Please put problem 1 on answer sheet 1

1. (a) Find the determinant of

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 3 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$

using row-reduction. Simplify.

(b) Suppose A and B are both $n \times n$ matrices. Suppose B is invertible and $Det(A^4B) = 0$. Explain why A is not invertible.

Please put problem 2 on answer sheet 2

2. (a) Use Cramer's Rule to find x_2 for the system of equations given below.

$$2x_2 + 5x_3 = 7$$

-3x₁ + x₂ - x₃ = 10
$$x_2 + x_3 = 2$$

(b) Let $T: \mathbb{P}_2 \to \mathbb{R}^2$ be the transformation given by

$$T(p(t)) = \begin{bmatrix} p(0) + p'(0) \\ p'(1/2) \end{bmatrix}$$

- i. Show that T(cp(t)) = cT(p(t)).
- ii. Find a single polynomial r(t) such that Ker $T = \text{span}\{r(t)\}$.

Please put problem 3 on answer sheet 3

- 3. (a) Two of the following statements are false. Identify which are false and justify.
 - i. \mathbb{P}_2 is a subspace of \mathbb{P}_3 .
 - ii. \mathbb{R}^2 is a subspace of \mathbb{R}^3 .

iii. The set of vectors of the form $\begin{bmatrix} a \\ b \\ a+2b+1 \end{bmatrix}$ with a and b reals numbers is a

subspace of \mathbb{R}^3 .

(b) In the vector space of continuous real-valued functions, justify why the set

$$\{3+\sin^2 x, 1, 5-4\cos^2 x\}$$

is a linearly dependent set.

Please put problem 4 on answer sheet 4

4. (a) Define

$$V = \operatorname{span}\left\{ \begin{bmatrix} 2\\-1\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\-4 \end{bmatrix} \right\}$$

- i. Find a matrix A so V = Col A.
- ii. Find a matrix B so V = Row B.
- iii. Find a matrix C so V =Nul C.
- (b) i. Suppose you have a homogeneous system of fifteen equations in twenty variables. What is the smallest that the dimension of the solution set could be? Justify.
 - ii. Suppose A is a 3×8 matrix. Why can the null space not have dimension 4?

Please put problem 5 on answer sheet 5

(a) Suppose
$$\mathcal{B} = \{t^2 + 3t + 1, t + 1, -1\}$$
 is a basis for \mathbb{P}_2 . Find $[3t^2 + t - 1]_{\mathcal{B}}$.
(b) Suppose $\mathcal{C} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\3 \end{bmatrix} \right\}$ and $\mathcal{D} = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$ are both bases for \mathbb{R}^2 .
Find $\underset{\mathcal{D}\leftarrow\mathcal{C}}{P}$ and then $\underset{\mathcal{C}\leftarrow\mathcal{D}}{P}$.