
How matrices multiply finite dimensional volume

1. Notation.
If S is a set in Rn and A is a matrix, then A(S) denotes the set of all vectors Ax such that x is in S. So,
A(S) is the set of outputs you get by applying A to inputs from S.

“voln”denotes n-dimensional volume. For example, for n = 1, 2, 3 respectively this would be length, area
and the usual volume.

Given k vectors v1, . . . , vk in Rn, the parallelepiped generated by v1, . . . , vk is the set of all vectors of the form
c1v1 + · · ·+ ckvk such that 0 ≤ ci ≤ 1, for each i. (If k = 2 and the vectors v1, v2 are linearly independent,
then this is a parallelogram, with corners 0, v1, v2 and v1 + v2.)

If A is a matrix, then PA denotes the parallelepiped generated by its column vectors.

2. Finite dimensional volume.
We think of approximating a set S in Rn by a finite collection of (tiny) n-dimensional cubes which contain
it (and which overlap only on their boundaries). Adding up the volumes of the cubes in such a collection,
we get an outer estimate of the volume of S. Likewise, given a collection of cubes contained in S (and
overlapping only on their boundaries), we can add up their volumes to get an inner estimate of the volume
of S.

If there is a number c such that the inner and outer estimates can be gotten arbitrarily close to c, then we
say S has a well defined n-dimensional volume, equal to c.

This definition is analogous to equality of upper and lower Riemann sums in calculus giving a well defined
integral. There is a more general (and advanced) definition which gives a bigger collection of sets with well
defined volume, but this is enough for us here, and covers the sets you naturally encounter (they have well
defined volume).

If the the outer estimates can be made arbitarily small, then we set voln(S) = 0.

Below, the subsets S considered are assumed to have well defined volume.

3. How square matrices multiply volume.
Suppose A is an n× n matrix and S is a subset of Rn. Then

voln(A(S)) = |det(A)| voln(S) .

Note: A changes every set S by the same multiplicative factor! And we know what it is. For n = 2, a proof
was outlined in class, and there is a discussion in Lay’s Section 3.3. (pp. 180-185). The fundamental ideas
of the proof for general n are exactly the same.

One consequence of this is that
voln(PA) = |det(A)| .

This is because PA equals A(S) if S is the unit cube. (The unit cube in Rn is the parallelepiped spanned by
the standard basis vectors e1, ..., en. The n dimensional volume of the unit cube is 1, so the n-dimensional
volume of PA is 1 multiplied by |det(A)|.

4. How one-one rectangular matrices multiply volume.

Suppose A is n× k with k ≤ n, and S is a subset of Rk. Then A(S) is a subset of Rn. Suppose the columns
of A are linearly independent. That means that the linear transformation Rk → Rn defined by x 7→ Ax is
one-to-one.

For example, for k = 2 and n = 3, if S is the unit square in R2, then A(S) is the parallelogram PA in R3,
and volk(PA) is the area of PA.



We want to know how volk(A(S)) relates to volk(S). Let us define the number

δ(A) :=
√
|det(AtrA)| .

Here is the bottom line:
volk(AS) = δ(A)volk(S) .

Once again, multiplication by A changes volume by the same multiplicative factor, for all S. The factor is
a little more complicated to compute. (And note: if k = n, then δ(A) = |det(A)|.)

By the way, in the case k = 2 and n = 3, the number δ(A) is equal to the norm of the cross product of the
columns of A.

5. Examples.

1. IfA =

(
5 2
3 0

)
, then PA is the parallelogram whose four corners are the column vectors (0, 0), (2, 0), (5, 3)

and (7, 3). The area of PA is |det(A)| = |(5)(0)− (2)(3)| = | − 6| = 6 .
(Draw the paralleleogram – you can easily check the area is indeed 6.)

2. Let B denote the unit ball in R3, (the set of points (x1, x2, x3) such that (x1)2 + (x2)2 + (x3)2 ≤ 1.
Now define an ellipsoid S and a matrix A as follows:

S = {y :
(y1)2

4
+

(y2)2

9
+ (y3)2 ≤ 1} and A =

2 0 0
0 3 0
0 0 1

 .

Then y = Ax is written out as (y1, y2, y3) = (2x1, 3x2, x3). It follows that x is in B if and only if Ax
is a point y in S. That is, A(B) = S. Consequently,

vol3(S) = |det(A)|vol3(B) = 6(4/3)π(1)3 = 8π .

