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Abstract. In the early 1990’s, Kim and Roush developed path methods for

establishing strong shift equivalence (SSE) of positive matrices over a dense
subring U of R. This paper gives a detailed, unified and generalized presen-

tation of these path methods. New arguments which address arbitrary dense

subrings U of R are used to show that for any dense subring U of R, positive
matrices over U which have just one nonzero eigenvalue and which are strong

shift equivalent over U must be strong shift equivalent over U+. In addition,

we show matrices on a path of positive shift equivalent real matrices are SSE
over R+; positive rational matrices which are SSE over R+ must be SSE over

Q+; and for any dense subring U of R, within the set of positive matrices over

U which are conjugate over U to a given matrix, there are only finitely many
SSE-U+ classes.
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1. Introduction

The classification problem for shifts of finite type (SFTs) remains a central open
problem for symbolic dynamics. In the foundational work of Williams [30, 31] over
forty years ago, the problem was recast as the following question: when are two
matrices strong shift equivalent (SSE) over Z+? (The definition of SSE for matrices
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over a semiring is recalled below in Definition 2.1. In this paper, rings and semirings
are always assumed to contain 1.) Since then, SSE (involving other semirings) has
been used for classification of other symbolic dynamical systems: for example, SFTs
with Markov measure [22], using matrices over Laurent polynomials; SFTs with a
finite group action [8], using matrices over the integral group ring of a finite group
[5]; and sofic shifts [4, 10, 13], using a more complicated ring. Matsumoto has
extended the ideas of SSE to a classification setting for arbitrary subshifts [23, 24].

The original, notoriously difficult question of Williams for Z+ remains unan-
swered, and this is also a barrier to understanding the other classifications. One
probe into this problem is to consider SSE over U+ for primitive matrices over a
dense subring U of R.

Over a series of papers [14, 15, 16, 17] ending in 1992, Kim and Roush introduced
path methods for the study of strong shift equivalence of positive matrices over
the reals and certain subrings of it. One highlight of this work was the following
theorem. For U any subfield of R, if A and B are square matrices over U+ which
have eventual rank 1 (all large powers have rank 1) and have the same nonzero
eigenvalue, then A and B are SSE over U+. (As in Remark 6.5, there are in a sense
no general results for greater eventual rank.) We extend this theorem to arbitrary
dense subrings of R, under the additional necessary condition that A and B are
SSE over the ring U . An additional condition cannot be avoided: for general U ,
matrices with eventual rank 1 and the same nonzero eigenvalue need not be even
shift equivalent over U to a 1×1 matrix (see Remark 6.8). Whether the assumption
of SSE over U is equivalent to the more tractable condition of shift equivalence over
U remains an open question. However, our proof requires the assumption of SSE,
not just SE, over U .

The central result of the path methods development was a Path Theorem for R:
matrices on a path of positive conjugate (similar) matrices must be SSE over R+.
In this paper, we prove a generalized Path Theorem (5.10) which has application
to arbitrary dense subrings of R. We also show that matrices on a path of positive
matrices shift equivalent over R must be SSE over R+. This is a consequence of a
more technical statement, the Connection Theorem (7.3), which relies in turn on a
result which is pure linear algebra (Theorem D.2).

One indication of the power of the path method comes from the corollary due
to Chuysurichay (Theorem 5.12): the set of positive matrices in a given conjugacy
(similarity) class over R contains only finitely many SSE-R+ classes. This holds
even though (as shown by Chuysurichay) it may be impossible to connect matrices
in the class with SSEs with uniformly bounded lags (see Remark 5.13). Using our
Path Theorem, we generalize this finiteness result to arbitrary dense subrings of R
(Theorem 5.16).

Using the Connection Theorem, we are able to show that positive real matrices
SSE over R+ are SSE over R+ through positive matrices (Theorem 8.1). As a
consequence, primitive positive trace matrices over a subfield U of R which are SSE
over R+ must also be SSE over U+ (Theorem 8.2).

