
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HN =
∫
a∗x∆axdx−

1

2N

∫
v(x− y)a∗xa

∗
yaxaydxdy

HN is a diagonal operator on F which acts on

each component ψn as a PDE Hamiltonian

HN,n =
n∑

j=1

∆xj −
1

N

∑
i<j

v(xi − xj)
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Let ϕ ∈ L2(R3) Define

A(ϕ) = a(ϕ)− a∗(ϕ)

e−
√
NA(ϕ) (= Weyl operator)

(Stone-von Neumann representation of the ”Heisen-

berg group” = L2(Rn,C) × R with symplectic

inner product ℑ
∫
fḡ)

Let Ω = (1,0,0, · · · ) ∈ F and

e−
√
NA(ϕ)Ω

= e−N/2
1, · · · ,(Nn

n!

)1/2
ϕ(x1) · · ·ϕ(xn), · · ·


is a coherent state, similar to a wave packet

in classical PDEs/analysis.
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Introduce the pair excitation function k(t, x, y)

via

B =
1

2

∫ (
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

)
dxdy

eB = metaplectic representation

of the “real” symplectic matrix,

exp

(
0 k
k 0

)
=

(
ch(k) sh(k)
sh(k) ch(k)

)

(k ∈ L2(dxdy)) called Bogoliubov transforma-

tions by

mathematical physicists. The conjugation

eBA(ϕ)e−B = A(symplectic transformation)(ϕ, ϕ̄)

so this is a kind of Egorov theorem.

ch(k)(t, x, y) = δ(x− y) +
1

2
k̄ ◦ k+ · · ·

In the analysts’ Fock space, eB is related to

eit (∆+|x|2), and the lens transform.
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Interesting to note that the theory of Bogoli-

ubov transformations or metaplectic represen-

tation evolved independently in Physics and

Math.

Shale’s 1962 paper ”Linear symmetries of free

Boson fields” makes no reference to Bogoli-

ubov.

Bogoliubov’s 1947 paper makes no reference

to the Stone and Von Neumann theorem from

1931. This states that any two unitary irre-

ducible representations of the (finite dimen-

sional) Heisenberg group (with an additional

assumption) are conjugated by a unitary ”Bo-

goliubov transformation”.
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Formal derivation of HFB equations (Grillakis-

M version).

Start with initial conditions which are pure ten-

sor products

e−
√
NA(ϕ0)Ω

= e−N/2
1, · · · ,(Nn

n!

)1/2
ϕ0(x1) · · ·ϕ0(xn), · · ·


or more general initial conditions which include

correlations

e−
√
NA(ϕ0)eB(k0)Ω = (?, ??, · · · )

(similar to the above, but also include th(k)(xi, xk)),

coming from the ”LDU” decomposition of eK.
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Evolve these under the exact Hamiltonian

Ψexact = eitHNe−
√
NA(ϕ0)eB(k0)Ω

and impose two PDEs for ϕ and k so Ψexact

is approximated, in Fock space, by

Ψapprox = e−
√
NA(ϕ(t))e−B(k(t))Ω

(The linear PDE in N variables is approxi-

mated by PDEs in 3 and 6 variavles)
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The approach of Benedikter, de Oliveira and

Schlein (2015), Bocatto, Cenatiempo and

Schlein (2017), and Caraci, Oldenburg and

Schlein (2024) : Impose the expected NLS

equation for ϕ and define k by an explicit for-

mula. For β = 1, the formula is in the spirit of

k(t, x, y) = −Nϕ(t, x)ϕ(t, y)w(N(x− y))

where 1− w, called f earlier,(
−∆+

1

2
v

)
(1− w) = 0

while for β < 1 this has to be modified but is

similar in spirit.
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Then Ψapprox = e−
√
NA(ϕ(t))e−B(k(t))Ω provides

an approximation for Ψexact in the sense of

marginal densities if β = 1. Also Ψapprox mod-

ified by an additional unitary transformation

provides a Fock space norm approximation if

β < 1. This seemed best possible. Very re-

cently (2024), Caraci, Oldenburg and Schlein

made a version of this approach give Fock

space estimates in the case β = 1. There is a

story here!

