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Summary. Let ϕ be a one-dimensional surjective cellular automaton map. We
prove that if ϕ is a closing map, then the configurations which are both spatially
and temporally periodic are dense. (If ϕ is not a closing map, then we do not
know whether the temporally periodic configurations must be dense.) The results
are special cases of results for shifts of finite type, and the proofs use symbolic
dynamical techniques.

1. Introduction and sermon

Let ϕ be a surjective one-dimensional cellular automaton map (in the language
of symbolic dynamics, ϕ is a surjective endomorphism of a full shift). Must the
set of ϕ-periodic points be dense? This is a basic question for understanding the
topological dynamics of ϕ, and we are unable to resolve it.

However, if ϕ is a closing endomorphism of a mixing subshift of finite type
σA, then we can show the points which are periodic for both ϕ and σA are dense
(Theorem 4.4). This is our main result, and of course it answers our question in
the case that the c.a. map is closing. We give a separate proof for the special case
that ϕ is an algebraic map (Proposition 3.2). The proofs are completely different
and both have ingredients which might be useful in more general settings.

The paper is organized so that a reader with a little background can go directly
to Sections 3 and 4 and quickly understand our results.

We work in the setting of subshifts of finite type, and to explain this to some c.a.
workers we offer a few words from the pulpit. Dynamically, one-dimensional cellular
automata maps are best understood as particular examples of endomorphisms of
mixing subshifts of finite type. The resources of this setting are needed to address
some c.a. questions, even if one cares not at all about the larger setting. But, one
should. Even apart from other motivations, the setting of subshifts of finite type
(rather than just the full shifts of the c.a. case) is philosophically the right setting
for c.a. A c.a. map is a locally determined rule of temporal evolution; allowing shifts
of finite type as domains simply allows local conditions on spatial structure as well.
This is natural “physically” and unavoidable dynamically: a cellular automaton
is usually not surjective, and usually the possible spatial configurations after an
iterate are no longer those of a full shift.
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2. Definitions

Let S be a finite set of n elements, with the discrete topology. Let Σn be the
product space SZ, with the product topology. We view a point x in Σn as a doubly
infinite sequence of symbols from S, so x = . . . x−1x0x1 . . . . The space Σn is
compact, metrizable and one metric compatible with the topology is dist(x, y) =
1/(|n|+ 1) where |n| is the minimum nonnegative integer such that xn 6= yn. The
shift map σ : Σn → Σn is the homeomorphism defined by the rule σ(x)i = xi+1.
The topological dynamical system (Σn, σ) is called the full shift on n symbols (S
is the symbol set). If X is a nonempty compact subset of Σn and the restriction
of σ to X is a homeomorphism, then (X,σ|X) is a subshift. (We may also refer to
either X or σ|X as a subshift, also we may suppress restrictions from the notation.)
Equivalently, there is some countable set W of finite words such that X equals the
subset of Σn in which no element of W occurs. A subshift (X,σ) is a subshift of
finite type (SFT) if it is possible to choose a finite set to be a defining set W of
excluded words. The SFT is k-step if there is a defining setW with words of length
at most k + 1.

If A is an m×m matrix with nonnegative integral entries, let GA be a directed
graph with vertex set {1, . . . ,m} and with A(i, j) edges from i to j. Let EA be the
edge set of GA. Let ΣA be the subset of (EA)

Z obtained from doubly infinite walks
through GA; that is, a bisequence x on symbol set EA is in ΣA if and only if for
every i in Z, the terminal vertex of the edge xi equals the initial vertex of the edge
xi+1. Let σA = σ|ΣA

. The system (ΣA, σA) (or ΣA or σA) is called an edge shift,
and it is a one-step SFT.

Let XA be the space of one-sided sequences obtained by erasing negative coordi-
nates in ΣA: that is, if a point x is in ΣA, then the one-sided sequence x0x1x2 . . . is
in XA, and XA contains only such points. The shift map rule σ(x)i = xi+1 defines
a continuous surjection XA → XA, also called σA (by abuse of notation). Except
in the trivial case that XA is finite, this map σA is only a local homeomorphism.
The system (XA, σA) is a one-sided subshift of finite type. The proof of our main
result argues by way of the one-sided SFTs.