Altogether, for positive matrices SSE over a dense subring U of R, the current
paper reduces the gap between SSE over R+ and SSE over U+, and provides further
evidence for the utility of investigating SSE of positive matrices over R+. This is a
problem to which more standard mathematics (e.g. fiber bundles, linear algebra)
can be applied, as seen in [13, 14, 15, 16, 17] and the current paper. So, we suggest
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splitting into three parts the problem of understanding when two positive matrices
over a dense subring U of R are SSE over U+:

(1) Assuming A and B SSE over R, prove they are SSE over R+.
(2) Assuming A and B SSE over R+ and over U , determine whether they are

SSE over U+.
(3) Understand the refinement of SE over U by SSE over U .

We now say a little about the organization of the paper.
In Section 2, we explain the decomposition of SSE into row splittings, column

splittings and diagonal refactorizations, and provide some basic technical results
essential for the sequel. The results of this section hold over quite general rings,
and refine the basic Williams theory.

In Section 3, given positive matrices A,B which are SSE over U , we produce
positive matrices A′, B′ which are conjugate over U such that A is SSE-U+ to A′

and B is SSE-U+ to B′. (This is the step for which we need matrices SSE-U , not
just SE-U .)

In Section 4, we study CentR(A), the group of invertible real matrices which
commute with a given n×n real matrix A, and its group of connected components,
π0(CentR(A)). This group plays a key role in the formulation of obstructions to
applying the Path Theorem to produce SSE-U+.

In Section 5, we prove the Path Theorem 5.10 and some consequences. In Section
6, we prove the eventually rank 1 results. In Section 7, we prove the Connection
Theorem. A large part of the proof is an independent result in linear algebra, which
we relegate to Appendix D. In Section 8, we prove in particular that positive ratio-
nal matrices SSE over R+ must be SSE over Q+. This is some supporting evidence
for the conjecture [2, Conj. 5.1] that positive rational matrices shift equivalent over
Q+ are SSE over Q+.

This paper is entirely devoted to matrices. For background on shifts of finite
type and symbolic dynamics, see [20, 19].

2. Elementary splitting and strong shift equivalence

Bob Williams introduced shift equivalence and strong shift equivalence in his
paper [30], which is the foundation of all future work on the topic. One of the fun-
damental contributions was a decomposition of an elementary strong shift equiv-
alence using even more fundamental relations, splittings and amalgamations. In
[30], Williams considered matrices over Z+ and {0, 1}. For our work with unital
nondiscrete subrings of R, we need some refinements to this work.

Definition 2.1. Let U be a subset of a semiring containing 0 and 1 (additive and
multiplicative identities). Matrices A,B are elementary strong shift equivalent over
U (ESSE-U) if there exist matrices R,S over U such that A = RS and B = SR.
Matrices A,B are strong shift equivalent over U (SSE-U) if there exist matrices
A0, A1, . . . , A`, and for 1 ≤ i ≤ ` matrices Ri, Si over U such that Ai−1 = RiSi and
Ai = SiRi, with A0 = A and A` = B. In this case the string (Ri, Si), 1 ≤ i ≤ `, is
a strong shift equivalence of lag ` from A to B.

Although we do not use shift equivalence before Section 7, to clarify ideas we
recall its basic features now.

Definition 2.2. Let U be a subset of a semiring containing 0 and 1 (additive and
multiplicative identities). Matrices A,B are shift equivalent over U (SE-U) if there
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exist matrices R,S over U and ` ∈ N such that the following hold:

A` = RS B` = SR

AR = RB BS = SA .

Always, SE-U implies SSE-U . The converse is true if U is a Dedekind domain [3]
(e.g., a field or Z, [7, 31]). For primitive matrices A,B over a subring of R: A,B
are SE-U if and only if A,B are SE-U+ . Over U a subfield of R, matrices are shift
equivalent if and only if the nonsingular parts of their Jordan forms are the same.
There is a “conceptual” version of shift equivalence, in terms of isomorphism of
associated dimension modules.

Williams asked whether the relatively tractable relation SE-Z+ implies SSE-Z+.
Working within Wagoner’s algebraic topological framework for the classification
problem [28], Kim and Roush gave examples of primitive matrices over Z which
are SSE over Z (equivalently, shift equivalent over Z) but not SSE over Z+ [18].
There are also examples of positive matrices over a dense subring U of R which are
SSE over U but are not SSE over U+ (see Remark 5.14). A feature of Wagoner’s
framework is that it is built up out of elementary SSEs, not out of SE. We will see
the same feature in the proof of Theorem 3.1. For a ring U , can be useful to take
SSE-U as a hypothesis, and leave the question of whether SE-U implies SSE-U as
a separate issue.

