BEYOND MEAN FIELD: ON THE ROLE OF PAIR
EXCITATIONS IN THE EVOLUTION OF
CONDENSATES.
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This paper is dedicated to Professor Choquet-Bruhat, whose work on nonlinear
wave equations was an inspiration to us earlier in our careers

1. INTRODUCTION

ABSTRACT. This paper is in part a summary of our earlier work
[17, 18, 19], and in part an announcement introducing a refinement
of the equations for the pair excitation function used in our previ-
ous work with D. Margetis. The new equations are Euler-Lagrange
equations, and the solutions conserve energy and the number of
particles.

2. INTRODUCTION

The problem, which has received a lot of attention in recent years, is
concerned with the evolution of the N-body linear Schrodinger equation

%%W(t, ) = Hytpn(t, ) with
Un (0,21, xN) = Po(T1)Po(x2) -+ Po(x )
||¢N(ta ')||L2(R3N) =1

The Hamiltonian is an operator of the form

N
Hy = Zij - %ZUN(% — ;)
=1

i<j

where vy (z) := N3%v(NPz) with 0 < 8 < 1 models the strength of two
body interactions. Notice that if 5 > 0 then vy(z) — 0(z) as N — oc.
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tations. The authors would like to thank the Department of Applied Mathematics
at the University of Crete and ACMAC for their hospitality during the preparation
of the present work.
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For simplicity we assume that v € Cy and v > 0. The goal is to show,
in a sense to be made precise,

¢N(t’ Ty, ’xN) = eiNX(t)gb(t? x1)¢(t’ :L‘?) e gb(t? xN) (1)

where ¢ satisfies a suitable non-linear Schrodinger equation. In partic-
ular, this approximation is not true in L?(R3").

The motivation for this problem is that in the presence of a trap the
ground state of Hy looks like

‘I’N(l"l, Loy ,5UN) = ¢0(9€1)¢0(9€2) s ¢o(i€N)

This is suggested by the result of Lieb and Seiringer who showed in
26] that

™ (2, 2") = o) do(x)
where

W (z,2) :/‘IJN(LE,;CQ,"' L aeN) VN (2 g, an)dag - doy

Here ||¢o|| 2 = 1 and ¢y minimizes the Gross-Pitaevskii functional. See
25] for extensive background.

The reason for the recent attention to this problem is two-fold. On
the one hand experimental advances during the last twenty years made
the creation and manipulation of condensates in the laboratory possi-
ble, on the other hand recent mathematical developments made possi-
ble the rigorous treatment of the equations when the number of parti-
cles, namely N, is large.

While this is a ”classical PDE problem” (as opposed to a Fock space
problem), the PDE approach to this problem has only been studied
systematically during the last 10-15 years, in the series of papers of
Erdés and Yau [8], and Erdos, Schlein and Yau [9] to [11]. See also [7].
These papers prove

0 (tz,a’) = ¢t 2)o(t, o) (2)

in trace norm as N — oo, and similarly for the higher order marginal
density matrices 7Y, where k is fixed. The problem becomes more
difficult and interesting as the parameter  in the definition of vy
approaches 1. The strategy of these papers is based on the older work
of Spohn [30]. Recent simplifications and generalizations, based on
harmonic analysis techniques and a ”boardgame argument” inspired
by the Feynman diagram approach of Erdos, Schlein and Yau, were
given in [21], [22], [6], [3], [4], [5]. See also [14], [27] for a different
approach.
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The symmetric Fock space approach to the problem is much older.
It originated in physics, with the papers by Lee, Huang and Yang [23]
in the static case, and Wu [31] in the time-dependent case. See also
[2]. It continued with the mathematically rigorous work of Hepp [20],
and Ginibre and Velo [15].

Motivated by the goal of obtaining a convergence rate to solutions of
NLS in (2), Rodnianski and Schlein resumed the rigorous Fock space
approach in [28]. This paper, as well as the older work of Wu, served
as an inspiration for our work. Our goal is to obtain a refinement to
(1) which provides an L*(R3") and Fock space estimate. This leads to
the introduction of the pair excitation function k.