k accounts for correlations, and these have to

be present in the initial conditions (pure tensor

products won’t work).
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Our approach: the Hartree-Fock-Bogoliubov

PDEs:

∥eitHe−
√
NA(ϕ0)e−B(k(0))Ω− e−

√
NA(ϕ(t))e−B(k(t))Ω∥

= ∥eB(k(t))e
√
NA(ϕ(t))eitHe−

√
NA(ϕ0)e−B(k(0))Ω−Ω∥

This leads to

Ured(t) = eB(k(t))e
√
NA(ϕ(t))eitHe−

√
NA(ϕ0)e−B(k(0))

which satisfies an evolution equation in Fock

space: (
1

i

∂

∂t
−Hred

)
Ured(t)Ω = 0

Ured(0)Ω = Ω

( Hred = ” reduced Hamiltonian”, can be com-

puted explicitly.)
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Ured(t)Ω = Ω would correspond to an exact

solution, which would follow if Ω satisfied the

same equation as Ured(t)Ω, namely(
1

i

∂

∂t
−Hred

)
Ω = 0

This, of course, is not possible. In reality,(
1

i

∂

∂t
−Hred

)
Ω =(X0, X1, X2, X3, X4,0, · · · )

(Xi = Xi(ϕ, k), can be computed explicitly).

Impose 2 equations in 2 unknowns (ϕ and k).(
1

i

∂

∂t
−Hred

)
Ω =−HredΩ

=(X0,0,0, X3, X4,0, · · · )
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X1 = 0 and X2 = 0.

are the time-dependent Hartree-Fock-Bogoliubov

equations in abstract form.

Based on just this one can see that the ex-

pected number of particles〈
e−

√
NA(ϕ(t))e−B(k(t))Ω,N e−

√
NA(ϕ(t))e−B(k(t))Ω

〉
(where N =

∫
a∗xaxdx is the number operator),

as well as the energy〈
e−

√
NA(ϕ(t))e−B(k(t))Ω,He−

√
NA(ϕ(t))e−B(k(t))Ω

〉
are preserved by the approximate evolution.
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Also, the equations are E.L. equations for
∫
X0.

Similar results were obtained by Bach, Breteaux,

Chen, Fröhlich and Sigal.
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In their concrete form , the HFB equations are

expressed in terms of the ”generalized marginal

density matrices” (fix some of the variables,

average in the rest)

Lm,n(t, x1, . . . , xm; y1, . . . , yn) :=
1

N
n+m
2

〈
ax1, ·, axme

−
√
NAe−BΩ, ay1, ·, ayne

−
√
NAe−BΩ

〉
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Also, it turns out that

L0,1(t, x) = ϕ(t, x)

L1,1(t, x, y) = ϕ(t, x)ϕ(t, y) +
1

N
(sh(k) ◦ sh(k))(t, x, y)

:= Γ(t, x, y)

L0,2(t, x, y) = ϕ(t, x)ϕ(t, y) +
1

2N
sh(2k)(t, x, y)

:= Λ(t, x, y)

and all the higher L matrices can be expressed

in terms of these.
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Explicitly, the HFB equations are:(
1

i

∂

∂t
−∆x1

)
L0,1(t, x1)

= −
∫
vN(x1 − x2)L1,2(t, x2;x1, x2)dx2

(
1

i

∂

∂t
+∆x1 −∆y1

)
L1,1(t, x1; y1)

=
∫
vN(x1 − x2)L2,2(t, x1, x2; y1, x2)dx2

−
∫
vN(y1 − y2)L2,2(t, x1, y2; y1, y2)dy2

(BBGKY, with Li,i = γ
(i)
N !)
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(
1

i

∂

∂t
−∆x1 −∆x2 +

1

N
vN(x1 − x2)

