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Definitions

Topological dynamical systems

Today: A topological dynamical system TDS is a
homeomorphism of a compact metrizable space, T : X → X .

A homomorphism of TDSs (X ,T )→ (X ′,T ′) is a continuous
map f : X → X ′ such that T ′f = fT .

Here f is an isomorphism (topological conjugacy) if it is
bijective. (Think of f as translating names of points, say from
English to Spanish, but respecting all topological dynamical
properties.)



Definitions

Full shifts

The full shift on k symbols is a TDS (Xk , σk ), defined with some
“alphabet” set A of k symbols. Usually A = {0,1, . . . k − 1}.

Xk is the set of biinfinite sequences
x = . . . x−1x−1x0x1x2 . . .

with each xi in A.

Let dist(x , y) = 1/(M + 1), where M = min{|n| : xn 6= yn}.
If k > 1, then Xk is a Cantor set.

σk is defined by the shift map σ:
(σx)n = xn+1.



Definitions

Subshifts

A TDS (X ,T ) is a subshift of (Xk , σk ) if X ⊂ Xk and T = σ|X .
(X ,T ) is a subshift of (Xk , σk ) iff there is a setW of words on
the alphabet such that X is the set of points x in Xk such that
no word fromW is a subword of x .

IfW can be chosen to be finite, then the subshift is a shift of
finite type (SFT). The SFTs are the building blocks of symbolic
dynamics, important for dyamical systems, and with other
applications.



Definitions

Edge shifts

Suppose a directed graph G has n vertices, named 1, . . . ,n.
Then the adjacency matrix of G is the n × n matrix A where
A(i , j) = number of edges from i to j .

Given a square matrix A with nonnegative integer entries, let A
be the adjacency matrix of a dir. graph G with edge set E . Let
XA be the set of bisequences x = . . . x−1x0x1 . . . on alphabet E
such that for all i , the terminal vertex of xi is the initial vertex of
xi+1. The shift map σ : XA → XA defines an edge shift, an SFT.
Every SFT is topologcially conjugate to some edge shift.



Definitions

Mixing and irreducible shifts of finite type

Let A be a square matrix with nonnegative integer entries.

• A is irreducible if for every entry (i , j), there is some k > 0
such that Ak (i , j) > 0.
• A is primitive if there is some k > 0 such that Ak (i , j) > 0 for
every entry (i , j).
• An irreducible matrix is trivial if it is a permutation matrix.

If A is a nontrivial primitive matrix, then σA is a mixing SFT.
These SFTs behave qualitatively very much like nontrivial full
shifts.



Definitions

If A is a nontrivial irreducible matrix, then σA is a topologically
transitive SFT. If also A is not primitive, then for some p, the
domain XA is the union of p cyclically moving disjoint subsets,
and the restriction of the pth power of σA to any of them is a
mixing SFT.

A general SFT is a union of disjoint irreducible SFTs and
connecting orbits between them. So, the mixing SFTs are the
central case to understand.



Definitions

Block codes

Suppose (X ,T ) is a subshift. LetWk (X ) = {x1 . . . xk : x ∈ X},
the set of words of length k occuring in points of X .

A homomorphism of subshifts f : X → Y is always definable by
a block code. This means:

there are integers a,b, with a ≤ b, and
a function Φ :Wk (X )→W0(Y ), with k = b − a + 1,
such that
(fx)i = Φ(xi+a . . . xi+b) , for all x and i .



THE AUTOMORPHISM GROUP OF σA

For a topological dynamical system (X ,T ), Aut(T ) is the group
of automorphisms of T .

For any subshift (X ,T ), the group Aut(T ) is countable (there
are only countably many block codes).

We will consider Aut(σA).

STANDING CONVENTION: For the discussion of Aut(σA), we
assume A is primitive and nontrivial.

We will see Aut(σA) is complicated.



The Marker Method

An homomorphism U : XA → XA might be defined without
reference to a block code. Let’s see a simple idea (with far
reaching elaborations) which shows there are many
automorphisms.
Example. For the full shift on three symbols 0,1,2, U(x) is
obtained by replacing 12 with 01, wherever 12 occurs in x . e.g.

x = . . . 0 1 2 1 0 0 1 2 1 2 0 . . .
U(x) = . . . 0 0 1 1 0 0 0 1 0 1 0 . . .
This map U is well defined (but not an automorphism).
Also, e.g. : “replace 00 with 01” is not even well defined:
because 00 can properly overlap itself (in 000), and the
terminal symbol of 01 does not equal the initial symbol.
These problems are addressed by “markers” (introduced in
[H]).