We also mention the recent preprint [1] where a similar approach
(but with an explicit choice of pair excitation function k) is used to
prove convergence of the density matrices in the critical case § = 1.

3. FOCK SPACE

In this section we briefly review symmetric Fock space, following the
notation of [19]. See [28], for more details. The elements of F are
vectors of the form

‘¢> = (wo ) wl(wl) ) ¢2(371,$2) ) e )

where 1)y € C and v, are symmetric L? functions. The norm of such a
vector is,

I o) = (w]v) = wé [0

The creation and anihilation distribution valued operators denoted by
a’ and a, respectively which act on vectors of the form (0, - - - 1, 1,0, - -

and (07 7wn+1707”') by
(l;(l/)n_l) = % ;5(%‘ — ij)wn_l(l’l, e 7Ij—1;xj+17 e ,l’n)
ax(¢n+1) =vn+ 1wn+l([$]7xla cee >$n)

with [z] indicating that the variable x is frozen. The vacuum state is
defined as follows:

0) :=(1,0,0...)

and a,|0) = 0. One can easily check that [a,, a;] = 0(z —y) and since
the creation and anihilation operators are distribution valued we can
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form operators that act on F by introducing a field, say ¢(z), and form

m@:/mwm%}mmaw»:/mww@}

where by convention we associate a with ¢ and a* with ¢. These
operators are well defined, unbounded, on [F provided that ¢ is square
integrable. The creation and anihilation operators provide a way to
introduce coherent states in [F in the following manner, first define the
skew-Hermitian operator

@)1= [ do {ota)a ~ o(wa} )
and then introduce N-particle coherent states as

|(9)) i= e"VVAD0) | (4)

This is the Weyl operator used by Rodnianski and Schlein in [28]. It
is easy to check that

ef\/ﬁA(¢)‘0> — < o an¢($J> ) with ¢, = (efNNn/n!)l/2 .
j=1

In particular, by Stirling’s formula, the main term that we are inter-
ested in has the coefficient

ey ~ (2rN) V4 (5)

Thus a coherent state introduces a tensor product in each sector of F.
For the construction analogous to (3) involving quadratics, start with
the Lie algebra of real or complex symplectic "matrices” of the form

_ (d(x, y)  lz,y) )
]’C(l‘, y) _dT(w7 y)
where d, k and [ are kernels in L?, and k and [ are symmetric in (z,y).
We denote this Lie algebra sp(C) or sp(R) depending on whether the
kernels d, k and [ are complex or real. The natural setting for us (which

will insure that the Fock space operator eZ() defined below, is unitary,
see also the appendix of [18]) is the subalgebra sp.(R) = Wsp(R)W™?

where
1 /1 4
w=s(r i)

The elements of sp.(R) look like

_ (id(z,y)  Kk(z,y)
L= <k(x,y) —idT(x,y)) (6)
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with L? kernels d complex and self-adjoint, k& complex and symmetric.

Remark 3.1. The corresponding group elements E € Sp.(R) (in par-
ticular £ = el L € sp.(R)) satisfy the following three properties:

° E; Ci)mmutes with the real structure o defined by o(¢,v) =
(1, @), in other words F is of the form

- (5 g

e FE belongs to the infinite dimensional analogue of U(n,n) , in

other words
(I O (1 0
2o 1)E=(o %)

e F is in the symplectic group, meaning

7o) (o)

In fact, any two of the above imply the third. The conceptual rea-
son for this is that the symplectic inner product ((gbl, 1), (P, @Z)g)) =

f¢1¢2—f¢1q§2 and the "U(n,n)” inner product <(¢1,¢1), (¢2,1/12)> =
f ¢1£—f ¢1% are related by <(¢1, wl): (¢2, ¢2)> = <(¢17¢1)7 U(¢2:¢2))-

See Folland’s book [13] for more along these lines in the finite dimen-
sional case.These matrices are called Bogoliubov rotations in [1].

