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Abstract. We develop a rather elaborate computer program to investigate

the jointly periodic points of one-dimensional cellular automata. The experi-
mental results and mathematical context lead to questions, conjectures and a

contextual theorem.
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1. Introduction and conjectures

In this paper we consider the action of a surjective one-dimensional cellular
automaton f on jointly periodic points. Detailed definitions are recalled below.

This paper is primarily an experimental mathematics paper, based on data from
a program written by the second-named author to explore such actions. The ex-
perimental results and mathematical context lead us to questions and a conjecture
on the growth rate of the jointly periodic points.

We approach our topic from the perspective of symbolic dynamics, which pro-
vides some relevant tools and results. However, almost all of this paper–in particular
the questions and conjectures–can be well understood without symbolic dynamics.
We do spend time on context, and even prove a theorem (Theorem 3.2), for two
reasons. First, we believe that experimental mathematics should not be too seg-
regated from the motivating and constraining mathematics. Second, workers on
cellular automata have diverse backgrounds, not necessarily including symbolic dy-
namics. (Similarly, perhaps a technique or example unfamiliar to us could resolve
one of our questions.)
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To express our questions and conjectures clearly, we must suffer some definitions.
We let ΣN denote the set of doubly infinite sequences x = . . . x−1x0x1 . . . such that
each xi lies in a finite “alphabet” A of N symbols; usually A = {0, 1, . . . , N − 1}.
A one-dimensional cellular automaton (c.a.) is a function f : ΣN → ΣN for which
there are integers a ≤ b and a function F : Ab−a+1 → A (F is a “local rule” for
f) such that for all i, (f(x))i = F (xi+a · · ·xi+b). The shift map σ on a sequence is
defined by (σx)i = xi+1. We let SN denote the shift map on ΣN .

For any map S, we let Pk(S) denote the points of (not necessarily least) period
k of S, i.e. the points fixed by Sk, and let Per(S) = ∪kPk(S). Thus, Per(SN )
is the set of “spatially periodic” points for a one-dimensional cellular automaton
on N symbols. The jointly periodic points of a cellular automaton map f on N
symbols are the points in Per(S) which are also periodic under f , that is, the
points which are “temporally periodic” as well as spatially periodic. (In the usual
computer screen display, this would mean vertically and well as horizontally pe-
riodic.) There is by this time a lot of work addressing periodic and jointly peri-
odic points for linear one-dimensional c.a.; we refer to [Chin-Cortzen-Goldman2001,
Cordovil-Dilao-daCosta1986, Jen1988, Lidman-Thomas2006, Martin-Odlyzko-Wolfram1984,
Misiurewicz-Stevens-Thomas2006, Sutner] and their references. Also see [Miles2006]
regarding the structure of periodic points for these and more general algebraic maps
in the setting of [Kitchens1997, Schmidt1995].

A subset E of ΣN is dense if for every point x in ΣN and every k ∈ N there
exists y in E such that xi = yi whenever |i| ≤ k. We say E is m-dense if every
word of length m on symbols from the alphabet occurs in a point of E.

We can now state our first conjecture.

Conjecture 1.1. For every surjective one-dimensional cellular automaton, the
jointly periodic points are dense.

Conjecture 1.1 is a known open question [Blanchard2000, Blanchard-Tisseur2000,
Boyle-Kitchens1999], justified by its clear relevance to a dynamical systems ap-
proach to cellular automata. (Whether points which are temporally but not nec-
essarily spatially periodic for a surjective c.a. must be dense is likewise unknown
[Blanchard2000].) That this question, also open for higher dimensional c.a., has not
been answered reflects the difficulty of saying anything of a general nature about
c.a., for which meaningful questions are often undecidable [Kari2005].

It is known that the jointly periodic points of a one-dimensional cellular automa-
ton map f are dense if f is a closing map [Boyle-Kitchens1999] or if f is surjective
with a point of equicontinuity [Blanchard-Tisseur2000]. We justify our escalation
of (1.1) from question to conjecture by augmenting earlier results with some ex-
perimental evidence. In particular: for every span 4 surjective one-dimensional
cellular automaton on two symbols, the jointly periodic points are at least 13-dense
(Proposition 5.1).

Now we turn to more quantitative questions. Letting for the moment P denote
the number of points in Pk(SN ) which are periodic under f as well as SN (i.e.
P = |Per(f |Pk(SN ))|), we set νk(f, SN ) = P 1/k, and then define

ν(f, SN ) = lim sup
k

νk(f, SN ) .

Question 1.2. Is it true for every surjective one dimensional cellular automaton
f on N symbols that ν(f, SN ) ≥

√
N?
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Question 1.3. Is it true for every surjective one dimensional cellular automaton
f on N symbols that ν(f, SN ) > 1?

We cannot answer Question 1.3 even in the case that f is a “closing” map and
we know there is an abundance of jointly periodic points [Boyle-Kitchens1999].