We turn away now from shift equivalence, until Section 7. For a ring U ,

Definition 2.3. An amalgamation matrix is a matrix with entries from {0, 1} such
that every row has exactly one 1 and every column has at least one 1. A subdivision
matrix is the transpose of an amalgamation matrix.

Definition 2.4. An elementary row splitting is an elementary strong shift equiva-
lence UX = A,XU = C in which U is a subdivision matrix. In this case, C is an
elementary row splitting of A, and A is an elementary row amalgamation of C.

Definition 2.5. An elementary column splitting is an elementary strong shift equiv-
alence XV = A, V X = C in which V is an amalgamation matrix. In this case, C is
an elementary column splitting of A, and A is an elementary column amalgamation
of C.

Given a1 + a2 + a3 = a, b1 + b2 + b3 = b, c1 + c2 = c, d1 + d2 = d, here is an
elementary row splitting C of A:

UX =

(
1 1 1 0 0
0 0 0 1 1

)
a1 b1
a2 b2
a3 b3
c1 d1
c2 d2

 =

(
a b
c d

)
= A

XU =


a1 b1
a2 b2
a3 b3
c1 d1
c2 d2


(

1 1 1 0 0
0 0 0 1 1

)
=


a1 a1 a1 b1 b1
a2 a2 a2 b2 b2
a3 a3 a3 b3 b3
c1 c1 c1 d1 d1
c2 c2 c2 d2 d2

 = C

For an elementary row splitting, rows of A are split as sums of rows (as described
by X), and then columns of X are “copied” in such a way that indices of rows in
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C with the same “parent” row in A have equal columns in C. We say a row in C
in A is sitting above its parent row.

Similarly, here is an example of an elementary column splitting.

Y V =

(
−3.4 1.4 5
π −π 6

)1 0
1 0
0 1

 =

(
−2 5
0 6

)
= A

V Y =

1 0
1 0
0 1

(−3.4 1.4 5
π −π 6

)
=

−3.4 1.4 5
−3.4 1.4 5
π −π 6


Here, columns 1 and 2 of V Y are sitting above column 1 of A in the column splitting.

Definition 2.6. A matrix is nondegenerate if it has no zero row and it has no zero
column.

Definition 2.7. A diagonal refactorization over a semiring U is an elementary
strong shift equivalence over S of the form A = DX, B = XD, where D is non-
degenerate diagonal over S. In this case, A is a diagonal refactorization of B (and
vice versa).

We now recall the canonical factorization of a nondegenerate matrix introduced
by Williams [30]).

Suppose M is a nondegenerate matrix over a semiring U containing {0, 1}, with
rows indexed by the set I and columns indexed by the set J . Let E be the set of
pairs (i, j) such that M(i, j) 6= 0. Let UM be the I × E subdivision matrix such
that UM (i′, (i, j)) = 1 iff i′ = i. Let VM be the E × J amalgamation matrix such
that VM ((i, j), j′) = 1 iff j = j′. Let DM be the E × E diagonal matrix such that
DM ((i, j), (i, j)) = M(i, j). Then

M = UMDMVM .

Because M is nondegenerate, UM and VM are defined (e.g., given i there is at least
one j such that D(i, j) 6= 0, so row i of UM has at least one 1), and D has nonzero
diagonal entries.

There is a graphical interpretation of the factorization M = UMDMVM . The set
E can be viewed as the set of edges of a directed graph, in which there is an edge
from i to j if M(i, j) is nonzero. The matrices UM and VM attach (respectively)
initial and terminal vertices to edges, and DM records the entry of M labeling the
edge.

Definition 2.8. We call the factorization M = UMDMVM above of a nondegener-
ate matrix M the Williams factorization of M . It is well defined up to the choice
of ordering of indices used for DM (and thus UM and VM ).

If M is a nondegenerate matrix and M = UDV with U subdivision, D nonde-
generate diagonal and V amalgamation, then M = UDV must be the Williams
factorization described above.