Our approach is based on the map from L € sp(C) to quadratic
polynomials in (a,a*) in the following manner,

2(0) = 5 [y fa ) (f00) o0 ) () @
- / dedy {d(z, y)aza", + d(y, 2)a%ay + k(z, y)ata’ — Lz, y)asa,} -

This is the infinite dimensional Segal-Shale-Weil infinitesimal repre-
sentation. The group representation was studied in [29]. The crucial
property of this map is the Lie algebra isomorphism

[I(Ll)a I(L2)} = I([Ll, Lz]) (8)

Notice that if L € sp.(R), then L has the form (6) and Z(L) is skew-
Hermitian, thus eZ(") is a unitary operator on Fock space. For the
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applications that follow we will only use the self-adjoint elements of
spe(R)

_( 0 ktazy)
= (g ") ?)
and the corresponding
1 _
B(k):=1Z(K) = §/dxdy {k(t,z,y)aza, — k(t,z,y)atas} . (10)
_( 0 ktazy)
= (g ") "

We easily compute

where
1 —
Sh(k)::k—i—?kokok—l—..., (12a)
1-—
ch(k) :zé(m—y)—kakok—i—... : (12b)

This particular construction and the corresponding unitary operator

B were introduced in [17].

The Fock Hamiltonian is

H:=H,—N'V where, (13a)

Hy = /dxdy {A0(x —y)aa,} and (13b)
1 * %

V= 3 /dxdy {on(z —y)atalaza, } . (13c)

It is a diagonal operator on Fock space, and it acts as a regular PDE
Hamiltonian in n variable

- 1
H, ppr = ZAzj TN NgﬁU(NB@j - Ik))
j=1

TjFTE

on the nth component of F.



4. OUTLINE OF OLDER RESULTS

Our goal is to study the evolution of coherent initial conditions of
the form

|Yewact) = €M eVNA@D) ) (14)
The papers [17, 18, 19] propose an approximation of the form
{¢appr> = e_fA ’0> (15)

and derive Schrodinger type equations for ¢(t,x), k(t,z,y) so that
‘@/}emct(t» ~ e"NX(t)’wappr(t»7 with x(t) a real phase factor, and find
precise estimates in Fock space, see Theorem (4.1) below. Our strategy
is to consider

Wred>—€ £) VNA(t) itH ,—VNA(0 \O}

and then find a "reduced Hamiltonian” H,.; so that

1
Zﬁt‘wr6d> = Hred|wred> . (16)
The reduced Hamiltonian is

1
Hred = ;(@68)673
1
+eB (—, (8tem“4) e VNA + eﬁA’He*/ﬁA> ¢ B
1

[t can be written abstractly as a composition (in space only) of opera-
tors

_18 B_VNA 10 —VNA_-B
%red—iat‘{‘ee —i8t+% oe e

Explicitly it is
Hyea = NPy + N'2ePPre
+Ha +I(R) — NV2eBPse B - N71BPpye? (17)

where the various terms are defined below. P, indicate polynomials of
degree n in a,a* to be given explicitly:

Py = /da: {Q%(Cbﬁbt - CE@) - |V¢|2}

! / ddy {ox(z — y)|6(x) o)) (15)

2
Py = /dx {h(t,x)a} + h(t,z)a,} (19)

=a*(h(t,") + a(h(t,))
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where h := —(1/1)9,¢ + A¢ — (vn * |¢]*) .

1
7_[G = 5 / dl’dy {_gN(ta Z, y)a';;ax - gN(ta Y, x)a;ay} (20&)
where (20Db)
Nt 2, y) = =Asd( —y) + (on * o) (1, 2)0(x — y)

+ on(x — y)d(t, 2)p(t,y) (20c)

and

where S describes a Schrodinger type evolution, while W is a Wigner
type operator by

1 1
S(s) := st ghos+sog and W(p):= R lg".p)

while M :—< 0 m) where
-m 0

m(z,y) = —uon(z —y)d(x)(y), vn(z) = N v(Nz)

(9 0
and G := (0 —gT>'

Finally,

Pyim [AV] = / dzdy {vx(z — v)(P(y)aatas + B(y)ataza,)
(22a)

Py=V =(1/2) /d:ﬁdy {on(z —y)aiajazay} . (22b)

The main result of [19], building on the previous papers of the authors
and D. Margetis [17, 18], can be summarized as follows.



