Please put problem 1 on answer sheet 1

1. (a) Find the determinant of

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 3 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$

using cofactor expansion along row 2. Do not simplify.

(b) Find the area of the triangle with vertices (0,0), (4,1) and (3,-2).

Please put problem 2 on answer sheet 2

2. (a) Use Cramer's Rule to find the solution to the system of equations given below. Note that your solutions will depend on α . Do not simplify.

$$2x_1 - 3\alpha x_2 = 7 -x_1 + 5x_2 = 1$$

- (b) Let V be the vector space of continuous functions from \mathbb{R} to \mathbb{R} and let $T: V \to \mathbb{R}$ be the linear transformation $T(f) = \int_{-1}^{1} f(x) dx$.

 - i. Find $T(x^2)$.
 - ii. Show that $f(x) = \sqrt[3]{x}$ is in Ker T.

Please put problem 3 on answer sheet 3

3. (a) Two of the following three are not vector spaces. Identify which two are not and justify why they are not.

i.
$$\left\{ \begin{bmatrix} a \\ b \end{bmatrix} \mid a, b \in \mathbb{R}, a \le b \right\}$$

ii.
$$\left\{ bt + ct^2 \mid b, c \in \mathbb{R}, bc \ne 0 \right\}$$

iii.
$$\left\{ f : \mathbb{R} \to \mathbb{R} \mid f(3) = 0 \right\}$$

(b) Show that the set S of vectors of the form

$$\begin{bmatrix} s - 3t \\ t + s \\ 2s \\ t - 4s \end{bmatrix} \quad \text{with } s, t \in \mathbb{R}$$

is a subspace of \mathbb{R}^4 by finding a matrix A with $S = \operatorname{Col} A$.

Turn Over!

Please put problem 4 on answer sheet 4

- 4. (a) Show that the set of functions $\{1 + t^2, 3, 1 t^2\}$ is a linearly dependent subset of \mathbb{P}_2 .
 - (b) Given the matrix

$$A = \begin{bmatrix} 1 & 0 & 3 & 2 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

- i. Find a basis for $\operatorname{Col} A$.
- ii. Find a basis for Nul A.
- (c) Suppose A is a 3×7 matrix. Answer the following *briefly*.
 - i. What is the smallest that $\dim(\text{Nul } A)$ could be? Why?
 - ii. What is the largest that dim(Nul A) could be? Why?

Please put problem 5 on answer sheet 5

5. Suppose $\mathcal{B} = \{t, 2t+1, t^2+t+1\}$ and $\mathcal{C} = \{1, t+1, t^2+t+1\}$ are both bases for P_2 .

(a) Suppose
$$[p(t)]_{\mathcal{B}} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
. Find $p(t)$.

(b) Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.