For example, given a permutation π in Sn, letW be a set of n
words on symbols 0,1 of the same length. Define an
automorphism Uπ of the full 3 shift on symbols 0,1,2: for each
W inW, obtain Ux from x by replacing 2W with 2π(W ),
wherever W occurs in x . E.g. perhaps

2W = 2000→ 2010 = 2π(W ).

The symbol 2 serves as a marker, preventing proper overlaps
of words of this form 2W , so the map is well defined. For
permutations π and ρ, Uπ◦ρ = Uπ ◦ Uρ. So, each Uπ is an
automorphism (having finite order), and the map π 7→ Uπ

embeds the symmetric group Sn into Aut(σ3).

So every finite group embeds as a subgroup of Aut(σ3).

That is just a start.



Subgroups of Aut(σA)

Elaborations and extensions of the marker method have been
used to show Aut(σA) contains copies of a variety of groups,
e.g.

• Free groups [BLR]
• Direct sum of countably many copies of Z [BLR]
• Every residually finite countable group which is a union of
finite groups [KR]
• The fundamental group of any 2-manifold [KR].



The only obstructions known (to me) to embedding a countable
group into Aut(σA):
– it must be residually finite
– every finitely generated subgroup must have solvable word
problem (easy proof using block codes ...)

Problem: What are other obstructions?

Question [CFKP] Does SL(3,Z) embed into Aut(σA)?

Using the idea of distortion element from geometric group
theory, [CFKP] show a group with logarithmic distortion (such
as SL(k ,Z) with k ≥ 3) cannot embed in Aut(σA) for any zero
entropy shift T .



Counting automorphisms
Consider Bl(σA,n) , the set of block codes XA → XA with (fx)0
determined by x1 . . . xn. Let invBl(σA,n) be the elements of
Bl(σA,n) defining automorphisms.

What is the size of invBl(σA,n), compared to the size of
Bl(σA,n)?

For simplicity, we consider just σk , the full shift on k symbols.
Then |Bl(σk ,n)| = k (kn). So,

limn(1/n) log log |Bl(σk ,n)| = limn(1/n) log[log(k)(k
n)] =

limn(1/n) log[(kn) log(k)] = log k

Kim and Roush proved limn(1/n) log log |invBl(σk ,n)| = log k .



PROBLEM. For a full shift σk , give a better asymptotic formula
for |invBl(σk ,n)|.

The doubly exponential growth of the number of
automorphisms given by codes of range n causes problems.

• It is difficult to do convincing computational experiments on
properties of automorphisms of σA.

• It seems completely impractical to prove properties of
automorphisms by induction on the range of a defining block
code.



How to proceed?

How can we learn something about a complicated group, such
as Aut(σA)?

We look to guidance provided by The Bible:



BY THEIR ACTIONS, YE SHALL KNOW THEM .

There are two (and so far, essentially only two) actions of
Aut(σA) which we have been able to learn from:

• Action on periodic points.

• Action on the dimensional module.



Action on periodic points
Pn := set of σA-periodic points of least period n.
For each n, Pn is finite and σA invariant.
Aut(σA|Pn is finite. For U in Aut(σA), let Un := U|Pn.
Then U 7→ Un defines a homomorphism from Aut(σA) into the
finite group Aut(σA|Pn).

Because the periodic points of σA are dense, the maps U 7→ Un
separate points. So, Aut(σA) is residually finite.

Contrast: for various subshifts T , Aut(T ) is not residually finite:
• ∃ a minimal subshift T with Aut(T ) containing a copy of Q.
• Many reducible shifts (some SFTs, and many more – Salo
and Schraudner ... ) contain a copy of S∞, the union of the
symmetric groups Sn.
(Sn=permutations of {1,2, . . . ,n}.)



Action on the dimension module
Suppose A is k × k . Let GA be the direct limit group
Zk → Zk → Zk → Zk · · ·
where each arrow is the homomorphism given by x 7→ xA.

A induces an automorphism Â : GA 7→ GA. The pair (GA, Â) is a
presentation ofMA, the dimension module of σA.