Theorem 4.1. Let ¢ and k satisfy

1

=06 = A6+ (ux %[0[?)9 = 0 (23)

and either one of the following equivalent equations: (23b)

1) (s (sh(k)) — ch(k) o m) o ch(k) = (w (ch(k;)) +sh(k) o m) o sh(k)
(23c

or else the equivalent non-liner equation (23d

2) S(th(k)) = m + th(k) o m o th(k)

where th(k) := ch—(k)_1 o sh(k)

or else the equivalent system of liner equations (
3a) S (sh(2k)) = my o ch(2k) 4 ch(2k) o my (23h
30) W <W) — muy o 5h(2k) — sh(2k) o Ty . (231

DO
w
—
N~ N e e S N N

with prescribed initial conditions ¢(0,-) = ¢o, k(0,-,-) = 0. If ¢, k
satisfy the above equations, then there exists a real phase function x
such that

; C(1+t)log*(1+1t
(1)) = €30 i 1) < CLEDLELLD (o

provided 0 < B < %

The purpose of the present paper is to introduce and study a coupled
refinement of the system (23a), (23h), (23i) which, we believe, is the
correct system describing the case § = 1. These equations occur as
Euler-Lagrange equations, and are written down explicitly in Theorem

(8.1).

5. MAIN NEW RESULTS

Since H,.q is a fourth order polynomial in a and a*,
Hred‘0> = (X07X17X27X37X4707H')' (25)
Definition 5.1. Define the Lagrangian
L= —/Xo(t)dt (26)

The new, coupled equations for ¢ and k that we introduce in this
paper are X; =0 and Xy = 0.
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We first prove that L is indeed the Lagrangian for these equations.
We start by showing ”abstractly” that

% = \/N/ (X1(t,z)ch(k)(t, z,-) — X1 (t, z)sh(k)(t, z,y)) dz (27)
5X() 1 ——

— = —ch(k) o Xy och(k 28
2 = S 0 Xa o () 29
where ¢ = th(k) = ch(k;)_1 osh(k). We then compute explicitly the
zeroth order term Xo(t) in H,eq|0) (which provides the Lagrangian
density for our coupled equations):

_ Xo(t> = N/diﬁ {—% ((bl%) + ‘V(bl‘Q}
+ g /dm1d$gviv_2|¢l¢2 + %(Sho Ch)LQ|2

1
+ 5 /dx1d$2d$3U{V_2’¢1Sh273 + ¢28h1’3’2

1 -
—|—§ (/dmldxg {—% (Sh1,28t5h1,2) + ‘v1,25h172‘2}

1 — _ _
+ﬁ dtdxldxgv{\f_g{\(sh o sh)1,2|2 + (shosh); (sho Sh)zg}) .

where shy 5 is an abbreviation for sh(k)(t, 2y, x3), vi¥ 5 = vy (71 — T2),
etc, and the products are pointwise products, while compositions are
denoted by o. Then we proceed to compute explicitly the coupled equa-
tions X; = 0 and X, = 0, derive conserved quantities, and formulate
a conjecture. The resulting equations are similar to those of Theorem
(4.1), except that m = —vy(z1 — x2)@(t, x1)d(t, o) is replaced by

O = —un(x1 — 29) (¢(t, x1)p(t, x2) + %sh@k)(t,xl, 372)> :

and similar O(%) coupling corrections apply to the Hartree operator
as well as S and W.

Remark 5.2. The static terms of X () (not involving time derivatives)
also appear in the recent preprint [1], but do not serve as a Lagrangian
there.
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6. THE LAGRANGIAN AND THE EQUATIONS, ABSTRACT
FORMULATION

Proposition 6.1. Let k and ¢ be fized.

o E:OXo(gb + ¢eh, k) (29)

_2V/NR / Xy(t.2) (k) (0.2, )t ) — SBOR) (1,2, y)(t. ) ) dirdy

In particular, if this vanishes for all h, then X;(t,z) = 0.