Conjecture 1.4. There exists N > 1 and a surjective cellular automaton f on N
symbols such that ν(f, SN ) < N .

Conjecture 1.4 is a proclamation of ignorance. ¿From the experimental data in
our Tables, it seems perfectly clear that there will be many surjective c.a. f with
ν(f, SN ) < N . However, we are unable to give a proof for any example. With the
additional assumption that the c.a. is linear, it is known that Conjecture 1.1 is true
and the answer to Question 1.2 is yes (Sec. 3).

The relation of Questions (1.2-1.4) to Conjecture 1.1 is the following: if a c.a.
map f on N symbols does not have dense periodic points, then ν(f, SN ) < N .

Here is the organization of the sequel. In Section 2, we give detailed definitions
and background. In Section 3, we establish some mechanisms by which one can
prove lower bounds for ν(f, SN ) for some f . We also prove (Theorem 3.2) that
no property of a surjective c.a. considered abstractly as a quotient map without
iteration can establish ν(f, SN ) < N . We also support Question 1.2 with a random
maps heuristic. (The potential analogy of c.a. and random maps was remarked
earlier by Martin, Odlyzko and Wolfram [Martin-Odlyzko-Wolfram1984, p.252] in
their study of linear c.a.) A list of c.a. used for the computer explorations is given
in Section 4.

Our computer program consists of three related subprograms: FDense, FPeriod
and FProbPeriod. We use these respectively in Sections 5 , 6 and 7. FDense
probes approximate density of jointly periodic points of a given shift period. FPe-
riod provides exact information on jointly periodic points of a given shift period.
FProbPeriod provides information on jointly periodic points for a random sample
from a given shift period, and thus provides some information at shift periods where
the memory demands of FPeriod are too great for it to succeed.

In Sections 5, 6 and 7, we give more information on the algorithms and discuss the
many tables of output data in the appendices. The tables, along with the program
itself, are available as an online supplement at the Experimental Mathematics web-
site (http://www.expmath.org/expmath/volumes/VOLX/VOLX.ISSX/), and also
at the website of the first named author.

We thank the anonymous referees, especially the referee whose many detailed
comments have improved the paper.

2. Definitions and background

Let A = {0, 1, . . . , N − 1}, a finite set of N symbols, with the discrete topology.
Let ΣN be the product space AZ, with the product topology. We view a point x
in ΣN as a doubly infinite sequence of symbols from A, x = . . . x−1x0x1 . . . . The
space ΣN is compact and metrizable; one metric compatible with the topology is
dist(x, y) = 1/(|n| + 1) where |n| is the minimum nonnegative integer such that
xn 6= yn. A set E is dense in ΣN in this topology if for every k and every word W
in A2k+1 there exists x in E such that x[−k, k] = W .
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The shift map σ sends a sequence x to the sequence σx defined by (σx)i = xi+1.
The shift map defines a homeomorphism SN on ΣN . The topological dynamical
system (ΣN , SN ) is called the full shift on N symbols, or more briefly the N -shift.

A map f : ΣN → ΣN is continuous and shift-commuting (fσ = σf) if and only
f is a block code, i.e. there exist integers a, b and a function F : Ab−a+1 → A such
that (f(x))i = F (x[i+a, i+b]) for integers i, for all x ∈ ΣN . Such a map f is called
a one-dimensional cellular automaton. There is a well known dichotomy for such
maps f : either (i) f is surjective and for some integer M every point has at most
M preimages, or (ii) image points typically have uncountably many preimages, and
f is not surjective [Hedlund1969, Kitchens1998, Lind-Marcus1995]. In Case (i),
almost all points have the same number of preimages; this number is the degree of
f .

We restrict our attention to surjective maps in this paper because we are inter-
ested in periodic points of f , which must be contained in ∩k>0f

kΣN , the eventual
image of f . We separate our ignorance about periodic points from additional diffi-
culties involving the passage to the eventual image [Maass1995].

Polynomials can be used to define cellular automata; for example, if we refer to
the c.a. f defined on the N -shift by the polynomial 2x−1 + x0(x2)3, we mean that
f is defined by the block code (fx)i = 2xi−1 + xi(xi+2)3, where the arithmetic is
interpreted modulo N . The span of such a code is 1 plus the maximum difference
of coordinates with nonzero coefficients; in this example, it is 1 + 2 − (−1) =
4. The code is left permutative if for every x, permuting inputs to the leftmost
variable, with inputs to other variables fixed, permutes the outputs. Likewise there
is the notion of right permutative. The previous example is left permutative and
it is not right permutative. When the number N of symbols is prime, every c.a.
map f has such a polynomial representation [Hedlund1969]. (For general N , there
is a representation by a product of polynomial representations over finite fields
[Martin-Odlyzko-Wolfram1984].)