An automorphism ofMA is a group automorphism GA 7→ GA
which commutes with Â and respects a minor order condition
we won’t describe.

Example. A = [2]. GA
∼= Z[1/2]. For n ∈ Z, let φn : GA → GA be

φn : x 7→ 2nx . The map n 7→ φn defines a group isomorphism
Z→ Aut(MA).



Other examples give e.g.

GA
∼= Z[1/6]⊕ Z3,

Aut(A) ∼= Z2 ⊕ SL(3,Z).

The groups Aut(MA) can be understood very concretely,
though we won’t have time for this.

Usually but not always, Aut(MA) is finitely generated.



The dimension representation

FACT: an element U of Aut(σA) induces an automorphism Û of
MA. The rule U 7→ Û defines a group homomorphism

ρA : Aut(σA)→ Aut(MA).

This homomorphism, describing the action of Aut(σA) on the
module Aut(MA), is called the dimension representation.

Let Aut0(σA) denote the kernel of the ρA (the group of inert
automorphisms). This is the large, complicated part of Aut(σA).
The possible actions of Aut0(σA) on finite subsystems (or any
proper subsystem) are, remarkably, completely understood.



The sign and gyration homomorphisms

Given n, let x1, . . . , xk be a set of representatives of the σA
orbits of size n. An automorphism U of σA acts on Pn by a rule

U : xi 7→ σm(i)(xj)

where j = π(i), with π a permutation of {1, . . . , k}.
We have homomorphisms

signn : U 7→ sign(πU) ∈ Z/2Z

gyn : U 7→
∑

i m(i) ∈ Z/nZ



The SGCC homomorphism

(SGCC stands for sign gyration compabitility condition.)

sggcn : Aut(σA)→ Z/nZ
sggcn = gyn +

(∑
k signn/(2k )

)
(n/2)

The last sum is over integers k ≥ 1 such that 2k divides n. E.g.

sggcn = gyn if n is odd,
sggc24 = gy24 + (sign12 + sign6 + sign3) 12

For any U ∈ Aut(σA), sggcn(U) is either
gyn(U) or gyn(U) + n/2 .



The Factorization Theorem (Kim-Roush-Wagoner)

FACTORIZATION THEOREM For all n, there is a
homomorphism γn : Aut(MA)→ Z/nZ such that
sggcn = γn ◦ ρA .

So, if U is in the kernel of the dim. representation ρA, then
sggcn(U) = 0 for all n.

This is a major obstruction to extending an automorphism of a
subsystem of (XA, σA) to an automorphism in the kernel of the
dim. repn.
By constructions of several people – but especially, KRW – the
sgcc = 0 constraint is the ONLY obstruction to extending an
automorphism of a subsystem to an inert automorphism of σA.



There can be more obstructions to an automorphism extending
to a composition of elements of finite order in Aut(σA). We
know for some A that Aut0(σA) is not generated by elements of
finite order. (But possibly the finite order elements always
generate a subgroup of finite index in Aut0(σA).)

Mastery of actions on subsystems of XA is generally not
enough for global questions. For example,

PROBLEM. Suppose for all n that an automorphism U of σA
permutes the orbits of size n by an even permutation.
Must U be in the commutator of Aut(σA)?



Isomorphism of Aut(σA) and Aut(σB)?

For all we know, there is such an isomorphism only if σB is
topologically conjugate (isomorphic) to σA or (σA)−1.

The only tool known to give examples of Aut(σA) and Aut(σB)
not isomorphic is very crude:
Ryan’s Theorem: the center of Aut(σA) is the powers of σA.

E.g., the 2-shift has no square root, but the 4-shift has a square
root, so their automorphism groups are not isomorphic

PROBLEM Are the automorphism groups of the 2-shift and
3-shift isomorphic?



PROBLEM Is every group isomorphism Aut0(σA)→ Aut0(σB)
induced by a homeomorphism XA → XB which is a conjugacy
to σB or (σB)−1?

For the last problem, note a huge difference between it and the
corresponding question for full groups of Cantor systems.
There is a rich supply of full group elements which are the
identity on large open sets. But here, points with dense orbits
are dense; if a conjugacy is the identity on such a point, then it
is the identity everywhere.