)
L0,2(t, x1, x2)

= −
∫
vN(x1 − y)L1,3(t, y;x1, x2, y)dy

−
∫
vN(x2 − y)L1,3(t, y;x1, x2, y)dy
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The equation for Λ, which rules out k = 0:(
1

i
∂t −∆x1 −∆x2 +

1

N
vN(x1 − x2)

)
Λ(x1, x2)

= −
(∫

vN(x1 − y)symΓ(y, y)dy
)
Λ(x1, x2)

−
∫ (

vN(x1 − y)
)
sym

(
Λ(x1, y)Γ(y, x2)

)
sym

dy

+2
∫
dy

{(
vN(x1 − y)

)
sym

|ϕ(y)|2ϕ(x1)ϕ(x2)
}

(
f(x1, x2)sym = f(x1, x2) + f(x2, x1)

)
,

vN(x) = N3βv(Nβx)
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In simplified form, as N → ∞, and vN → δ on

RHS,(
1

i
∂t −∆x1 −∆x2 +

1

N
vN(x1 − x2)

)
Λ(x1, x2)

= −Γ(t, x1, x1)Λ(x1, x2) + · · ·

with

Γ(t, x1, x2)

= ϕ(t, x1)ϕ(t, x2) +
1

N
(sh(k) ◦ sh(k))(t, x1, x2)

Λ(t, x1, x2)

= ϕ(t, x1)ϕ(t, x2) +
1

2N
sh(2k)(t, x1, x2)
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If we neglect v and k, and ϕ satisfied NLS, then

Λ and Γ satisfy the above equation. The non-

linearity requires |∇x1|
1
2|∇x2|

1
2 derivatives for well-

posedness, and the natural coordinates for the

nonlinearity are x1 and x2.
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For the linear part, if v is ”nice” and/or small

and β = 1,
1
NvN(x − y) = N2v(N(x − y)) is in the critical

space L
3
2(R3) uniformly in N and decay and

Strichartz estimate are available (going back

to Journe, Soffer and Sogge, and later Yajima,

and more recent results, including those for v

in the Kato class.)

But taking |∇x|
1
2|∇y|

1
2 changes the potential in

the equation for Λ to (essentially)

N3v(N(x − y)) for which Strichartz type esti-

mates do not apply - but have a special form,

as pointed out by Daniel Tataru.
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Also, the natural coordinates for the linear part

are x1 − x2 and x1 + x2.

Part of the proof is going back and forth be-

tween x1, x2 coordinates and x1 − x2 and x1 +

x2.

Another part is getting estimates with a RHS

in L1(d(x− y))L2(dt d(x+ y)) (with additional

smoothness in time and x+ y).
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Conserved quantities: Conservation of the num-

ber of particles and energy, and an interaction

Morawetz estimate

The total number of particles (divided by N)

is∫
Γ(t, x, x)dx = ∥ϕ(t)∥2

L2(dx) +
1

N
∥sh(k)(t)∥2

L2(dxdy)

This allows, in principle, for ∥sh(k)(t)∥2
L2(dxdy)

to become as large as N in finite time, which

seems wrong, if one believes

k(t, x, y) ∼ Nϕ(t, x)ϕ(t, y)w(N(x− y)

where ϕ satisfies NLS with H
1
2 data, and w is

bounded and w(Nx) ∼ 1
N |x| if N |x| is large.

The main theorem shows that in fact, for
2
p + 3

q = 3
2, 2 ≤ p ≤ ∞,
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∥sh(k)(t)∥Lp(dt)Lq(dx)L2(dy) ≤ C logN ( C indep of N)

with corresponding estimates for |∇x+y|sh(k)
and ∂tsh(k). (β < 1: Chong, Dong, Gril-

lakis, M. and Zhao).

