Errata and Suggestion Sheets

Advanced Calculus, Second Edition

Prof. Patrick Fitzpatrick

Location	Error
P.11,ln.38	" $b^2 < r$ " should be " $b^2 < c$ "
P.13,ln.1	for " number a and b," write " numbers a and b,"
P.16, 1c	" $\mathbb{Q} \setminus \mathbb{N}$ "should read " $\mathbb{Q} \setminus \mathbb{Z}$."
P.18,ln.14	" $1 - T$ " should read " $1 - r$."
P.19,	The Geometric sum formula. Left hand side is not defined when $r = 0$.
	To slightly improve clarity, the Linearity Property should come before
P.30,32	Theorem 2.13.
P.32,ln.16	" $p(x) = \sum_{i=0}^{k} c_i x^i$ " should appear " $p(x) = c_0 + \sum_{i=1}^{k} c_i x^i$ "
P.36,ln.16	" $x = (a + b)/2$ " should be " $s = (a + b)/2$ "
P.38,	Theorem 2.25(<i>i</i>) and (<i>ii</i>) should have n in NATURAL numbers \mathbb{N} .
P.40,ln.2	" $S_4 + \frac{1}{2} = 1 + \frac{3}{2}$ " should read " $S_4 + \frac{1}{2} \ge 1 + \frac{3}{2}$."
P.54,ln.9	"sequence $(\{-1/n\}]$ " should read "sequence $\{-1/n\}$ "
P.57,ln.14	" $f + g: R$ and" should read " $f + g: R \rightarrow R$ and"
P.62,ln.7	"the value 0." Should read "zero or negative values."
P.67,ln.21	" $1/n$ " should read " $-1/n$."
P.67,ln.22	" $2 + 1/n^2$ " should read " $-2 - 1/n^2$."
P.67,ln.24	" (0,1) "should read "(0,2) ."
	Theorem 3.22 in the first sentence after " <i>ii</i> ", it reads
P.73,	"criterion at the domain D;" and it should surely read "criterion
	on the domain D;"
P.78,ln.22	"monotonically increasing "should read " monotone"
P.81,ln.23	"D" should appear "D. "
	" $\lim_{x \to 0, x > 0} \frac{f(x) - f(0)}{x - 2} = -1$ " should read
P.90,ln.14	f(x) - f(0) = 1
	$\lim_{x \to 0, x < 0} \frac{1}{x - 0} = -1$
P.90,ln.1&P.91,ln.1	"+ x_0^{n-2} + x_0^{n-1} " should read "+ xx_0^{n-2} + x_0^{n-1} ."
P.94,#3	The function value $f(0)$ is defined twice.
P.99,(4.8)	" $x - x$ " should read " $x - x_0$ " in tow denominators.
P.107,ln.8	$"x_0 < x_0 + \delta " should appear "x_0 < x < x_0 + \delta "$
P.107,ln.15	for "In Section 9.5," write "In Section 9.6,"
P.112,ln.3	" $g^{(n)}(x_0) = n!$ " should appear " $g^{(n)}(x) = n!$ "
P.112,ln.14	" $\frac{f^{(n)}(x_n)}{g^{(n)}(x_0)}$ " should appear " $\frac{f^{(n)}(x_n)}{g^{(n)}(x_n)}$ "
P.120,ln.15	for "inverse function \mathbb{R} ." write "inverse function on \mathbb{R} ."
P.128,ln.11	" $C(2z) \le 0$ " should appear " $C(2z) < 0$ "
P.142,ln.1	for " 1988), a clear" write "1988), is a clear"