An SFT is called irreducible if it has a dense forward orbit. A nonnegative
matrix A is irreducible if for every i, j there exists n > 0 such that An(i, j) > 0,
and it is primitive if n can be chosen independent of (i, j). An irreducible matrix A
defines an edge shift which is an irreducible SFT, and a primitive matrix A defines
an edge shift which is a mixing SFT. For any A, if B is a maximal irreducible
principal submatrix of A, then we can view the edge set EB as a subset of EA, and
the edge shift XB is an irreducible component of XA. XB is a terminal irreducible
component if there is no path in GA from EB to a point in another irreducible
component.

A homomorphism ϕ of subshifts is a continuous map between their domains
which commutes with the shifts. A factor map is a surjective homomorphism of
subshifts. There are two distinct types of factor maps between irreducible SFT’s.
If there is a uniform bound to the number of preimages of each point the factor
map is called finite-to-one. If there is no uniform bound the map is called infinite-
to-one. Under an infinite-to-one factor map “most” points will have uncountably
many preimages. A topological conjugacy or isomorphism of subshifts is a bijective
factor map between them. If there is an isomorphism between two subshifts, then
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they are topologically conjugate, or isomorphic. Any SFT is topologically conjugate
to some edge SFT.

Now suppose that X and Y are subshifts, m and a are nonnegative integers
(standing for memory and anticipation), Φ is a function from the set of X-words of
length m+ a+ 1 into the symbol set for Y , and ϕ is a homomorphism from X to
Y defined by the rule ϕ(x)i = Φ(xi−m . . . xi+a). The homomorphism ϕ is called a
block code (a k-block code if k = m+a+1). The Curtis-Hedlund-Lyndon Theorem
(trivial proof, fundamental observation) is that every homomorphism of subshifts
is a block code.

If ϕ is a homomorphism of subshifts, and the domain and range of ϕ are the
same subshift (X,σ), then ϕ is an endomorphism of (X,σ). Thus a one-dimensional
cellular automaton map is an endomorphism of some full shift on n symbols.

A continuous map ϕ from a compact metric space X to itself is positively ex-
pansive if there exists ε > 0 such that whenever x and x′ are distinct points in X,
there is a nonnegative integer k such that dist(ϕk(x), ϕk(x′)) > ε. This property
does not depend on the choice of metric compatible with the topology. Now if ϕ is
an endomorphism of a one-sided subshift X and k ∈ Z+, then let x̂(k) denote the
sequence of words [ϕi(x)0 . . . ϕ

i(x)k], i = 0, 1, 2 . . . . It is easy to check that ϕ is
positively expansive if and only if there exists k ∈ Z+ such that the map x 7→ x̂(k)

is injective.
A factor map ϕ between two-sided subshifts is right-closing if it never collapses

distinct left-asymptotic points. This means that if ϕ(x) = ϕ(x′) and for some I it
holds that xi = x′i for −∞ < i ≤ I, then x = x′. An easy compactness argument
shows that ϕ being right-closing is equivalent to the following condition: there
exists positive integers M,N such that for all x, x′: if xi = x′i for −M < i ≤ 0, and
ϕ(x)j = ϕ(x′)j for 0 ≤ j ≤ N , then x1 = x′1. If ϕ : ΣA → ΣB and ϕ is a k-block
code, then the condition can be stated with M fixed as k.

A factor map of one-sided subshifts, XA → XB , is called right-closing if its
defining block code defines a right-closing map of two-sided subshifts, ΣA → ΣB .
From the finite criterion of the previous paragraph we see that a factor map of
one-sided subshifts is right-closing if and only if it is locally injective.
Left-closing factor maps are defined as above, with “right” replaced by “left”.

However, left closing does not mean locally injective on XA (it would mean locally
injective on sequences . . . x−1x0 with shift in the opposite direction). An important
property of closing factor maps is that they are always finite-to-one. An endomor-
phism ϕ of an irreducible SFT is surjective if and only if it is finite-to-one and
consequently every closing endomorphism is surjective.

For a thorough introduction to these topics, see [K2] or [LM].