Proof. H,.q can be written as

_18 B_VNA 10 —VNA_-B
Hred—g&"’ee —;a—i‘?’[ oe e

in the sense of compositions (in space only) of operators. During this
proof, denote H; = —%% +H.

Let h be an L? function and let
A =VN(a(¢+ ¢h) —a*(¢ + eh)). Thus we have

Xo(op + €h, k) = <666A6Hte_“4€e_8‘0>, |0>>

We compute

and

d
Ao [ 2
¢ <d(—:

d
—Ae —_ _
o’ ) B (de

eAe e*AO
e=0
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thus
d

I <eBeA5Hte_A€e_B’O>, ‘O>>

_ <68{ Na(h) = v/Na* (k), e Hie™ ] e #|0), |0>>

e=0

_ <[es (VNa(B) = VNa* () e &, eBetoqte=e 5] o), }0>>

0>>

- < [Q(Z) —a*(1), eBeAOHte_AOe_B} 0),

= 23%<”H,md}o>, a*(l)|0>> =1
where we denoted

B (\/Na(ﬁ) - \/Na*(h)) e~B = a(l) — a*()

Explicitly,
e? (a(h) — a*(h)) e™®
= a(ch(k) o h) + a*(sh(k) o h)
—a(sh(k) o h) — a*(ch(k) o h)
~ VN (ch(k) o h — sh(k) o h>
Thus,

I :2\/N§R/X1(t,a7) (Ch(l{;)(t,x,y)ﬁ(y) - sh(k;)(t,x,y)h(y)) dxdy

—2VNR / (ch—(k) o X, — sh(k) o 71) () h(y)dy
O

In order to state the corresponding result for X5, we have to intro-
duce a new set of coordinates for our basic matrices

= (a5

where
_( 0 k(tay)
h= (’f(tmy) 0 (30)
The most obvious coordinate system is, of course, provided by k. We
recall the following proposition, proved in [18].
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Proposition 6.2. The exponential map is one-to-one and onto from
matrices of the form (30) (k € L?*, symmetric) to positive definite
matrices E satisfying the three properties of Remark (3.1) for which
I — E||L2 is finite.

For our purposes, a better coordinate system is provided by ( =
th(k) = ch(k)  osh(k).

Proposition 6.3. There is a bijection between k € L?, symmetric, and
¢ € L?, symmetric, ||C|lop < 1 (op stands for the operator norm) such
that

ch(k)
o (T ¢\ (U~ C 0 ()!/? 0 I o0
- “( f)( i-cogmn) (C 1) @
(I=Col)™"? (Co(I—-Col) /2
\¢o(I—¢o C) V2o (I—=CoQ) '

where the square root is taken in the operator sense.

Proof. Given k, define ( = F(k‘)i1 osh(k). The decomposition (31)
is an algebraic identity, and it is clear that ¢ is symmetric and L2.
Since I — ch(k)™2 = ( o ¢, we see that [|(||,, < 1. In fact, ||Cv[%, =
|v]|2.—|ch(k)~tv||3,. Conversely, given ¢ a symmetric Hilbert-Schmidt
kernel with ||(||,, < 1 define E; by (31). It is easy to check that
E¢ is positive definite, satisfies the symmetries of remark (3.1) and
|l — E¢||lms < oo. (HS stands for the Hilbert-Schmidt norm), thus we
can apply Proposition (6.2) and find the corresponding K. U

We also record the following consequence:

Proposition 6.4. Let {, = ( + eh (h € L?, symmetric, ||C|lop < 1),
and K. corresponding to (. according to the previous proposition. Then

d Ke —K a 1_7
delem” ¢ 7 (b —iaT)

with

b = ch(k) o h o ch(k)
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Proof. We compute
d
de
B <ch(k)’och(k) _Sh(k) osh(k) —ch(k) o sh(k) —i—sh(k;)joch(k;))

KEG_K
e=0

An easy calculation shows that b = —Ch(k‘)/ o sh(k) + sh(k) o ch(k) =
ch(k) o ¢" o ch(k). O

We are ready to prove

0Xo Lch(/g) o X, o ch(k)

5 V2
Proposition 6.5. Let k. correspond to (+¢€h as in the previous propo-
sition. Then

% 6:0)(0(¢, k) = \/§§R/Ch(k) o Xy o ch(k)(t, z,w)ﬁ(t,z,w)dzdw

In particular, if the above vanishes for all h, then X5 = 0.

o>>

Proof. Let B, = B(k).