A block code on SN depending on coordinates [0, j − 1] can be described by a
“lookup code”, a word W of length N j on alphabet {0, ..., j−1} defined as follows.
List the N j possible blocks of length j in lexicographic order; then the ith symbol
of W is the output symbol under f for the ith input block. For example, for the
code x0 + x1x2 on S2, the input words in lexicographic order are 000,001,010,011,
100,101,110,111 and the corresponding word W is 0001 1110.

For the N shift, the number of coding rules of span at most j is NNj

. If
inj(j,N) denotes the number of these which define injective (and thus surjective
[Hedlund1969]) codes, then we still [Kim-Roush1990] see a superexponential growth
rate in j,

lim
j

1

j
log log(inj(j,N)) = logN

even though surjective span j maps become very sparse in the set of all span j
maps as j increases.

A block code f : ΣN → ΣN is right-closing if it never collapses distinct left-
asymptotic points. This means that if f(x) = f(x′) and for some I it holds that
xi = x′i for all i in (−∞, I], then x = x′. Any right permutative map is right
closing. The definition of left closing is given by replacing (−∞, I] with [I,∞).
The map f is closing if it is either left or right closing. An endomorphism of a full
shift SN is constant-to-one if and only if it is both right and left closing (i.e., it is
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biclosing). A closing map is surjective. Closing maps are important in the coding
theory of symbolic dynamics [Ashley1993, Kitchens1998, Lind-Marcus1995]. They
also have a very natural description from the viewpoint of hyperbolic dynamics
[Brin-Stuck2002]: right closing maps are injective on unstable sets, left closing
maps are injective on stable sets.

We now discuss some previous work involving periodic points and cellular au-
tomata. We let Pn(S) denote the points of period n of S, and P o

n(S) the points of
least period n. These finite sets are mapped into themselves by any c.a. map f ;
thus any periodic point of S is at least preperiodic for f . For a preperiodic (possibly
periodic) point x, the preperiod of x is the least nonnegative integer j such that
f j(x) is periodic, and the period of x is its eventual period, the smallest positive
integer k such that fm+k(x) = fm(x) for all large m. A point is jointly periodic if
it is periodic under both f and SN .

In the case f is linear (f(x) + f(y) = f(x + y)), Martin, Odlyzko and Wolfram
[Martin-Odlyzko-Wolfram1984] (see also the further work in [Chin-Cortzen-Goldman2001,
Cordovil-Dilao-daCosta1986, Jen1988, Lidman-Thomas2006, Misiurewicz-Stevens-Thomas2006,
Sutner] and their references) gave an algebraic analysis of f -periods and preperiods
for points of a given shift period, and also provided some numerical data. One key
feature for linear f is an easy observation: among the jointly periodic points of
shift period k, there will be a point (generally many points) whose least f -period
will be an integer multiple of all the least f -periods of the jointly periodic points
of shift period k. In contrast, a very special case of a powerful theorem of Ashley
[Ashley1993] has the following statement: for any K,N and any shift-commuting
map g from ∪1≤k≤KPk(SN ) to itself, there will exist surjective c.a. on N symbols
whose restriction to ∪1≤k≤KPk(SN ) equals g.

The following remark is another indication of the difficulty of understanding joint
periodicity of even injective c.a. For a map T , Fix(T ) denotes P1(T ), the set of
fixed points of T .

Remark 2.1. Given N ≥ 2, let S denote SN , and suppose φ is an injective one-
dimensional c.a. on N symbols. Suppose N is prime. Then there will exist some
integer m, depending on φ, and some κ > 0 such that for all k ∈ N,∣∣∣Fix

(
(Saφb)k

)∣∣∣ = N (a+mb)k =
∣∣∣Fix

(
(Sa(Sm)b)k

)∣∣∣ =
∣∣∣Fix

(
(Sa+mb)k

)∣∣∣
whenever |b/a| < κ (this follows from [Boyle-Krieger1987, Theorem 2.17]). That
is, for the two Z2 actions generated respectively by S, φ and S, Sm, the periodic
point counts for actions by individual elements (a, b) of Z2 are the same for all
(a, b) in some open cone around the positive horizontal axis. However, despite the
agreement in that open cone, the sequences (|Pk(φ)|) and (|Pk(Sm)|) can be very
different. (For a dramatic example of this sort in the setting of shifts of finite type,
see [Nasu1995, Example 10.1]).

Lastly, we note that the invariant ν, defined in the introduction, has an unusual
robustness, as follows.