3. Algebraic maps

In this section we consider factor maps which have an algebraic structure. This is
the situation when the subshifts of finite type are also compact topological groups,
the shift is a group automorphism and the factor map is a group homomorphism.
An SFT which is also a topological group with the shift an automorphism is called
a Markov subgroup. A result from [Ki1] shows that an irreducible Markov subgroup
is topologically conjugate to a full shift, although the transition rules may be fairly
complicated. We say a factor map between Markov subgroups which is also a group
homomorphism is an algebraic factor map.
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Example 3.1. Consider the full two-shift, {0, 1}Z, as a group where the group
operation is coordinate by coordinate addition, modulo two. The shift is clearly a
group automorphism. Define ϕ by ϕ(x)i = xi + xi+1 for all i. Then ϕ is an onto,
two-to-one, group homomorphism.

Proposition 3.2. Let ϕ : ΣA → ΣA be an algebraic factor map from an irreducible
Markov subgroup to itself. Then there is a dense set of points in ΣA which are
periodic for both ϕ and the shift.

Proof Let M be a positive integer such that no point of ΣA has more than M
preimages under ϕ. Fix any prime p with p > M . Then ϕ cannot map a point of
least σ-period p to a point of lower period (for this would imply the entire σ-orbit
of p points maps to a fixed point). It follows that for all k > 0, the kernel of ϕk

contains no point with least σ-period equal to p.
We know that ΣA is topologically conjugate to a full m-shift for some m, so

Fixp(ΣA) consists of mp − m points of least σ-period p and m σ-fixed points.
Restricted to the subgroup Fixp(ΣA), the homomorphism maps the fixed points
to the fixed points and the points of period p to the points of period p. There is a
power, k, of ϕ so that the image of Fixp(ΣA) under ϕi is the same as the image
under ϕk for all i ≥ k. Therefore the points in the image of ϕk are ϕ-periodic. The
cardinality of the kernel of ϕk on Fixp(ΣA) is at most m, so at least 1/m of the
points in Fixp(ΣA) are ϕ-periodic.

Let [i1, . . . , i`] be any block which occurs in ΣA. Since ΣA is irreducible the
block [i1, . . . , i`] will occur in more than 1/m of the σ-periodic points of all points
of period p for any sufficiently large p. This means there is a jointly periodic point
in the time zero cylinder set defined by [i1, . . . , i`] and so the jointly periodic points
are dense in ΣA. 2

Proposition 3.2 is a special case of a theorem in [KS] which states that the
periodic points are dense in all transitive, d-dimensional Markov subgroups.

For certain algebraic maps ϕ, the ϕ-periods of points of a given σ-period are
analyzed in [MOW]. These periods can be very different.

4. Closing maps

The following result is a pillar of our proof. (The essence of this result is due
independently to Kurka [Ku] and Nasu [Na2]. We include an exposition in the last
section of the paper.)

Lemma 4.1. [BFF] Suppose ψ is a positively expansive map ψ which commutes
with a mixing one-sided subshift of finite type. Then ψ is topologically conjugate to
a mixing subshift of finite type.

The closing property will let us exploit this characterization.

Lemma 4.2. Suppose ϕ : XA → XA is a right-closing factor map from an irre-
ducible, one-sided subshift of finite type to itself. Then for all sufficiently large N ,
the map σNϕ is positively expansive.

Proof Suppose ϕ is a k-block map. Since ϕ is right-closing, if N is suffi-
ciently large then for all x and for all n ≥ k − 1 the cylinder sets [x0, . . . , xn]
and [ϕ(x)0, . . . , ϕ(x)n+N ] determine xn+1. To a point x ∈ XA assign the sequence
of k + N − 1 blocks [(σNϕ)i(x)0, . . . , (σ

Nϕ)i(x)N+k−2], i ≥ 0. To show σnϕ is
positively expansive, it suffices to show this sequence of blocks determines x.
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To see this observe that the block [x0, . . . , xN+k−2] determines the block [ϕ(x)0, . . . , ϕ(x)N−1]
and the block [σNϕ(x)0, . . . , σ

Nϕ(x)N+k−2] is the same as [ϕ(x)N , . . . , ϕ(x)2N+k−2].
This means we have the blocks [x0, . . . , xN+k−2] and [ϕ(x)0, . . . , ϕ(x)2N+k−2] which
together determine xN+k−1. Likewise, the blocks for i = 1 and 2 determine
ϕ(x)2N+k−1 which together with what we already have determines xN+k. Con-
tinuing in this manner we see that x is completely determined. 2

Here is the one-sided version of our main result.