X0(¢, k€) _ <€Bee\/NAHte—\/ﬁAe—Be

0),

and
d
- EZOXO(gb, k) = —2%<Hred\0>,¢\0>> (32)
where
_d Be —B _ d K. —K
V= dele—o” € _I(de o’ ©

Using the isomorphism (7) and proposition (6.4) we see that

E(3}1(1{;) o hoch(k)(t,x1,22),0,--+)

where 0 is a real number coming from the trace of the self-adjoint
a. Since X is real, i does not contribute to (32), and the result
follows. U

¥[0) = (i6,0, —
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7. EXPLICIT FORM OF THE LAGRANGIAN

The goal of this section is the following proposition.

Proposition 7.1. The zeroth order term in Hred|0> (which provides
the Lagrangian density for our coupled equations) is Xo(t) where

— Xo(t N/d-ilﬁl ¢18t¢1 + |V¢1} }
+ 5 /dxldx2U12|¢1¢2 + N(sho Ch>1,2|2

1
+ 5 / deldIL‘le'g’U{V_ﬂgf)lSth + ¢2$h173|2
1 _— 2
+§ </dl’1dl’2 {—% (sh1728t8h172) + |V172Sh1,2} }

1 — -
+W dtdxldxgv{\f_z{Ksh o Sh)172|2 + (Sh o Sh)l,l (Sh @) Sh)gjg}) .

where shy o is an abbreviation for sh(k)(t,z1,x2), etc, and the products
are pointwise products, while compositions are denoted by o.

The proof follows from several lemmas, which can be proved by ex-
plicit calculations. We proceed to compute X in (25). The only terms
in (17) which contribute to Xy are NPy which is already explicit, the
zeroth order terms in I(R)‘O>, as well as the zeroth order terms in

N~LeBP.e=50).

Lemma 7.2. The term NPy is given by

NPy = N/das{ (66 - <z3¢t)—|w|2}

- §/d$1d$2{0¥2|¢1¢2|2} :

We used abbreviations v)’ , = vy(z1 — x3), ¢1 = ¢(x1), ete., and
for the following two lemmas we will denote w2 = sh(k)(t, z1, x2) and
Ci2 = Ch(k’) (t, R ZL‘Q).
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Lemma 7.3. The zeroth order term in Z(R)|0) is
1 1 _ 2
- 5 (/d$1d$2 {Z (Ul,Qatul,Q - a1:U1,2U1,2) + ‘V1,2U1,2‘ }

+ / dl’ldl‘gdl’g {U£2’¢1UQ,3|2 + ’¢2U1’3|2}

+ 2?)?/d:):1dzvzdw3 {Uf[_2¢2ul,3¢1uz,3}

+ 2§R/dl‘1d$2 {U{V_Q(U ° C)1,2€Z_51<52} )

Lemma 7.4. The zeroth order term in —%eBVe*B‘@ 18
1

— 5 /dﬂ?ldxz?]{\[_2{(u @) 0)172('& @) 6)172

+ [(wom)y o + (uo @) (ao U)m} :

8. EXPLICIT FORM OF THE EQUATIONS

In this section we derive the following theorem, thus introducing our
new equations. First, some notation. Consider the kernels

wc(t7 .1', y) = ¢(t7 l')¢(t, y)
wy(t, z,y) = sh(k) osh(k)(t,z,y)
and their trace densities
Pec = |¢’2(t7x)
oot @) = sh(k) o Sh{k) (1, v, 7)

Here ¢ stands for condensate, and p for pair. In this notation, the old
operator kernel gy defined in (20c) is

gn(tz,y) = —Ag6(x — y) + (vn * p) (L, 2)d(z — y)
+ 'UN<:C - y)wc(ta xz, y)
Define the new operator kernel
gN(ta Zz, y) = _Axé(x - y)