Remark 2.2. Fix N and let S = SN . Suppose x ∈ Per(SN ) and f is a c.a. on ΣN .
Then x is in Per(f) if and only if for some i > 0, f ix and x are in the same S-orbit.
It follows that for all integers i, j, k with k, i positive and j nonnegative, we have
νk(f, S) = νk(f iSj , S), and thus ν(f, S) = ν(f iSj , S).
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3. Some mechanisms for periodicity

Throughout this section f denotes a c.a. map on N symbols. In this section, we
discuss four ways to prove ν(f, SN ) is large:

(1) find a large shift fixed by f (or more generally by a power of f)
(2) let f be linear (i.e., a group endomorphism of ΣN , where addition on the

compact group ΣN is defined coordinatewise mod N)
(3) use the algebra of a polynomial presenting f
(4) find equicontinuity points.

After discussing these, we offer a random maps heuristic and a question.
(1) We will exhibit the first mechanism in some generality. Two c.a. f, g are

isomorphic if there is an invertible c.a. φ such that f = φgφ−1 (where e.g. φg is
the composition, (φg)(x) = φ(g(x))). The c.a. f, g are equivalent as quotient maps
if there are invertible c.a. φ, ψ such that f = ψgφ. We prove Theorem 3.2 below
to show that for a c.a. f , no property defined on equivalence classes of quotient
maps can prevent ν(f, SN ) from being arbitrarily close to N . To avoid a lengthy
digression to background, we give a proof assuming some familiarity with symbolic
dynamics; however the statement of Theorem 3.2 is self-contained. Below, h(T )
denotes the topological entropy of T .

Lemma 3.1. Suppose (Σ, S) is a mixing shift of finite type (SFT) of positive en-
tropy, and f : Σ → Σ is a surjective block code, and δ > 0. Then there are an
automorphism φ of (Σ, S), and a mixing SFT (Σ′, S′) such that the following hold:
Σ′ ⊂ Σ; the fixed point set of φf contains Σ′; and h(S′) > h(S)− δ.

Proof. In this proof, we will consider only SFTs which are restrictions of S to
subsets of Σ. For a lighter notation, we will let the set name also denote the SFT
which is the restriction of S to the set.

Our first task is to find a mixing SFT X in Σ such that h(X) > h(Σ)−δ and the
restriction of f toX is injective. For this, pick a periodic orbit Z in Σ such that f(Z)
is an orbit of equal period. (Such Z must exist: otherwise, f would map the periodic
points of prime period to fixed points, and this would imply that f(Σ) is a single
point.) As a surjective endomorphism of a mixing SFT, the map f must be finite to
one, so f−1(f(Z)) is a finite set. Using [Denker-Grillenberger-Sigmund1976, Lemma
26.17]), find in Σ a mixing SFT Σ1 disjoint from the subshift f−1(f(Z)) \ Z, such
that h(Σ1) > h(Σ) − δ. Then, using [Denker-Grillenberger-Sigmund1976, Lemma
26.16]), find in Σ a mixing SFT Σ2 containing Z∪Σ1 but disjoint from f−1(f(Z))\Z.
Now h(Σ2) > h(Σ)− δ and the finite to one map f |Σ2 is injective on Z. Thus the
restriction of f to Σ2 has degree 1. Let W be a magic word for this degree 1 map
(see [Kitchens1998] or [Lind-Marcus1995, Sec. 9.1] for background on magic words
and degree). Define

YM = {x ∈ f(Σ2) : ∀i ∈ Z,W is a subword of x[i, i+M ]} .
Any point of YM will have a unique preimage in Σ2. As in [Marcus1985], limh(YM ) =
h(f(Σ2)). Fix M sufficiently large that YM is a mixing SFT with entropy close
enough to that of f(Σ2) to guarantee h(YM ) > h(Σ) − δ. Let X denote Σ2 ∩
f−1(YM ). Then X is a mixing SFT with h(X) > h(Σ)− δ and f |X is injective.

Now fix K such that for every n ≥ K, Σ has at least two orbits of length n
which are not in X. Find a mixing SFT Σ′ in X such that Σ′ (and consequently
also f(Σ′)) has no point of period less than K, and still h(Σ′) > h(Σ) − δ. The
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point of the passage from X to Σ′ is that by [Boyle-Krieger1993, Theorem 1.5], the
periodic point condition on Σ′ guarantees that the embedding

(f |Σ′)−1 : f(Σ′)→ Σ

can be extended to an automorphism φ of S. Clearly the restriction of φf to Σ′ is
the identity map. �

Theorem 3.2. Suppose f is a surjective c.a. on N symbols and ε > 0. Then there
is an invertible c.a. φ such that ν(φf, SN ) > N − ε.

Proof. If T is a mixing shift of finite type with h(T ) = log λ, then limk |Fix(T k)|1/k =
λ. If this T is a set of fixed points for a c.a. ψ on N symbols, it follows that
ν(ψ, SN ) ≥ λ. Now the theorem follows from Lemma 3.1. �

Remark 3.3. The statements of Lemma 3.1 and Theorem 3.2 remain true if φf
is replaced by fφ. One way to see this is to notice that the systems (fφ, S) and
(φ(fφ)φ−1, φSφ−1) = (φf, S) are topologically conjugate.