P.143,	Under 6.14 you should refer to Darboux sums, not Riemann.
P.144,ln.10	the second " (6.19) " should be " (6.20). "
P.145,ln.3	for " $[a, b]$: $\mathbb{R} \to \mathbb{R}$ " write " $f: [a, b] \to \mathbb{R}$."
P.149,#4b.	for " (b-a)/2 " write " $(b^2 - a^2)/2$. "
P.150,ln.10	for "The f is " write "Then f is."
P.152,ln.5	for " $L(f, P_n)$ " write " $U(g, P_n)$."
P.152,ln.12	for " $\leq L(f, P) + U(g, P)$." write " $U(f, P) + U(g, P)$."
P.153,ln1	for " $\leq U(f + g, P_n) \leq L(f, P_n) + U(g, P_n)$." write " \leq
	$U(f+g,P_n) \le U(f,P_n) + U(g,P_n).$
P.153,ln.21	$U(\alpha f, P_n)$ Formula is in conflict with formulas 6.31. To avoid that, add the
	following statement: " The above formula is consistent with formula 6.31
	because $U(\alpha f, P) = L(\alpha f, P)$ for all P if $\alpha = 0$."
P.156,ln10-12	for " $[x_{i-1}-x_i]$ "write " $[x_i-x_{i-1}]$ "
P.160,ln.2	for "Section 7.4. " write "Section 7.3. "
P.162,ln.8	for " $L(f, P)$ " write " $L(f', P)$."
P.162,ln.8	for " $R(f, P)$ " write " $U(f', P)$."
P.164,#3	for " $\int_{a}^{b} f = 4$ " write " $\int_{2}^{6} f = 4$ "
P.169,ln.7	" from bottom(7.2)" should be " (7.1)"
P.169,ln.8	" from bottom(7.3)" should be " (7.2)"
P.180,	Possible typo: I would delete $H(d) = 0$. Not needed in argument, and not
	proved .It is really necessary to change 4.19 slightly.
P.187,ln.11	for "index $i \ge 1$ " write "index i such that $1 \le i \le n$ "
P.189,#8	for "Supose "write "Suppose"
P.191	In the caption of Figure 7.2 ; Reads " trapezoid" rather than
	"trapezoid"
P.201,ln.4	for " $x = 0$ " write " $x_0 = 0$ "
P.201,ln.8	for " $x = 0$ " write " $x_0 = 0$ "
P.201,ln.12	for " $x = 0$ " write " $x_0 = 0$ "
P.201,ln.7	for " $x = 1$ " write " = 1 "
P.202,ln.10	for "strictly increasing" write "strictly decreasing"
P.202,ln.1	for "at $x = 0$ " write "at $x_0 = 0$."
P.203,ln.10	for " $(x - x_0)^n$ " write " $(x - x_0)^{n+1}$. "
P.205,ln.3	from bottom " $n > 4$ " should appear " $n \ge 4$."
P206,ln.1	for " $\ln(n+1) = \ln 1$ " write " $\ln(n+1) - \ln 1$."
P.217,ln.6	for "number n" write "number k "
P.221,ln.10	for "about $x = 0$ " write "about $x_0 = 0$."
P.225,ln.6	for " $1 \le k \le n$." write " $0 \le k \le n$."
P.233,ln.2	for " for index " write " for every index "
P.235,ln.9	for " (0, c) " write " (0, b) "
P.240,ln.2	for " $\lim_{n\to\infty} \left(\frac{a_k}{b_k}\right)$ " write " $\lim_{k\to\infty} \left(\frac{a_k}{b_k}\right)$ "
P.241,ln.12	for "value is 1." Write "value is 1,"
P.241,Fig.9.2	for " $\lim_{n\to\infty} 1^n = 0$." write " $\lim_{n\to\infty} 1^n = 1$."
P.242,ln.1	for "natural number k " write "integer k."