+ = (o ) (620 — ) + oo =yt y) (34



17

Also denote a.. = (33), ~a, = (34) and o = @, + +,. Define

1 . . ~ 1 _
S(s) := 75t +gnyos+sogy and W(p):= b + [%, p]
Finally, define ©(t, z1, 72) = —un(t, 21, 72) (425(75, 1) (L, 22) + ﬁSh(%’)(ﬁ 1, 952))
Theorem 8.1. The equation X; = 0 is equivalent to
1 — 1
Zatgb(t,xl) — A¢ — /G(t,ml,xg)gb(t,mg)dxg + / Nag(t,xl,xg)gb(t,xg)dxg =0

The equation Xo = 0 is equivalent to either of :
1) the equation
S(th(k)) = © + th(k) o © o th(k)
2) the pair of equations (in fact, 2a) implies 2b))
2a) S (sh(2k)) = © o ch(2k) + ch(2k) 0 © (35)

2) W (ch(2k)> — ©osh(2k) —sh(2k) 0 ©

Remark 8.2. One can go back and fourth between ¢ and ch(2k), sh(2k)

using
Sh(R) o sh(k) = (1~ Co Q)™ — 1= = (ch(2k) — 1)
¢ = sh(2k)(1 + ch(2k))™*
Proof. A direct calculation for X; shows that
Xy = =N (ch(k) o Hary(6) + sh(k) o m)
where

%‘“(ﬁ)(f,fﬂ
- %aﬂb — Ao — /@(t,xl,xz)a(zﬁ,m)dm
+ % /UN(iL‘l — x3)(sh o sh) (21, 22)p(w2)dxs

1 —
+ N¢($1) /UN(xl — 29)(sh o sh)(xg, x2)dxy
In conjunction with Proposition (6.1) this shows that
= = NHary(¢)

which can also be easily verified directly from Proposition (7.1).
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A direct calculation also shows that, if X, denotes the second com-
ponent of Hred’O>, then

- \/§X2(t, Y1, yz) = (36)
( (S(sh(k;)) — ch(k) o m) o ch(k) — (W<M) +sh(k) o m) o sh(k:))
+(1/N)/dq;1d:c2 {

(C_h(yl, 2)sh (@, y2) (sh o sh) (21, 21)on (21 — 29)+

E(yl,l‘g Jfl,yg (ShOSh) I’l,IL‘Q)UN(l’l —£E2)+
ch(yy, z1)sh(za, Y2 (sh o sh) x1, X2)uy (1 — x2)+

ch(yy, 21)sh(zy,y2)(sh o sh) To, To)Un (T — x2)> +

Y2 (

symm
sh(yr, z1)sh(za, y2) (sh o ch) (21, z2)vn (21 — 22)+
)

ch(yy, z1) ch(zy, s (ch o sh) (21, z2)on (21 — xg)} )

where symm stands for ”"symmetrized”. The time dependance in the
last six lines has been omitted. Recalling ( = Ch(/f)il osh(k) = sh(k)o

ch(k:)il, compose on the left with Ch(lc)i1 and on the right with ch(k)™!
to get

ch(k) ' o X o ch(k)™! :S(g)—@—go@ou%N (37)

where N is given by

N(t, y1,y2) =C(t, 1, y2)(/d$((§ osh+shosh)(t,z, z)vy(z — y1)> +

symm

([ et Gosh oo ) ., wonta )

symm

where symm stands for symmetrizing in vy, 2. In other words,
N=(Coap,+a,0o(
Thus, in ¢ coordinates, the equation Xy, = 0 becomes

S(()—©—(0B0(=0 (38)
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Now we can get an equation for W(ch(2k)) and S(sh(2k)). We will use
the general formulas

W(f™)=—f1oW(f)of!