Flow equivalence

Let T : X → X be a homeomorphism of a compact metric
space. (We are interested in T = σA : XA → XA. )

The mapping torus of T is the quotient Y (T ) of X × R by the
identifications (x , s + n) ∼ (σA)n(x), s), for all x ∈ XA, s ∈ R,
n ∈ Z.

Y (T ) is the image of X × [0,1], under the identifications
(x ,1) ∼ (T (x),0).

There is a continuous R action (flow) on X × R, for which the
time t map is (x , s) 7→ (x , s + t). This flow pushes down to a
flow on the mapping torus (the “suspension flow”).



DEFN Two homeomorphisms S,T are flow equivalent if there is
a homeomorphism F : Y (S)→ Y (T ) mapping flow orbits to
flow orbits, preserving the direction of the flow.
(Such an F is called a flow equivalence.) There is a long history
to the study of flow equivalence.

Let F(T ) be the group of self flow equivalences of T . Let Fo(T )
be the subgroup of homeos F isotopic to the identity in H(T ).

DEFN The mapping class group of T , MCG(T ), is the group
F(T )/F0(T ).

The mapping class group plays the role for flow equivalence
that the automorphism group plays for topological conjugacy.



The mapping class group of a shift of finite type
From here an edge shift XA, σA is assumed to be irreducible
and nontrivial. (Every irreducible SFT is flow equivalent to a
mixing SFT.)

We will consider MCG(σA), contrasted to Aut(σA)
(always, for σA irreducible and nontrivial).

A fundamental tool is the following classification theorem.

THEOREM (Franks, after Bowen-Franks, Parry-Sullivan):

Nontrivial irreducible SFTs σA, σB are flow equivalent
iff
(1) the groups cok(I − A) and cok(I − B) are isomorphic and
(2) det(I − A) = det(I − B).



Properties of MCG(σA)

These are taken from joint work B-Chuysurichay unless
indicated.

• Recall, every automorphism of a subshift can be defined by a
block code. There is an analogous notion [BCE]: for a subshift,
every element of its mapping class group has a representative
defined by a “flow code”. (This looks like a block code, with
words in place of symbols.)

• MCG(σA) is a countable group.
(There are only countably many flow codes.)

• MCG(σA) is not residually finite.
(Contains a copy of S∞.)



• The center of MCG(σA) is trivial.

• An automorphism of σA induces a flow equivalence. The
corresponding homomorphism Aut(σA)→ MCG(σA) has kernel
equal to < σA >, the powers of the shift.

• If σB flow equivalent to σA, then MCG(σB) ∼= MCG(σA); so, a
flow equivalence induces an embedding of Aut(σB)/ < σB >
into MCG(σA).

• Many elements of MCG(σA) cannot arise from
automorphisms in this way (as automorphisms of return maps
to cross sections).



Circles and extensions

Periodic points of σA give rise to circles in the mapping torus.
MCG(σA) acts by permutations on C, the countable set of
circles in the mapping torus.

• The action of MCG(σA) on C by permutations is faithful.
• The action of MCG(σA) on C by permutations is n-transitive,
for all n.

• [BCE] If F : Y1 → Y2 is a flow equivalence from one
subsystem of Y (σA) to another, then F extends to a flow
equivalence Y (σA)→ Y (σA)



The Bowen-Franks representation

• [B] Analogous to the dimension representation for Aut(σA) is
the “Bowen-Franks representation” , a group homomorphism
βA : MCG(σA)→ Aut(cok(I − A)).

In contrast to the dimension representation:

βA is surjective, for all A.
The range group is finitely generated, for all A.

Let MCG0(σA) be the kernel of βA: this is the big, mysterious
part of MCG0(σA)



Questions about the mapping class group
• Does the map π : H(σA)→ MCG(σA) split?
(i.e. is there a subgroup which π maps bijectively to MCG(σA)?)

• Is MCG0(σA) simple? (I suspect, yes.)
• Is MCG0(σA) equal to its commutator? generated by
involutions? finitely generated?

• For σA and σB not flow equivalent, we know nothing at all
about whether their mapping class groups are
always/sometimes/never isomorphic as groups.
PROBLEM Is every group isomorphism
MCG0(σA)→ MCG0(σB) induced by a homeomorphism of
mapping tori, Y (σA)→ Y (σB).

• Is MCG(σA) sofic?
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