We may avoid the complications of defining a factorization for degenerate ma-
trices, on account of the following proposition.

Proposition 2.9. Suppose U is a ring which is torsion free as an additive group.
Suppose nondegenerate matrices A and B are SSE over U . Then they are SSE
through a chain of ESSEs Ai−1 = RiSi, Ai+1 = SiRi such that all the matrices
Ai, Ri, Si are nondegenerate.
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The proof of Proposition 2.9 is a digression, and we give it in Appendix A.

Proposition 2.10. Suppose A = RS,B = SR is an elementary strong shift equiva-
lence over a semiring U containing {0, 1}; U has no zero divisors; and the matrices
A, B are nondegenerate. Then there are nondegenerate matrices C1, C2, D over U
such that D is diagonal and

(1) C1 is an elementary row splitting of A
(2) There is a matrix X over U such that DX = C1 and XD = C2

(so, C1 is a diagonal refactorization of C2)
(3) C2 is an elementary column splitting of B.

Proof. Using the Williams factorization above, we have

A = (URDRVR) (USDSVS)

B = (USDSVS) (URDRVR) .

Define

C1 = (DRVRUSDSVS) UR , X1 = DRVRUSDSVS

C2 = VR (USDSVSURDR) , X2 = USDSVSURDR .

Set D = DR and X = VRUSDSVSUR. Then DX = C1 and XD = C2, proving (2).
Also,

A = URX1 B = X2VR

C1 = X1UR C2 = VRX2 .

This proves (1) and (3). It remains to prove the nondegeneracy claims.
The matrix D = DR is nondegenerate by construction. The matrix X2 has no

zero row, because B = X2VR has no zero row. The matrix (USDSVS) has no zero
column because A has no zero column. Because UR is a subdivision matrix, the ma-
trix (USDSVS)UR then has no zero column. Because there are no zero divisors, the
matrix (USDSVS)URDR = X2 has no zero column. Thus X2 is nondegenerate. Be-
cause VR is an amalgamation matrix, the matrix C2 = VRX2 is also nondegenerate.
Similarly, C1 is nondegenerate. This proves the proposition. �

Remark 2.11. If (for example) U is a subring of the reals, then in Proposition 2.10
the matrix D−1 is defined over R and the matrices D−1C1 and C2D

−1 have entries
in U . Then we can summarize the proposition with a diagram

(2.1) C1
(D,D−1C1) //

(X,U)

~~

D−1C1D
(V,Y )

$$
A B

in which an arrow labelled (J,K) from M to N represents an elementary strong
shift equivalence M = JK, N = KJ ; U is a subdivision matrix; and V is an
amalgamation matrix. C1 is an elementary row splitting of A and D−1C1D is an
elementary column splitting of B.

For matrices over {0, 1}, the next lemma is well known ([25], [20, Theorem
2.1.14]), and can be interpreted as a fiber product statement.
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Lemma 2.12 (Fiber Lemma). Suppose over a ring U there is an elementary row
splitting of A to a nondegenerate C1 and an elementary column splitting of A to a
nondegenerate C2. Then there is a nondegenerate matrix F such that over U there
is an elementary column splitting of C1 to F and an elementary row splitting of C2

to F .
If all entries of C1 and C2 are nonnegative, or positive, entries in a nondiscrete

unital subring U of R, then all entries of F can be chosen to have nonnegative, or
positive, entries in U .

Proof. Let I denote the set indexing the rows and columns of A. For s = 1, 2 let
Is be the index set for the rows and columns of Cs. The index set for the rows and
columns of F will be the set

V := {(i1, i2) ∈ I1 × I2 : i1 = i2 = i}

where is denotes the element of I associated to is under the given elementary
splitting of A to Cs. For i ∈ I, let V(i) = {(i1, i2) ∈ V : i1 = i2}. Let F<i,j> denote
the submatrix of F with index set V(i)×V(j). Given i ∈ I, we let Is(i) denote the
set of indices is in Is such that is = i.

We will define F by defining F<i,j> for each i, j. So, consider now i, j from I. For
notational simplicity, suppose for the definition of F<i,j> that I1(i) = {1, . . . ,m}
and I2(j) = {1, . . . , n}. We will define an m× n matrix M = M<i,j> and then set
F<i,j>((i1, i2), (j1, j2)) = M(i1, j2).