W(fog)=S(f)og— foS(g)
S(fog)=S(f)og—foW (79

Thus

W ((1=¢o0)™) = (1 =000 (8(Q)0C~¢oS()) e (1=Co0)

=(1-¢o()lo ((@+4050C)Z+C0(@+CO@OC)>(1—COZ)_1

Similarly we get a formula for S(sh(2k)), using

S(Co(1=Co¢)™)
—(1-¢o0) e (80— ¢

O

U
—
I
S~—

[e]
I

N——

O
—~

[

|

(1—CoQ)lo <@+4060€+CO(@+60@OC)OC> o(l=¢o)™"

= ((1—@2)—1_%)o@+@o<(1—zog)—1_%)



20 M. GRILLAKIS AND M. MACHEDON

9. CONSERVED QUANTITIES

We start by motivating the introduction of some conserved quanti-
ties. Recall the Lagrangian

L(¢,sh(k N/dtdl‘l 1at¢1) + ’V¢l| }
N 2
+5 dtdz,dzsv | drds + N<Sh o ch)y o]

1
+ 5 /dtdl‘ld$2d$31){v_2|¢18h273 + ¢28h173|2

1 -
—|—§ (/dtdl‘ldl‘g {—% (Sth@tShl,g) + ‘VI,ZShLQ’Q}

1 — S —
+ﬂ dtdl’ldeU{\[_2{|(Sh e} Sh)172|2 + (Sh ©) Sh)Ll(Sh o) Sh)gg}) .

where sh; 5 is an abbreviation for sh(k)(¢, x1, z2), etc, and the products
are pointwise products, while compositions are denoted by o. Introduce
the energy £

£(6,sh(k))(t) = N/dxl {Ivei*}
+ g / d1dzavy’o|dr¢ + %(Sh o ch)yf

1
+ § / dIldIL‘leL'g?){V_ﬂqf)lShQ,g + ¢28h173|2

+% </dl’1d$‘2 {‘VLQSth‘Q}

1 — -
+W dxlde'U{V_2{|(Sh 9] Sh)172|2 + (Sh e} Sh)Ll(Sh o Sh)zg}) .

Our equations for ¢ and sh(k) are equivalent to

10¢ 6&
Vg~ (39)
10sh(k) o€ (40)

i Ot bsh(k)
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The relation

d it 7
0=—7 |,_oE (70, e*sh(k))

0~ 6& NTAY
=2% (/E(—ng)dajl +/6sh(k)(—zsh(k))dx1dx2>

together with (39), (40), leads to the conservation

d |
< ( / 6(t, 1)y + / |sh(k;)(t,x1,x2)|2dx1dx2) ~0
thus we define the density
1
pltsan) = 6t a0+ ;[ bkt 1, 2) P

1
= pc(t, 3:'1) + Nﬂp(t, xl)

Similarly, let ¢c(t,z) = ¢(t,z + €e;), sh(k)(t,z,y) = sh(k)(t,x +
€ej,y + €e;) (e; = unit vector, 1 < j < 3). The relation

d
0=—
de

o€ . — o0& —
=2R (/5 jgbdazl+/5m(8jsh(k))da:1dm2)

together with (39), (40) leads to the conservation

E(de,sh(k)e)

e=0

% (N / S (¢0;0) dy + / <) (sh(k)m) d:z:lde) — 0

thus we define the momentum density
S (AD. A 1 Cx EYSNA)
pito) =3 (63:6) + 1 [ 9 (sh(k)ajsh(k)) dzs

1
=pe; (t, 21) + NP (t,21)

Finally, using (39), (40) we see that

0
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so we define the energy density

e(t,z1) = N|V¢1|2

N 1
+ 3/d$20{\12|¢1¢2 + N(Sho ch); of”

1
+ 5 /d$2d$37}{v2|¢18h2,3 + ¢2Sh1,3|2

_|_% /dzg{’VLzShL?‘z}

1 _ _ _
+W dl’g’l}{V_Q{‘(Sh o :sh)1,2|2 + (shosh);i(sho sh)m}

10. A CONJECTURE

We conjecture that, if ¢, k satisfy the equations of Theorem (8.1)
and |¢emct>, ‘@/}appr>, are defined by (14), (15), then, in the critical case

Y

|||¢exact> - |¢appr>||.7: — 0

as N — oo, at an explicit rate.
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