(2) Now we turn to algebra. ΣN is a group under coordinatewise addition (mod
N), and some c.a. are group endomorphisms of this group; these are the linear cellu-
lar automata whose jointly periodic points were studied in [Martin-Odlyzko-Wolfram1984]
and later in a number of papers (see [Chin-Cortzen-Goldman2001, Cordovil-Dilao-daCosta1986,
Jen1988, Lidman-Thomas2006, Misiurewicz-Stevens-Thomas2006, Sutner] and their
references). The algebraic structure allowed a number theoretic description of the
way that f -periods of jointly periodic points of SN period n vary (irregularly) with
n. We show now that when f is a linear c.a., it is easy to see that ν(f, SN ) = N .

Proposition 3.4. Suppose a c.a. map f is a surjective linear map on SN . Then
for all large primes p, νp(f, SN ) ≥ Np−1. Therefore ν(f, SN ) = N .

Proof. We use an argument from the proof of a related result, Proposition 3.2 of
[Boyle-Kitchens1999]. Let M be the cardinality of the kernel of f . Suppose p > M
and p is prime; then f must map orbits of length p to orbits of length p (otherwise,
some orbit of length p would be collapsed to an orbit of length dividing p, i.e. to
a fixed point, which would contradict the fact that every point has M preimages).
Let H denote Pp(SN ), the set of fixed points of (SN )p; H is a subgroup which
is mapped into itself by f . Pick k > 0 such that the restriction of f to fkH is
injective; then fkH is the set of points in H which are f -periodic. The kernel of
fk contains no point in an orbit of length p, so ker(fk|H) ⊂ Fix(SN ). Thus

νp(f, SN ) = |fkH| = |H/ker(fk|H)| ≥ |H/Fix(SN )| = Np/N = Np−1 .

�

(3) Algebra can be used in another way. Frank Rhodes [Rhodes1988], using
properties of certain families of polynomials presenting c.a. maps, exhibited a
family of noninvertible c.a. f for which there exists k ∈ N such that f is injective
on Pkn(SN ) for all n ∈ N. Clearly in this case ν(f, SN ) = N . We will not review
that argument.

(4) We now turn to equicontinuity. A point x is equicontinuous for f if for every
positive integer M there exists a positive integer K such that for all points y, if
x[−K,K] = y[−K,K] then (fnx)[−M,M ] = (fny)[−M,M ] for all n > 0 . If the
surjective c.a. f has x as a point of equicontinuity, and M is chosen larger than
the span of the block code f , and W is the corresponding word x[−K,K], then the
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following holds: if z is a point in which W occurs with bounded gaps, then z is
f -periodic. Thus limn(1/n) log νn(f, SN ) = log(N), and moreover the convergence
is exponentially fast [Blanchard-Tisseur2000]. Points of equicontinuity may occur
in natural examples [Blanchard-Maass1996, Kurka1977].

For many (probably “most”) surjective c.a., the criteria above are not applica-
ble. This leads to the experimental investigations discussed in the next section, and
to the possibility raised in Questions 1.2 and 1.3 of a general plenitude of jointly
periodic points. Question 1.2 arises because in the experimental data, the restric-
tions of the c.a. f to Pk(SN ) are somewhat reminiscent of a random map on a
finite set. Since f is a surjective one dimensional c.a. map, there is an M such
that no point has more than M preimages under f . Suppose for example k is a
prime greater than M and let Ok(SN ) denote the set of SN orbits of size k. Then
f defines an at most M -to-1 map fk from Ok(SN ) into itself, and we see a possible
heuristic: (1) in the absence of some additional structure, the sequence (fk) will
reflect some properties of random maps, and (2) an “additional structure” such
as existence of equicontinuity points for f will tend to produce more rather than
fewer periodic points. The beautiful and extensive theory of random maps on finite
sets contains precise asymptotic distributions answering various natural questions
[Sachkov1997]. Here we simply note that for a random map on a set of K elements,

asymptotically on the order of
√
K of the elements will lie in cycles (whether the

map is bounded-to-one [Grusho1972, Theorem 2] or not [Sachkov1997]), and there
will be few big cycles.

The maps fk derived from the surjective c.a. f are nonrandom not only in being
bounded-to-one, but also in that most points have the minimal possible number of
preimages [Hedlund1969, Kitchens1998, Lind-Marcus1995]. To the extent it mat-
ters, this seems to work in favor of the random maps heuristic behind Question 1.2.
In particular, it seems that the qualification to the random maps analogy offered
in [Martin-Odlyzko-Wolfram1984, p.252], regarding large in-degrees for cellular au-
tomata, does not hold for the class of surjective c.a.

4. The maps

We examine with our programs several cellular automata on N symbols, having
or not having various properties as indicated below. Except for Tables 15 and 16,
all c.a. examined are on N = 2 symbols.

