Polynomial approximation and higher
derivatives

Suppose f : I — R, where I is an open interval and xg € I, and suppose f is
differentiable at zg. Then we can easily show
f(x) = (f(@o) + f'(wo) (@ — w0))

lim =0.
T—rTo Tr — X

Because p1(x) = f(xo) + f/(x0)(x — o) is the first Taylor polynomial of f at o,
we see a natural question, which is answered by the following result.

Theorem 0.1. Suppose n is a positive integer, I is an open interval containing
zo, f: I =R, f= egists on I and f™ (xq) exists. Let p, be the nth Taylor
polynomial of f at xo. Then

f(z) — pn()

lim ——+-—+ = 0.

Proof. For notational simplicity, we will verify just the onesided limit as x — .
A very similar argument shows the limit from the left is also zero.

We prove the theorem by induction on n. For n = 1, we know the theorem is
true. Now suppose it is true for a positive integer n — 1. We will show the theorem
is then true for n.

Without loss of generality (after replacing f with f — p,) we may assume
f®)(z) = 0 for 0 < k < n. Tt then holds that f —p, = f. Also without loss
of generality, we assume for simplicity that xq = 0.

Now suppose € > 0. Applying the induction hypothesis to f’, we choose § > 0
such that 0 < |z| < & implies |f'(z)] < e|x[*~! . Suppose 0 < x < §. Given
a positive integer M, split the interval [0,z] into M subintervals of equal length
x/M. The ith subinterval [z;_1, ;] is [(i — 1)z/M,ix/M]. By the Mean Value
theorem, in each subinterval [z;_1, ;] there is a point z} such that

(i) = fl@iza)| = [/ () (/M) .
Because |f'(z})| < e(2})""! < e(iz/M)" " and
f@) = f(@) - f(0) = flzam)— £(0)
= (f(:vM) - f(xM—1) + (f(xM,l) - f(wM—2) +ot (f(:m) - f(xo))

M
= Z(f(xi)*f(fm—l))
we have
M M
lf(x)] = |Z(f(xi)_f(xi—1))| < Z|(f($i)_f(xi—1)|

M

3 (e(ix/M)”_l)(;v/M) .
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We recognize this sum as a Riemann sum for the integral |, tio et" 1 dt using our
regular partition {x; : 0 <i < M}. Because [;-  et"~!dt = ex™/n, we have
M

)l < fim > (etia/an)™=" ) (/)

[f(z)] <ex"/n.

Therefore, 0 < z < § implies |f(z)|/2™ < ¢/n. Because € was arbitary, this proves
the theorem. 0

REMARK. There is an easier proof of the theorem under an additional hypoth-
esis. A function is called C* on an interval if its kth derivative is well defined and
continuous on that interval.

Easier Proof assuming f is C" on [I.
As before we may assume p, = 0 and o = 0. By the Lagrange Remainder
Theorem, given x € I and x # 0, we have a z between 0 and z such that

FMGe)

f(@) = pn_i(z) = e and therefore
f@) = panl®) _ 1)
xn n!

Because p, = 0 = p,_1, we can replace p,_; above with p,. Also, by assumption
of continuity of f(), and because z — 0 as  — 0, we then have
f@) =pa@) _ )

lim ———~* = lim ——= =
z—0 xn z—0 n!