Theorem 4.3. Suppose ϕ : XA → XA is a right-closing factor map from a mixing
one-sided subshift of finite type to itself. Then the points which are jointly periodic
for σ and ϕ are dense in XA.

Proof Appealing to Lemmas 4.1 and 4.2, we choose a positive integer N such
that σNϕ is topologically conjugate to a mixing subshift of finite type. The σNϕ-
periodic points are dense in XA. We will show these points are jointly periodic for
σ and ϕ.

First we claim the two maps σNϕ and σ have the same preperiodic points. Every
σ-preperiodic point is a σNϕ-preperiodic point because for each ` and p the points
x ∈ XA with σ`+p(x) = σp(x) form a finite, σNϕ-invariant set. Similarly, every
σNϕ-preperiodic point is a σ-preperiodic point.

Next we show the σNϕ-periodic points are σ-periodic. Suppose x ∈ XA is such
that (σNϕ)p(x) = x. Because x must be σ-preperiodic, there are ` and q such that
σ`p(x) has σ-period q. Therefore σ(N−1)`pϕ`p(σ`p(x)) is also a fixed point of σq.
But σ(N−1)`pϕ`p(σ`p(x)) = (σNϕ)`p(x) = x.

Finally we show the σNϕ-periodic points are ϕ-periodic. If x ∈ XA has σNϕ-
period p, then it has σ-period q for some q, and therefore ϕpq(x) = ϕpqσNpq(x) =
(ϕσN )pq(x) = x. 2

It is now an easy reduction to obtain our main result, the two-sided version of
Theorem 4.3.

Theorem 4.4. Suppose ϕ : ΣA → ΣA is a right or left-closing factor map from
a mixing subshift of finite type to itself. Then the points which are jointly periodic
for σ and ϕ are dense in ΣA.

Proof Suppose ϕ : ΣA → ΣA is a right-closing factor map with anticipation a
and memory m. Then σmϕ is a right-closing factor map with no memory and with
anticipation a+m. We can use σmϕ to define a right-closing factor map from the
one-sided subshift of finite type XA to itself. By Theorem 4.3, the points which are
jointly periodic for σ and σmϕ are dense in XA.

Since (ΣA, σ) is the natural extension or inverse limit of σ acting on XA and the
jointly periodic points for σ and σmϕ are dense in XA the resulting points which
are jointly periodic for σ and σmϕ in ΣA are dense. Applying the reasoning used
in the proof of Theorem 4.3 we conclude that the points which are jointly periodic
for σ and ϕ are dense in ΣA.

If ϕ is left-closing with respect to σA, then ϕ is right-closing with respect to
(σA)

−1 and we may apply the right-closing result. 2
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5. Examples of closing maps

Most cellular automata are not closing maps, but many are. For example, all
automorphisms are closing maps. Constructions of Ashley [A] yield noninjective
closing endomorphisms of mixing shifts of finite type (and in particular closing
cellular automata) with a rich range of behavior on subsystems.

The permutive maps of Hedlund [H] are a large and accessible class of clos-
ing maps. Because they can be analyzed very easily, we include a brief discus-
sion. Let ϕ be a one-sided k-block cellular automaton map (that is, an endo-
morphism of a one-sided full shift) with k > 1. Suppose ϕ is right permutive: if
x1 . . . xk−1 = x′1 . . . x

′
k−1 and xk 6= x′k, then ϕ(x)1 6= ϕ(x′)1. It is clear that ϕ is

positively expansive and so by lemma 4.1 ϕ is topologically conjugate to an SFT.
A conjugacy can also be displayed directly. Define a one-sided SFT (Xϕ, σ) as fol-
lows. The symbols of Xϕ are the (k−1)-blocks of XA. Define transitions by saying
[i1, . . . , ik−1] can be followed by [j1, . . . , jk−1] when there is a block [i′1, . . . , i

′
k−1] so

that ϕ([i1, . . . , ik−1, i
′
1, . . . , i

′
k−1]) = [j1, . . . , jk−1]. To a point x in XA associate the

sequence x̄ = x̄0, x̄1, . . . where x̄i is the word ϕi(x)0 . . . ϕ
i(x)k−2. Then it is not

difficult to check that the rule x 7→ x̄ defines a topological conjugacy from (XA, ϕ)
to (Xϕ, σ).