The c.a. A is the addition map x0 + x1 (mod N). This c.a. is linear, bipermu-
tative, and everywhere N to one.

The c.a. B is x0 +x1x2. This c.a. is left permutative, degree 1, not right closing.
The c.a. C is B ◦Brev, where Brev = x0x1 + x2. This c.a. is degree 1, and it is

nonclosing, as it is the composition of a not-left-closing c.a. and a not-right-closing
c.a.

The c.a. D is the map C composed with (S2)−2, i.e., D is the composition of
x0 + x1x2 with x−2x−1 + x0. All periodic points for the golden mean shift (the
sequences x in which the word 11 does not occur) become fixed points for D (vs.
being periodic of varying periods for C).

The c.a. E is the composition A followed by B. This c.a. on N = 2 symbols has
degree 2, and is left permutative but not right closing.

The c.a. J on 2 symbols is A precomposed with the automorphism U of S2

which applies the flip to the symbol in the ∗ space of the frame 10 ∗ 11. This U is
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x0 + x−2(1 + x−1)x1x2, which equals x0 + x−2x1x2 + x−2x−1x1x2. The c.a. J has
degree N and is biclosing, but is neither left permutative nor right permutative.

The c.a. G is x−1 + x0x1 + x2. This c.a. on 2 symbols is bipermutative, degree
2, and is not linear.

The c.a. H is the composition A ◦A ◦U . It has the properties of J , except that
the degree is now 22 = 4.

The c.a. K is the composition B ◦ U . This c.a. is left closing degree 1; it is not
left permutative and it is not right closing.

In addition we use a library of surjective span 4 and span 5 c.a. due to Hedlund,
Appel and Welch, who conducted the early investigation [Hedlund-Appel-Welch1963]
in which they found all surjective c.a. on two symbols of span at most five. (This
was not trivial, especially in 1963, because there are 232 c.a. on two symbols of
span at most five.) Among these onto maps of span four, there are exactly 32
which are not linear in an end variable (i.e., neither left nor right permutative) and
which send the point . . . 0000 . . . to itself. These 32 are listed in Table 1. Any
other span four onto map which is not linear in an end variable is one of these
32 maps g precomposed or postcomposed with the flip map F = x0 + 1. Because
gF = F (Fg)F = F−1(Fg)F , the jointly periodic data for Fg and gF will be the
same. Altogether, then, we can handle all surjective span 4 maps not linear in an
end variable by examining 64 maps.

According to [Hedlund-Appel-Welch1963], there are 141,792 surjective c.a. of
span 5. These are arranged in [Hedlund-Appel-Welch1963] into classes – linear in
end variables, compositions of lower-span maps, and the remainder. The remainder
class (11,388 maps) is broken down into subclasses by patterns of generation, and
a less regular residual class of 200 maps. These 200 are generated by 26 maps
[Hedlund-Appel-Welch1963, Table XII] and various operations. We list the codes
for this irregular class of 26 maps in Table 2, and use it as a modest sample of span
5 maps.

5. FDense

The program FDense takes as its input a c.a. f , an integer N ≥ 2, a positive
integer m and a finite set K of positive integers k. (FDense can also handle sets of
maps as inputs, producing output for all the maps, and suppressing various data.)
The input f can be given by a polynomial or a tabular rule. For a given f and
each k in K, FDense determines whether the set Per(f) ∩ Pk(SN ) is m-dense (in
which case we say that f is m-dense at k). If not, then FDense will separately list
all the SN words of length m which do not appear in any periodic point of f in
Pk(SN ), in a lexicographically truncated form potentially useful for seeing patterns.
(For example, if m is ten and the word 011 does not occur in the examined points,
then FDense would list 011* as excluded rather than listing all words of length ten
beginning with 011.)

The underlying algorithm for FDense lists all words of length m and k in tagged
form and operates on tags as it moves through the words of length m with f .
Memory is the fundamental constraint on FDense. With m considerably smaller
than k, the essential demand on memory is the tagged list of Nk words of length
k. With N = 2, roughly m = 13 and k = 27 was a practical limit for our machine,
and this was also quite slow. We restricted our investigations almost entirely to
the case of N = 2 symbols for two reasons: with N = 2 we can examine longer
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periods; and we would be astonished to find any relation between the questions at
hand and N .

The following proposition follows from the data of Tables 3 and 4.

Proposition 5.1. For every span 4 surjective cellular automaton on two symbols,
the set of jointly periodic points is (at least) 13-dense.

In Tables 5-7, we applied FDense, for N = 2 symbols, to check for which k ≤ 24
various other surjective c.a. f are 10-dense at k.

Table 5. After postcomposition with the map A = x0 + x1, the 32 onto span 4
c.a. of Table 1 remain 10-dense at some k ≤ 24.

