PROOF OF THE LAW OF LARGE NUMBERS IN THE CASE OF FINITE VARIANCE

THEOREM (The Law of Large Numbers)

Suppose X_1, X_2, \ldots are i.i.d. random variables, each with expected value μ . Then for every $\epsilon > 0$,

$$\lim_{n \to \infty} \operatorname{Prob}\left[\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > \epsilon \right] = 0$$

We will prove the LLN in the special case that the i.i.d. random variables X_i have finite variance σ^2 . If $\sigma^2 = 0$, then there is some number b such that each $X_i = b$ with probability one (and the conclusion of the LLN is pretty obvious!). So without loss of generality we suppose $\sigma^2 > 0$. Because the X_i are independent, we know that

$$\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)$$

Therefore

$$\operatorname{Var}(X_1 + X_2 + \dots + X_n) = n\sigma^2 .$$

Multiplying a random variable by 1/n changes the variance by a factor $(1/n)^2$, so

$$\operatorname{Var}\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n} \ .$$

Let A_n denote the average $(X_1 + X_2 + \dots + X_n)/n$. So, A_n has standard deviation $\sqrt{\sigma^2/n} = \sigma/\sqrt{n}$, and A_n has expected value μ . Given $\epsilon > 0$,

$$\operatorname{Prob}\left[|A_n - \mu| > \epsilon \right] = \operatorname{Prob}\left[|A_n - \mu| > \left(\epsilon \frac{\sqrt{n}}{\sigma}\right) \left(\frac{\sigma}{\sqrt{n}}\right) \right]$$

Let $k = \epsilon \sqrt{n}/\sigma$. According to the Chebyschev Inequality, since A_n has standard deviation σ/\sqrt{n} , we have

$$\operatorname{Prob}(|A_n - \mu| \ge k \frac{\sigma}{\sqrt{n}}) \le \frac{1}{k^2}.$$

Because $k = \epsilon \sqrt{n}/\sigma$, the right hand side $1/k^2$ goes to zero as n goes to infinity. That gives the proof.