Lemma 4.2 shows that a right-closing map composed with a high enough power
of the shift is positively expansive and we just saw that a k-block, right-permutive
map is itself positively expansive when k > 1. The multiplication cellular automata
studied by F. Blanchard and A. Maass [BM] are nontrivial natural examples of
right-closing maps and many of them are not positively expansive. Given positive
integers k and n greater than 1, with k dividing n, the multiplication c.a. ϕ is the
endomorphism of the one-sided n-shift which expresses multiplication by k (modulo
1) in base n. Blanchard and Maass showed this map is right-closing and will be
positively expansive if and only if every prime dividing n also divides k. We give
an example (with an explanation pointed out to us independently by F. Blanchard
and U. Fiebig).

Example 5.1. View X10 as the set of one-sided infinite sequences obtained by
expressing the real numbers in the unit interval as decimals in base ten. Then
define the right-closing factor map from X10 to itself using multiplication by two,
as real numbers, on these sequences. Consider a rational number with a power
of ten as the denominator. It has two expansions. For example, 000100 . . . and
0000999 . . .. Multiplying by two gives 000200 . . . and 000199 . . .. Multiplying again
gives 000400 . . . and 000399 . . .. Continuing, we see that the two sequences always
agree in the first three coordinates. All rational numbers with a power of ten as the
denominator has two such representations and so this map on X10 is not positively
expansive.

6. Closing arguments . . .

The purpose of this section is to provide some background proofs and facts involv-
ing closing maps, and to explain how some of these facts become more transparent
(for us, at least) if viewed in terms of resolving maps.

Let ϕ : XA → XB be a one-block factor map between two irreducible one-sided
subshifts of finite type. Consider the following conditions on a map on symbols
(also called ϕ):
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(1) (Existence) If ϕ(a) = b and b′ follows b in XB , then there exists a symbol
a′ such that a′ follows a and ϕ(a′) = b′.

(2) (Uniqueness) If ϕ(a) = b and b′ follows b in XB , then there is at most one
symbol a′ such that a′ follows a and ϕ(a′) = b′.

A one-block factor map between irreducible SFT’s satisfying conditions (1) and (2)
is called right-resolving. A right-resolving factor map is clearly finite-to-one. It
follows from condition (1) that a right-resolving map is locally injective and from
condition (2) that it is an open map. So, a right-resolving factor map between
two one-sided SFT’s is a local homeomorphism. On the other hand, when ϕ is
a finite-to-one factor map between irreducible SFT’s, it is a consequence of the
Perron-Frobenius theorem that conditions (1) and (2) are equivalent. (See [LM]
Prop. 8.2.2 for (2) ⇒ (1); the converse is similar.) There is of course a similar
definition of left-resolving. The resolving maps have played a central role in the
coding theory of symbolic dynamics ([K2],[LM]).

A right-resolving map is clearly right-closing and modulo a recoding the converse
is true. It is a standard result in symbolic dynamics ([K2] Prop. 4.3.3) which we
formulate in the following lemma.

Lemma 6.1. Suppose ϕ : XA → XB is a right-closing factor map between one-
sided irreducible subshifts of finite type, then there is an irreducible subshift of finite
type XC , a right-resolving factor map ψ : XC → XB and a topological conjugacy
α : XA → XC such that ϕ = α ◦ ψ.

Lemma 6.2. Suppose ϕ : XA → XB is a factor map between one-sided irreducible
subshifts of finite type then ϕ is right-closing if and only if it finite-to-one and open.

Proof A right-closing map is finite-to-one and by lemma 6.1 is open.
Suppose ϕ is a finite-to-one and open. An easy compactness argument shows

this is equivalent to the following uniform existence condition.

• There exists N > 0 such that for all x, y: if ϕ(x)i = yi for 0 ≤ i ≤ N then
there exists x′ such that x′0 = x0 and ϕ(x) = y.

A recoding argument similar to the one used to prove lemma 6.1 can be used to
show that any map satisfying the uniform existence condition can be recoded to
satisfy condition 1 (Existence) in the definition of right-resolving. Since we have
also assumed the map is finite-to-one the recoded map will be right-resolving and
so the original map was right-closing. (This was done explicitly in [BT], Prop. 5.1.)
2

The characterization above, well known in symbolic dynamics, will make some
topological properties of closing maps obvious. (Note, though, in the caseXA = XB

we have not produced a topological conjugacy of endomorphisms: as iterated maps,
the maps ϕ and ψ above may be quite different.)