P.243,ln.6	from bottom " $2/N < x$."
P.243,ln.8	for "number $n,$ " write " number $n \ge 2,$ "
P.243,ln.9	for " $f_n(0) = f(2/n) = \cdots$ " write " $f_n(0) = f_n(2/n) = \cdots$ "
P.243,ln.10	for "and $[2/n, 0]$ " write "and $[2/n, 1]$."
P.243,Fig.9.4	for " $(\frac{1}{n}, 1)$ " write " $(\frac{1}{n}, n)$. "
P.251,ln.4	for "4[$b - a$] " write "[4($b - a$)] "
P.251,ln.8	for "6[$b - a$)]" write "[6($b - a$)]"
P.257,ln.4	for "Cauchy on A" write "Cauchy on A"
P.265,Fig.9.6	left figure : for " $(l, 2l)$ " write " (l, l) ."
P.265,Fig.9.6	Two comments :(1)It would be nice to use the same script l as in the surrounding text. (2) It would be nice if the graphs had the same scales for both x – and y –axes.
P.266,ln.16	for " $\sum_{k=1}^{\infty} h_k(x)$ write " $\sum_{k=0}^{\infty} h_k(x)$ "
P.279,ln.6	for "dist $(\boldsymbol{u}, \boldsymbol{u}')$ and "write "dist $(\boldsymbol{u}, \boldsymbol{u}') = 0$ and "
P.286,ln.1	from bottom " $\bigcap_{i=1}^{k} C_i$ " should appear " $\bigcup_{i=1}^{k} C_i$ "
P.302,ln.7	for " $A : \mathbb{R} \to \mathbb{R}$ " write " $f : A \to \mathbb{R}$."
P.324,ln.8	for " $f : \mathbb{R} \to \mathbb{R}$ " write " $f : I \to \mathbb{R}$."
P.355,ln.4	Is " e_i " defined in the text (other than p.281,H.W.#2)?
P.373,ln.11	for " $\left(\frac{1}{k}\right)$ " write " $\left(\frac{1}{k!}\right)$."
P.375,ln.8	for " <i>h</i> " write " h "
P.391,ln.8	for " $\nabla f(x) = 0$ " write " $\nabla f(x) = 0$ "
P.452,ln.3	"Since the point $(\mathbf{x_0}, \mathbf{y_0})$ belongs to v "should be replaced by " Since the
	point $(\mathbf{x_0}, 0)$ belongs to v."
P.474, ln.10	the word "integrable" comes before it is defined (p.475).
P.479,ln.14-15	for "in any one of the $P_k(\mathbf{J})$'s " write, perhaps, "in all of the corresponding $P_k(\mathbf{J})$'s "
P.479,ln.16	for " $\sum_{\mathbf{J} \in \mathbf{p}} U(\dots) - L(\dots)$ " write " $\sum_{\mathbf{J} \in \mathbf{p}} [U(\dots) - L(\dots)]$."
P.479,ln.14-21	It does not seem that P_k can be chosen as indicated. One suggestion is to:
	Let P_k^* be the partition of I induced by the $P_k(\mathbf{J})$'s (By this we mean that for all the \mathbf{J} 's in a common "row" of P , we form the union of all the partition points of a common edge of the corresponding $P_k(\mathbf{J})$'s. This union then forms one part of the partition P_k^* for that corresponding edge.) It should be clear that for each $\mathbf{J}, P_k^*(\mathbf{J})$ is a refinement of $P_k(\mathbf{J})$ so that
	$U(f, \mathbf{P}_{k}^{*}(\mathbf{J})) - L(f, \mathbf{P}_{k}^{*}(\mathbf{J})) \leq U(f, \mathbf{P}_{k}(\mathbf{J})) - L(f, \mathbf{P}_{k}(\mathbf{J}))$ for all J and hence

	$U(f, \boldsymbol{P}_k^*) - L(f, \boldsymbol{P}_k^*) = \sum_{\mathbf{J}} [U(f, \boldsymbol{P}_k^*(\mathbf{J})) - L(f, \boldsymbol{P}_k^*(\mathbf{J}))]$
	$\leq \sum_{\mathbf{J}} [U(f, \mathbf{P}_{k}(\mathbf{J})) - L(f, \mathbf{P}_{k}(\mathbf{J}))]$
	$< m \frac{1}{mk}$
	$=\frac{1}{k}$
	Thus, $\lim_{k\to\infty} [U(f, \boldsymbol{P}_k^*) - L(f, \boldsymbol{P}_k^*)] = 0,$
	And therefore, by the Archimedes-Riemann Theorem, the function f is integrable on I
P.479,ln.19	for " $-L(f, \mathbf{P}_{k}) =$ " write " $-L(f, \mathbf{P}_{k}) =$ "
P.488,ln.5	for "vol \mathbf{J}' " write "vol \mathbf{J}'_i " (twice)
P.488,ln.11	for "For positive number <i>a</i> and <i>b</i> , show that the ellipse " write " Show that the set "
P.488,ln.7	for "that the ellipsoid "write "that the set"
P.489,ln.6.7	for " in the interior of J " write " in the interior of I "
P.491,ln.2	for " = $\int_{\mathbf{J}} \hat{f}$, " write " = $\int_{\mathbf{I}_1} \hat{f}$,"
P.493,ln.15	for " {(x , g (x)) write "{(x , f (x)) "
P.499,ln.10	for " (19.3) " write " (19.1) "
P.500,ln.2	for " of m_i and M_i " write " of M_i "