
Classification of linear transformations from R2 to R2

In mathematics, one way we “understand” mathematical objects is to clas-
sify them (when we can). For this, we have some definition of the objects
as being isomorphic (essentially the same), and then understand when two
objects are isomorphic. If we’re really lucky, we have a list of clear examples
such that every object is isomorphic to one of them.

Here we’ll do this for linear transformations T from R2 to R2. What can
they look like? Each T has the form TA, defined by TA(x) = Ax, for some
2×2 matrix A. We define TA and TB to be isomorphic if there is an invertible
linear transformation S from R2 to R2 such that S−1TAS = TB.

We think of S as changing coordinates, just “renaming” points in R2 It is like:
you can give a point an English name or a French name, and then go about
the vector space business. Whatever names are given to describe points, the
basic nature of addition and scalar multiplication is the same. S just trans-
lates from English to French, say.

Then, we can think of TA as describing the linear transformation in En-
glish, and S−1TAS = TB as describing the linear transformation in French.
Fundamentally the same thing is being done by TA and TB.

Above, S = TU for some invertible 2 matrix U . For TA and TB to be isomor-
phic is then equivalent to A and B being similar matrices: there exists U such
that U−1AU = B. So our classification problem is equivalent to classifying
2 × 2 matrices up to similarity. (Next page.)



Classification of 2 × 2 matrices up to similarity

Suppose A is a 2×2 matrix with real number entries. Then A will be similar
to matrices of just a few types. Let χA denote the characteristic polynomial
of A. Similar matrices have the same characteristic polynomial.

1. Suppose χA has a root which is not a real number.
Let the root be λ = a+ ib, where a and b are real and b is not zero.
Then a− ib must be the other root, because χA has real coefficients. The
matrix A is (by Theorem 9, Sec. 5.5 of Lay) similar to the matrix

C =

(
a −b
b a

)
.

We can understand the linear transformation TC better geometrically by
writing a+ ib in the form r(cos θ + i sin θ), with r > 0. Then we have

C =

(
a −b
b a

)
= r

(
cos θ − sin θ
sin θ cos θ

)
.

The linear transformation TC , sending x to Cx, is a composition of two
geometrically described actions. First, TC rotates x counterclockwise
around the origin through angle θ. Then it dilates by the factor r.

2. Suppose χA has two distinct real roots, α and β.

Then A is similar to the diagonal matrix

(
α 0
0 β

)
. R2 has a basis of

eigenvectors of A.

3. Suppose χA has one, repeated real root α and the dimension of
the eigespace is 2.
This means the null space of A− αI has dimension 2.
So, the null space of A− αI is R2, and this means A− αI = 0.

Therefore A = αI =

(
α 0
0 α

)
.

(Next page for the last case.)



4. Suppose χA has one, repeated real root α and the dimension of the
eigenspace is 1.

Then A is similar to the matrix =

(
α 1
0 α

)
.

(Such a matrix A will not be similar to αI as in Case 3.)

This case is the trickiest to prove. Let B denote the matrix A−αI. Then B
has rank 1 (because rank + dimension of null space = 2).
For characteristic polynomials, we have χA(t) = (t− α)2 χB(t) = t2.
The characteristic polynomial of B has a repeated root, zero.

First, pick a nonzero vector w which is not in the null space of B. Then
Bw is not zero.

CLAIM: Bw is in the null space of B.
PROOF OF CLAIM: Note, the range of B2 is contained in the range of B,
since for any x, B2x = B(Bx). Also, the dimension of the range of B is 1.
Thus, since Bw is not zero, the vector B2w must be a multiple of Bw. But
the only eigenvalue of B is zero. Therefore Bw is in the null space of B. This
proves the claim.

Now define v to be Bw. Then 0 = Bv = (A − αI)v = Av − αv. So,
Av = αv. Also, v = Bw = (A − αI)w = Aw − αw, so Aw = αw + v. Now

define a matrix U =

(
v1 w1

v2 w2

)
which has v as its first column and w as its

second column. It follows that

A

(
v1 w1

v2 w2

)
=

(
v1 w1

v2 w2

)(
α 1
0 α

)
because the equality of first columns is Av = αv and the equality of second
columns is Aw = αw+ v. Writing this matrix equality in terms of U , we get

AU = U

(
α 1
0 α

)
and therefore

U−1AU =

(
α 1
0 α

)
.


