
Polynomial approximation and higher
derivatives

Suppose f : I → R, where I is an open interval and x0 ∈ I, and suppose f is
differentiable at x0. Then we can easily show

lim
x→x0

f(x) − ( f(x0) + f ′(x0)(x− x0) )

x− x0
= 0 .

Because p1(x) = f(x0) + f ′(x0)(x − x0) is the first Taylor polynomial of f at x0,
we see a natural question, which is answered by the following result.

Theorem 0.1. Suppose n is a positive integer, I is an open interval containing
x0, f : I → R, f (n−1) exists on I and f (n)(x0) exists. Let pn be the nth Taylor
polynomial of f at x0. Then

lim
x→x0

f(x) − pn(x)

(x− x0)n
= 0 .

Proof. For notational simplicity, we will verify just the onesided limit as x → x+0 .
A very similar argument shows the limit from the left is also zero.

We prove the theorem by induction on n. For n = 1, we know the theorem is
true. Now suppose it is true for a positive integer n− 1. We will show the theorem
is then true for n.

Without loss of generality (after replacing f with f − pn) we may assume
f (k)(x0) = 0 for 0 ≤ k ≤ n. It then holds that f − pn = f . Also without loss
of generality, we assume for simplicity that x0 = 0.

Now suppose ε > 0. Applying the induction hypothesis to f ′, we choose δ > 0
such that 0 < |x| < δ implies |f ′(x)| < ε|x|n−1 . Suppose 0 < x < δ. Given
a positive integer M , split the interval [0, x] into M subintervals of equal length
x/M . The ith subinterval [xi−1, xi] is [(i − 1)x/M, ix/M ]. By the Mean Value
theorem, in each subinterval [xi−1, xi] there is a point x∗i such that

|f(xi)− f(xi−1)| = |f ′(x∗i )|(x/M) .

Because |f ′(x∗i )| ≤ ε(x∗i )n−1 ≤ ε(ix/M)n−1 and

f(x) = f(x)− f(0) = f(xM )− f(0)

=
(
f(xM )− f(xM−1

)
+
(
f(xM−1)− f(xM−2

)
+ · · ·+

(
f(x1)− f(x0)

)
=

M∑
i=1

(f(xi)− f(xi−1))

we have

|f(x)| = |
M∑
i=1

(f(xi)− f(xi−1))| ≤
M∑
i=1

|(f(xi)− f(xi−1)|

≤
M∑
i=1

(
ε(ix/M)n−1

)
(x/M) .
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We recognize this sum as a Riemann sum for the integral
∫ x

t=0
εtn−1 dt using our

regular partition {xi : 0 ≤ i ≤M}. Because
∫ x

t=0
εtn−1 dt = εxn/n, we have

|f(x)| ≤ lim
M→∞

M∑
i=1

(
ε(ix/M)n−1

)
(x/M)

|f(x)| ≤ εxn/n .
Therefore, 0 < x < δ implies |f(x)|/xn ≤ ε/n. Because ε was arbitary, this proves
the theorem. �

REMARK. There is an easier proof of the theorem under an additional hypoth-
esis. A function is called Ck on an interval if its kth derivative is well defined and
continuous on that interval.

Easier Proof assuming f is Cn on I.
As before we may assume pn = 0 and x0 = 0. By the Lagrange Remainder

Theorem, given x ∈ I and x 6= 0, we have a z between 0 and x such that

f(x)− pn−1(x) =
f (n)(z)

n!
xn , and therefore

f(x)− pn−1(x)

xn
=

f (n)(z)

n!
.

Because pn = 0 = pn−1, we can replace pn−1 above with pn. Also, by assumption
of continuity of f (n), and because z → 0 as x→ 0, we then have

lim
x→0

f(x)− pn(x)

xn
= lim

z→0

f (n)(z)

n!
= 0 .