And, if β = 1 (the critical case)

∥sh(k)(t)∥Lp(dt)Lq(dx)L2(dy) ≤ C

(but no time derivatives yet). Due to Xiaoqi

Huang.
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Ingredients in the proof

(Elementary) Sobolev, Bernstein, square func-
tion estimates in rotated coordinates.

The argument is based on the following lemma:

Let

R =
1√
2

(
I I
−I I

)

so that ∥f◦R∥Lp(dx)Lq(dy) = ∥f∥Lp(d(x−y))Lq(d(x+y)).
Let K = K(x) and denote Kδ = K(x)δ(y)
(tensor product).

If

∥(Kδ) ∗ f∥Lp1(dx)Lq(dy) ≲ ∥f∥Lp2(dx)Lq(dy)

Then

∥(Kδ) ∗ f∥Lp1(d(x−y))Lq(d(x+y)) ≲ ∥f∥Lp2(d(x−y))Lq(d(x+y))
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Consequence: “Sobolev at an angle” estimate

Let α > 0, 1 ≤ p, q,≤ ∞ and assume the Sobolev

estimate ∥u∥Lp(dx) ≲ ∥
〈
∇x

〉α
∥Lq(dx) holds. Then

∥Λ∥Lp(d(x−y))L2(d(x+y))

≲ min{∥
〈
∇x

〉α
Λ∥Lq(d(x−y))L2(d(x+y)),

∥
〈
∇y

〉α
Λ∥Lq(d(x−y))L2(d(x+y))}
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There are similar Bernstein estimates ”at an

angle”. Also, estimates for a “double square

function” in rotated coordinates:

Let 1 < p <∞ . Then

∥

 ∑
k′,k′′

|P|ξ|∼2k, |η|∼2k′
f |2


1
2

∥Lp(d(x−y))L2(d(x+y))

∼ ∥f∥Lp(d(x−y))L2(d(x+y)).
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Another ingredient: Collapsing estimates, mix-

and-match inhomogeneous Strichartz estimates,

and ”new” estimate:

Let
(
1
i ∂t −∆x1 +∆x2

)
Γ = 0.

(or 1
i ∂tΓ− [∆,Γ] = 0)

Collapsing estimates, using space-time Fourier

transform: going back to estimates for the

wave equation from the early 90s Klainerman-

M, Beals-Bezard -around the same time as

Chris made the local smoothing conjecture for

the wave equation.
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Collapsing estimate:

∥|∇x|αΓ(t, x, x)∥L2(dtdx) ≤ C∥
〈
∇x

〉α〈
∇y

〉α
Γ0∥L2(dxdy)

True for α > 1
2, likely not true for α = 1

2. More

generally,

∥|∇x+y|αΓ∥L∞(d(x−y))L2(dtd(x+y))

≤ C∥
〈
∇x

〉α〈
∇y

〉α
Γ0∥L2(dxdy)

The method was further developed by Thomas

Chen, Younghun Hong and Natasa Pavlovic,

and several other authors.
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A side remark: One cannot lower the Lp(dt dx)

norm on the LHS (Xiumin Du, M.)

If

∥|∇|αxΓ(t, x, x)∥Lp(dt)Lq(dx) ≲ ∥Γ0(x, y)∥Hs(dxdy)

for some α ≥ 0, s ≥ 0. Then p ≥ 2 and q ≥ 2.

The proof uses estimates for sums of wave

packet solutions.



Another approach for

∥Γ(t, x, x)∥
Lp/2(dt)Lq/2(dx) ≲ ∥Γ0∥Schatten norm

due to Frank and Sabin. (p, q Strichartz ex-

ponents).

(Restriction theorems for orthonormal functions,

strichartz estimates and uniform Sobolev esti-

mates)

If Γ(t, x, y) = ϕ̄(t, x)ϕ(t, x) with ϕ satisfying a

linear Schrödinger equation, the LHS can be

estimates by Strichartz.