Table 6. The 26 irregular span 5 maps of Table 2 are 10-dense at some k ≤ 24.
Table 7. For each of the 32 span 4 maps j of Table 1, let pj(x0, x1, x2, x3)

denote its defining polynomial. Construct a c.a. fj with defining polynomial x0 +
pj(x1, x2, x3, x4). These fj are demonstrated to be 10-dense at some k ≤ 24.

For the c.a. in Tables 5-7, often the least k at which 10-density is achieved
lies in the range 19 − 24. (This is the point of Table 7, as we know already from
[Boyle-Kitchens1999] that the jointly periodic points of permutative c.a. are dense.)
This is consistent with the heuristic that apart from possible extra structure the
c.a. map on points of least period k looks something like a random map. For a

random map f from a set of 2k points into itself, on the order of
√

2k points are

expected to lie in f -cycles. For k = 20, we have
√

2k = 210. (Of course, 10 < 24/2.
A point of SN -period 20 will contain up to 20 distinct words of length 10; the words
aren’t expected to occur with complete uniformity; specific codes are not random.
For the heuristic of randomness, it is perhaps striking to find the rough agreement
we do see.)

We also checked 10-denseness for several c.a. on 2 symbols with specified prop-
erties, described in Section 4.

Example 5.2. [Linear] The c.a. A = x0 + x1 is 10-dense at k = 11, 13 − 24 out of
[10,24].

Example 5.3. [Permutative, not biclosing] The c.a. B is 10-dense at k = 22 − 24
out of [10,24]. It is 13-dense at only k = 25 out of [13,25].

Example 5.4. [Not closing] The c.a. C (and likewise D) is 10-dense at k = 17− 24
out of [1,24], and 13-dense for k = 23, 24 out of [13,24].

Example 5.5. [Degree 2, biclosing, not permutative] The c.a. J is 10-dense at
k = 23− 25 out of [10,25]. It is 13-dense at only k = 25 out of [13,25].

In summary, there is reasonable supporting evidence for the Conjecture 1.1, and
the counts seen seem consistent with the random maps heuristic.

6. FPeriod

Recall Pk(SN ) denotes the set of points fixed by the kth power of the full shift
on N symbols. Each such point x is determined by the word x0x1 . . . xk−1.

The FPeriod program takes as input a c.a. f , an integer N ≥ 2 and a finite set
of positive integers k. For each k, the program then determines data including the
following (included in tables cited below):

• P := the number of points in Pk(SN ) which are periodic for f .
• L:= the length of the longest f -cycle in Pk(SN ).
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The program does much more; for the points in Pk(SN ), it can produce a complete
list of f cycle lengths and preperiods with multiplicities, and related data such as
νk and averages. It can also do this for points in P o

k (SN ) rather than Pk(SN ) (i.e.
for points of least shift period k). The program also has an option for producing
truncated and assembled data for a collection of maps.

The basic algorithm idea of FPeriod is the following. FPeriod takes the given
c.a. f and a given shift-period length k; stores all 2k words of length 2k; and then
changes various tags on these words as f moves through the corresponding periodic
points. The tags in particular are changed to keep track of how long f iterates
before returning. When the program returns to a previously visited point, it can
deduce the corresponding f period and preperiod. The essential limit of FPeriod
is that for large k it becomes a horrendous memory hog. We could conveniently
reach period k = 23, and with patience we could reach k = 25 or 26, before our
memory resources were exhausted. In practice, running the program using N = 2
and k = 26 required 1.8 gigabytes of memory.

In this section we apply FPeriod to various maps from Section 4 with specific
properties, and also to many maps of span 4 and 5. The main message is that for
nonlinear maps, we generally see νk(f, SN ) compatible with affirmative answers to
Questions 1.2 and 1.3, and frequently the data suggestion strongly that the limit
ν(f, SN ) is smaller than N . Below, unless otherwise indicated, f is defined on the
full shift SN with N = 2, and the symbol set is {0, 1}.

Table 8 [Linear]. We exhibit results for the c.a. A = x0 + x1; here νk(A,S2) is
large, consistent with the fact ν(A,S2) = 2.

Table 9 [Biclosing]. We exhibit results for the c.a. J , which is A composed with
an invertible c.a. The composition significantly reduces the numbers νk.

Table 10 [Linear composed with degree 1 permutative]. We exhibit results for
the c.a. E.

Table 11 [Bipermutative]. We exhibit results for the c.a. G.
Table 12 [Permutative, not biclosing]. We exhibit results for the c.a. B.
Table 13 [Closing, not permutative, not biclosing]. We exhibit results for the c.a.

K.
Table 14 [Not closing]. We exhibit results for the c.a. C.
Tables 15 and 16. We give our only examples for a c.a. on more than 2 symbols

(they are c.a. on 3 symbols). The pattern is the same but we are able to investigate
only up to shift period 13.

Tables 17 and 18 [Span 5 irregular]. We display data for the 26 irregular maps
of span 5 given in Table 2 and discussed in Section 4.