Lemma 6.3. Let ϕ : XA → XB be a finite-to-one factor map between two irre-
ducible one-sided subshifts of finite type. The following are equivalent.

(1) ϕ is right-closing (i.e. locally injective on XA)
(2) ϕ is an open mapping
(3) ϕ is a local homeomorphism

Proof Clearly a local homeomorphism is locally injective and open. Conversely, if
ϕ is right-closing or open, then by lemma 6.1 and lemma 6.2 it is a homeomorphism
followed by a local homeomorphism, so it is a local homeomorphism. 2
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Lemma 6.4. [Pa] Suppose X is a one-sided subshift. Then it is a subshift of finite
type if and only if σ is an open mapping.

Proof Suppose (X,σ) is a k-step SFT. If [i0, . . . , i`] is a time zero cylinder set
with ` ≥ k, then σ maps it onto the time zero cylinder set [i1, . . . , i`] and so σ is
an open mapping.

Suppose σ is an open mapping. Then σ of any cylinder set is open and compact
and so is a finite union of cylinder sets. There is a k so that σ of every time zero,
length one cylinder set is a union of time zero, length k cylinder sets. This means
σ of a time t, length ` cylinder set is a union of time t, length ` + k cylinder sets
and (X,σ) is a k-step SFT. 2

Lemma 6.5. [Ku] Suppose ϕ is a positively expansive endomorphism of a one-
sided subshift. Then ϕ is right-closing.

Proof Let N > 0 be such that x = x′ whenever ϕi(x)k = ϕi(x′)k for 0 ≤ k ≤ N
for all i ≥ 0. Then the restriction of ϕ to any cylinder of the form {x : x0 . . . xN =
w0 . . . wn} must be injective. 2

Lemma 6.6. Suppose ϕ : XA → XA is a factor map from an irreducible one-
sided subshift of finite type to itself. Then (XA, ϕ) is topologically conjugate to a
one-sided subshift of finite type if and only if ϕ is positively expansive.

Proof Suppose ϕ is a positively expansive. By lemma 6.5 ϕ is right-closing, and
then by lemma 6.3 ϕ is open. Thus ϕ is conjugate to a subshift which is an open
map, and by lemma 6.4 this subshift must be of finite type.

The other direction is trivial, because conjugacy respects positive expansiveness
and every subshift is positively expansive. 2

Lemma 6.6 is due independently to Nasu (who proved it [Na2]) and Kurka (who
in a special case gave an argument which works in general [Ku]). Lemma 6.6 is false
if the hypothesis of irreducibility is dropped [BFF]. The analogous question for two-
sided subshifts is an important open question of Nasu [Na1]: must an expansive
automorphism of an irreducible SFT be topologically conjugate to an SFT?

Notice, the property that a factor map is right-closing does not change under
composition with powers of the shift. So, if σnϕ is topologically conjugate to a one-
sided irreducible SFT, then ϕ must be right-closing. Thus our proof of Theorem
4.4 can only work for right-closing maps ϕ.

Proof of Lemma 4.1We are given a positively expansive map ψ which commutes
with some one-sided mixing SFT (XA, σA). By Lemma 6.6, there is a conjugacy
of ψ to some one-sided SFT (XB , σB). This conjugacy conjugates σA to some
mixing endomorphism ϕ of (XB , σB). Following [BFF], we will show σB is mixing.
Suppose it is not, then (perhaps after passing to a power of ψ) (XB , σB) has more
than one irreducible component. Since ϕ permutes the irreducible components of
σB , we may choose N such that ϕN maps each irreducible component of XB to
itself. Let x be a point in some terminal component C and let x′ be a point in
some other component C ′. Because ϕ is mixing, for some k > 0 there is a point z
such that z0 = x0 and (φkNz)0 = x′0. The point z can only be contained in C, and
the σC-periodic points are dense in C, so we can take z to be periodic. But then
φkN sends a periodic point of C to a periodic point which must lie in C ′, and this
is contradiction. 2
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If in Lemma 4.1 it is only assumed that σA is irreducible, rather than mixing,
then one can only conclude that ψ is conjugate to a disjoint union of irreducible
subshifts of finite type (that is, an SFT with dense periodic points).
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