If the compact self-adjoint operator Γ has a

diagonalization Γ(t, x, y) =
∑∞
i=1 λiϕ̄(t, x)ϕ(t, x)

with ϕi orthonormal, the estimate

∥Γ(t, x, x)∥
Lp/2(dt)Lq/2(dx) ≲

∑
|λi| = ∥Γ0∥Schatten(1)

follows trivially. Such an estimate is not true

(without extra derivatives on the LHS and RHS)

with the RHS in L2 = H − S = Schatten(2).
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Frank and Sabin found the optimal range of p, q

and the optimal Schatten space. Their proof

is based on Stein interpolation proof of the

restriction theorem. Their method gives dif-

ferent types of results from the K-M method(

except in 1+1 dimensions, where they almost

agree).

Their paper also extends uniform Sobolev es-

timates of Kenig, Ruiz, and Sogge in Schatten

spaces.
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The corresponding sharp collapsing estimate

for the ++ Schrödinger equation holds (with

the same type of proof):

If
(
1
i ∂t −∆x1 −∆x2

)
Λ = 0,

∥|∇|1/2x+yΛ∥L∞d((x−y))L2(dtd(x+y))

≲ ∥|∇|1/2x |∇|1/2y Λ0(x, y)∥L2(dxdy)
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Another ingredient: Generalized Strichartz es-

timates.

If (
1

i
∂t −∆x

)
u = 0

(x ∈ R3), 2 ≤ p ≤ ∞ and

2

p
+

3

q
=

3

2

then

∥u∥Lp(dt)Lq(dx) ≤ C∥u0∥L2
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It is straightforward to generalize this to u(t, x, y)

satisfying (
1

i
∂t −∆x −∆y

)
u = 0

then

∥u∥Lp(dt)Lq(dx)L2(dy) ≤ C∥u0∥L2

Such spaces were used by Xuwen Chen and

Justin Holmer in the context of BBGKY.
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In the proof of the main theorem, one needs

”mix-and-match” inhomogeneous estimates: Let(
1

i
∂t −∆x −∆y

)
u = f

(with initial conditions 0). Then
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max

{
∥u∥L2(dt)L6(dx)L2(dy), ∥u∥L2(dt)L6(dy)L2(dx),

∥u∥L2(dt)L6(d(x−y))L2(d(x+y))

}

≲min

{
∥f∥

L2(dt)L
6
5(dx)L2(dy)

, ∥f∥
L2(dt)L

6
5(dy)L2(dx)

,

∥f∥
L2(dt)L

6
5(d(x−y))L2(d(x+y))

}

All quantities on the LHS can be estimated

easily for the homogeneous equation, and the

non-endpoint inhomogeneous estimate follows

by Christ-Kiselev.
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Some of the double end-point results follow

the Keel-Tao strategy, based on

∥u(t)∥L∞(dx)L2(dy) ≲
1

t3/2
∥u(0)∥L1(d(x−y))L2(d(x+y)

But the dispersive estimate does not hold when

flipping x and y - yet Strichartz still works. The

proof of this last case has not appeared in print

yet.

52



Regarding

∥u(t)∥L∞(dx)L2(dy) ≲
1

t3/2
∥u(0)∥L1(d(x−y))L2(d(x+y)

after some reductions, this follows from, for

any uk,

sup
vk orthonormal

∥∥∥∑(
eit∆uk

)
eit∆vk

∥∥∥
L2(R3)

≲
1

t3/2

∥∥∥ (∑ |uk|2
)1
2
∥∥∥
L1(R3)

.
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For any A ∈ S(R3), let

e−it∆A(x)eit∆ = A(x+2tD) where

D = p = 1
i
∂
∂x, computed by Weyl quantization

to have the kernel

Kt(x, y) =
1

(4πt)3
Â

(−x+ y

2t

)
e−i

|x|2
4t ei

|y|2
4t

= Bt,x(y)e
−i|x|

2

4t ei
|y|2
4t

Notice

∥Bt,x∥L2(dy) =
c

t
3
2

∥A∥L2.
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If ∥A∥L2 = 1, compute, by duality,