Tables 19 and 21 [Span 4]. We exhibit data for the 32 maps g of Table 1. (This
addresses all span 4 surjective c.a. on 2 symbols not linear in an end variable, as
discussed in Section 4.)

Tables 20 and 22. [Span 4 composed with flip]. We exhibit data for the 32 maps
of Table 1 postcomposed with the flip involution F = x0 + 1.

Table 23 [Permutative comparison]. νok is computed for 16 left permutative span
5 maps, to make a rough comparison of a sample of maps which are and are not
linear in an end variable. We see no particular difference.

Table 24. For B = x0 + x1x2, complete data for B-periods with multiplicity are
found by FPeriod (not FProbPeriod) for points in Pk(S2) for k ≤ 22.
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7. FProbPeriod

The k for which the program FPeriod can explore f -periodicity of points in
Pk(SN ) is limited on account of the memory demands of FPeriod. This begs for a
probabilistic approach. For large k it is generally useless to sample points of shift
period k for f -periodicity (commonly, this will be a fraction of the shift periodic
points exponentially small in k). Instead, FProbPeriod randomly samples points of
period k and computes for them the length of the f -cycle into which they eventually
fall. This extends the range of k which can be investigated, depending on the map;
for different maps we’ve seen practical limits at k = 33 to k = 37 (typical), to past
50 (for the linear x0 + x1 on two symbols). In any case, we can search larger k
than are accessible to us with FPeriod. The program FProbPeriod again works by
listing and tagging, but now only needs to keep in memory words for the points
visited along an iteration. As long as the preperiod and period of the forward orbit
aren’t too large, the program won’t crash.

The input data for FProbPeriod then are the c.a. f ; a finite set of periods k;
the number N of symbols; and the number m of points to be randomly sampled
for each k. The program will for each k take m random samples of points from
Pk(SN ), and find the corresponding periods and preperiods with multiplicity. Given
k, L denotes the largest f -period found in the sample. For any sequence of samples,
clearly lim supk L

1/k ≤ lim supk νk(f, SN ) ≤ N , and inequalities must become sharp
in some cases (f linear or f of finite order). Still, the data we see seems consistent
with positive answers to Questions 1.2 and 1.3.

The specific maps cited below are described in Section 4.
Table 25. For sample size m = 10, for the (degree one, left permutative, not

right closing) map B = x0 + x1x2, the (eventual) periods are listed with their
multiplicities in the sample, for 1 ≤ k ≤ 37.

Table 26. For the map B, periods with multiplicity are probed for k ≤ 30 for
two samples, of size 10 and size 30. The maximum period is the same except for
two values of k. By comparison with Table 24, one sees that the size 30 sample in
Table 26 found the largest period except at k = 12 (where it found period 56 but
not the maximum period 60).

Table 31. For the linear c.a. A, periods with multiplicity are probed for k ≤ 49
for two sample sizes, 10 and 30. The results are almost identical.

Table 27. For sample size m = 10, for 1 ≤ k ≤ 37, the numbers L1/k are
computed for several c.a. described in Section 4: A,B,C,E,G,H, J,K. The cor-
responding preperiod data is displayed in Table 28.

Table 29. For sample size m = 10, for 1 ≤ k ≤ 32, the sampled periods for the
nonclosing c.a. C are listed with their multiplicities in the sample.

Table 30. For sample size m = 10, for 1 ≤ k ≤ 32, the sampled periods for the
nonclosing c.a. D are listed with their multiplicities in the sample.

Table 32. This table lists the preperiods found for B by FProbPeriod for the
sample size 10 in the range 18 ≤ k ≤ 35.

Table 33. This table lists the preperiods found for C by FProbPeriod for the
sample size 10 in the range 18 ≤ k ≤ 35.

For the c.a. maps f on N = 2 symbols explored by FProbperiod, perhaps the
most striking feature observed is the exponential size of Lk(f) (the length of the
largest f -cycle found). For example, for the eight maps sampled in Table 27, at k =
37 Lk(f) is approximately αk with α = 1.49, 1.60, 1.55, 1.46, 1.30, 1.44, 1.45, 1.57.
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These long cycles are compatible with the heuristic that we should for arbitrarily
large k see at least as much periodicity as we would expect from a random map
(but not necessarily more). A random map on 2k points would for large k produce

a longest cycle of size on the order of
√

2k ≈ 1.4k.

8. Online tables

The tables referred to in the paper are available in the online supplement to this
paper at the Experimental Mathematics website (http://www.expmath.org/expmath/volumes/VOLX/VOLX.ISSX/),
and are also at the website of the first named author. The tables are organized in
four groups:

• Tables of some span 4 and 5 c.a. (Tables 1-2)
• FDense Tables (Tables 3-7)
• FPeriod Tables (Tables 8-24)
• FProbPeriod Tables (Tables 25-33)
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