3. The area of the parallelogram P in R3 generated by the column vectors (1, 2, 3) and (2, 0, 4) is computed

from A =

1 2
2 0
3 4

 by

area(P ) =
√
|det(AtrA)|

=

√√√√√|det(

(
1 2 3
2 0 4

)1 2
2 0
3 4

)|

=

√
|det(

(
14 14
14 20

)
| =
√

84 .

6. Making sense of volk(A(S)) in Rn.

Continue with A k × n and with the columns of A being linearly independent (i.e., A has rank k). For
simplicity and familiarity, from here I will just write for the case k = 2 and n = 3, although there is no
difference in the general case.

The matrix A, as a linear transformation, maps R2 one-to-one onto a 2-dimensional subspace of R3, a plane
through the origin. Let us name this plane W . Let {u1, u2} be an orthonormal basis of W (which you could
compute by applying the Gram-Schmidt algorithm to the columns of A). Let U be a 3 × 2 matrix whose
columns are u1, u2.



The matrix U tr is a 2× 3 matrix. There is a linear transformation T : W → R2 defined by T (x) = U trx. If
x ∈W , then there are constants c1, c2 such that x = c1u1 + c2u2, and we can compute that T (x) = (c1, c2).
The map T is an isometry: it does not change the length of vectors. For x, y in W we have that dist(x, y) =
dist(T (x), T (y)), since

dist(x, y) = ||x− y|| = ||T (x− y)|| = ||T (x)− T (y)||
= dist(T (x), T (y)) .

You can think of W as a rigid (infinite) piece of cardboard, and of T as taking that rigid piece of cardboard
and laying it on the usual plane R2. For example, T will take a triangle with corners x, y, z in S to a triangle
with corners T (x), T (y), T (z) in R2. The corresponding sides of the two triangles will have equal length.
The two triangles are congruent.

However we go about defining area of subsets of W , in the end the area of a set in W must equal the area
of its image in R2 under T .

Now suppose S is a subset of R2. The area of its image A(S) in W will be the area of U tr(A(S)) in R2. But
this is just the image of S under multiplication by the 2× 2 matrix U trA. So,

area(A(S)) = |det(U trA)|area(S) .

Given A, we could compute U and then compute the area-multiplier number |det(U trA)|. In this sense, we
have already answered the question of how multiplication by A changes area. But we can get a much more
practical computation by showing that |det(U trA)| equals δ(A), which can be computed directly without
bringing in a computation of U .

7. Showing that δ(A) is the area multiplier.

Let

M =

(
m11 m12

m21 m22

)
denote the 2× 2 matrix which is U trA.

We have our orthonormal basis of column vectors u1, u2 for W . Let u3 be another unit vector, orthogonal
to u1 and u2. Let uij denote entry j of ui. Define the matrix

V =

u11 u12 u13
u21 u22 u23
u31 u32 u33

 .

The matrix V is an orthogonal matrix: V is invertible and V −1 = V tr. Now compute the matrix product

V A =

u11 u12 u13
u21 u22 u23
u31 u32 u33

a11 a12
a21 a22
a31 a32


=

m11 m12

m21 m22

0 0

 =

(
M
0

)
.

The bottom row of V A is zero because u3 is orthogonal to every vector in W , in particular to the columns
of A. The other rows are the rows of M because the first two rows of V are those of U tr. In the last equality
we are just writing out the matrix as a block (partitioned) matrix; the zero below the M is the bottom row,
with two numerical entries equal to zero.

As a consequence, then,

(V A)trV A =

(
M
0

)tr (
M
0

)
=
(
M tr0tr

)(M
0

)
=
(
M trM

)
.



We have a simple computation:

(V A)trV A = AtrV trV A = AtrIA = AtrA

and therefore
det(AtrA) = det(M trM) = det(M)2

so δ(A) = |det(M)| as required.

7. One more example. Let us compute the area of the parallelgram P in R3 generated by the column
vectors (2, 5, 0) and (3, 1, 0). Define matrices

A =

2 3
5 1
0 0

 and B =

(
2 3
5 1

)
.

Our formula for the area of P should agree with area(P ) = |det(B)|. Let’s check.

By the nature of matrix multiplication,

AtrA =

(
2 5 0
3 1 0

)2 3
5 1
0 0


=

(
2 5
3 1

)(
2 3
5 1

)
= BtrB .

Therefore
area(P ) =

√
det(AtrA) =

√
det(BtrB) = |det(B)|

as desired.