=
∫ ∑

eit∆uk(x)A(x)e
it∆vk(x)dx

=
∑

< eit∆uk, Ae
it∆vk >=

∑
< uk, e

−it∆Aeit∆vk >

=
∑

< uk, A(x+2tD)vk >

=
∑∫

ei
|x|2
4t uk(x)Bt,x(y)e

i
|y|2
4t vk(y)dx dy

from which the estimate follows after addi-

tional standard reductions.
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As an application of this type of mix-and-match

end-point Strichartz estimates, if N0 is fixed,

v is small, one can show that solutions to1

i
∂t −

N0∑
i=1

∆xi +
N0∑
i,j=1

N2v(N(xi − xj)

u = 0

satisfy

∥u∥Lp(dt)Lq(dx1)L2(dx2 ···dxn) ≲ ∥u(0)∥L2

(uniformly in N)

The original result of this type is due to Younghun

Hong (2017), using X and Y spaces.

Our method also gives Strichartz estimates for

the inhomogeneous equation.
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”New” estimates, going beyond Strichartz Let(
1

i
∂t −∆x −∆y

)
u = f

where f stands for N3v(N(x−y)Λ(t, x, y). Then

∥u∥L2(dt)L6(dx)L2(dy)

≲ ∥|∂t|
1
4f∥L1(d(x−y))L2(dt) d(x+y))

+ ∥|∇|
1
2
x+yf∥L1(d(x−y))L2(dt d(x+y)))

Dyadic version, and non-shart global version :
Chong, Dong, Grillakis, M., Zhao.

Strategy: divide by the symbol away from the
characteristic set, in the spirit of Xs,b spaces,
and use Strichartz estimates when τ >> |ξ|2+
|η|2

Sharp version, using clever additional dyadic
decompositions: Xiaoqi Huang.
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Linear estimate (Xiaoqi’s sharp version) Let

1

i

(
∂

∂t
−∆x −∆y +N2v(N(x− y))

)
Λ(t, x, y)

= G

(v̂ compactly supported, small). Then

∥
〈
∇x

〉1
2
〈
∇y

〉1
2Λ∥Lp(dt)Lq(dx)L2(dy)

+ ∥
〈
∇x+y

〉1
2Λ|ξ|,|η|≲N∥L∞(d(x−y))L2(d(x+y)dt)

+ ∥
∣∣∣∂t∣∣∣14Λ|ξ|,|η|≲N∥L∞(d(x−y))L2(d(x+y)dt)

≲ ∥G∥non−end−point dual Strichartz

+ ∥
〈
∇x

〉1
2
〈
∇y

〉1
2Λ0∥L2
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As things stand, the (UMD-affiliate) answer

to the original approximation problem is: let

0 < ϵ < 1−β
2 . Then for all N sufficiently large,

sup
t∈[0,T ]

∥ψexact(t)− ei
∫ t
0X0(s)dsψappr(t)∥Fock

≲ϵ N−ϵ+N−1(1 + T )
1
2 .

In view of the results of Caraci, Oldenburg and

Schlein, the truth (for 1 < β ≤ 1) is probably

something like

sup
t∈[0,T ]

∥ψexact(t)− ei
∫ t
0X0(s)dsψappr(t)∥Fock

≲ C(t)N−1
4

assuming ∂
∂t

〈
∇x

〉1
2
〈
∇y

〉1
2Λ0 ∈ L2 or, equiva-

lently,

(
−∆x−∆y+N2v(N(x−y))

)〈
∇x

〉1
2
〈
∇y

〉1
2Λ0 ∈

L2 uniformly in N ,

which imposes non-trivial but natural restric-

tions on the initial conditions.



This is work in progress!


