Please put problem 1 on answer sheet 1

- 1. (a) Show that if $\{\bar{u}, \bar{v}\}$ is an orthonormal set, then $\{2\bar{u} + \bar{v}, 3\bar{u} 6\bar{v}\}$ is an orthogonal but not orthonormal set.
 - (b) Show that $\begin{bmatrix} a & -b \\ b & -a \end{bmatrix}$ has real eigenvalues if and only if $a \ge b$.

Please put problem 2 on answer sheet 2

- 2. (a) Give an example of each of the following. No explanation is required.
 - i. A 2×2 matrix with no eigenvalues.
 - ii. A 2×2 matrix with a single eigenvalue for which the eigenspace is 2-dim.
 - (b) Use the Gram-Schmidt process to find an orthogonal basis for

$$W = \operatorname{span} \left\{ \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} \right\}.$$

You do not need to simplify your third vector.

Please put problem 3 on answer sheet 3

3. Define

$$A = \begin{bmatrix} 3 & 0 & -2 \\ -1 & 2 & 2 \\ 2 & 0 & -2 \end{bmatrix}$$

- (a) Find the characteristic polynomial for A.
- (b) Suppose that $\lambda = -1$ and $\lambda = 2$ are the eigenvalues for A. Find a basis for each eigenspace. Explain how you know that A is diagonalizable.
- (c) Diagonalize A two different ways.

Please put problem 4 on answer sheet 4

- 4. (a) Suppose A and B are matrices with B invertible. Furthermore suppose A and B have an eigenvector \bar{v} in common but with different eigenvalues λ_A and λ_B . Find an eigenvalue for AB^{-1} .
 - (b) Suppose

$$\bar{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 and $W = \operatorname{Span} \left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix} \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$

Write $\bar{u} = \hat{u} + \bar{z}$ with \hat{u} in W and \bar{z} in W^{\perp} .

(c) Find the equation of the least-squares line for the three points (1,3), (2,4), (3,5).

Please put problem 5 on answer sheet 5

- 5. Define the quadratic form $Q(\bar{x}) = 2\sqrt{2}x_1x_2 + x_2^2$.
 - (a) Find the matrix for Q.
 - (b) Classify $Q(\bar{x})$ as positive definite, negative definite or indefinite and justify.
 - (c) If you were to use a change of variables to convert Q into another quadratic form with no cross-product term, what would the matrix for this new form be? Explain in words how you would get the change-of-variables matrix.