Let a denote A(i, j). By the nature of row splitting, there is a vector α =
(α1, . . . , αm) over U such that C1(s, k) = αs for every k ∈ I1(j) and 1 ≤ s ≤ m.
Likewise, there is a vector β = (β1, . . . , βn) over U such that C2(k, t) = βt for every
k ∈ I2(i) and 1 ≤ t ≤ n. Also,

∑
s αs = a =

∑
t βt.

We now arrange that the vector of row sums of M is α and the vector of column
sums of M is β. (In the special case that U is a field, for a 6= 0 we could simply set
M(s, t) = (1/a)α(s)β(t).) If m = 1, we necessarily set M(1, t) = β(t), 1 ≤ t ≤ n.
If n = 1, we likewise set M(s, 1) = α(s), 1 ≤ s ≤ m. If m = n = 1, the two
definitions coincide. If m and n are greater than 1, pick an (m−1)× (n−1) matrix
N over U and for 1 ≤ s < m and 1 ≤ t < n define M(s, t) = N(s, t). Then for
1 ≤ s < m, define M(s, n) so that the sth row sum is α(s), and for 1 ≤ t < n define
the entries M(m, t) so that the tth column sum is β(jt). These additional entries
must lie in the ring U . Finally define M(m,n) so that the sum of the entries of
M is a. Necessarily M(m,n) is in U . The mth row sum of M is α(m) because it
equals a minus the sum of the other row sums α(1), . . . , α(m − 1). Similarly the
nth column sum of M is β(n).

In the case that C1 and C2 have nonnegative real entries and m > 1 and n > 1, if
a = 0 then set M = 0. If a > 0, then for notational convenience suppose αmβn > 0.
Then choose N above such that N(s, t) = 0 whenever α(s)β(t) = 0 and otherwise

0 < (1/a)α(s)β(t)−N(s, t) < ε

where ε is small enough to guarantee that M(m,n) > 0. Then M will be nonnega-
tive, and M will be positive if α and β are positive. This finishes the definition of
M and F .
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Now define a V × I1 amalgamation matrix V and an I1 × V matrix X by the
rules

V
(

(i1, i2), i3

)
= 1 iff i1 = i3

X
(
i1, (j1, j2)

)
= M<i,j>(i1, j2) , where (i, j) = (i1, j2) .

Then

(XV )(i1, j1) =
∑

{j2: (j1,j2)∈V}

X(i1, (j1, j2))V ((j1, j2), j1)

=
∑

{j2: j1=j2}

M<i,j>(i1, j2) , where (i, j) = (i1, j2) ,

= α(i1) = C1(i1, j1) .

Similarly,

(V X)((i1, i2), (j1, j2)) = X(i1, (j1, j2))

= M<i,j>(i1, j2) , where (i, j) = (i1, j2) ,

= F ((i1, i2), (j1, j2)) .

Thus C1 = V X and F = XV , and F is an elementary column splitting of C1.
Likewise, F is an elementary row splitting of C2. Define an I2 × V subdivision

matrix U and a V × I2 matrix Y by the rules

U(i3, (i1, i2)) = 1 iff i3 = i2

Y ((i1, i2), j2) = M<i,j>(i1, j2) , where (i, j) = (i1, j2) .

Then F = Y U and C = UY , by a similar computation.
Finally, suppose C1 and C2 are nondegenerate. Then F has no zero column

(being a row splitting of C2) and F has no zero row (being a column splitting of
C1), so F is nondegenerate. �

Lemma 2.13. Suppose U is a unital ring, A and B are n × n matrices over U ,
and there is a nondegenerate diagonal matrix D and a matrix C such that A = DC
and B = CD.

Then there are matrices A′, B′ over U such that A′ is an elementary row splitting
of A, B′ is an elementary column splitting of B, and A′ is conjugate over U to B′.
If A and B are nondegenerate and the ring U has no zero divisors, then the matrices
A′, B′ can be chosen nondegenerate.

Proof. If D = In, we are done, so suppose not. For notational simplicity, suppose
there is a positive integer k such that D(i, i) = 1 iff i > k. Suppose k < n. Let E
denote the k × k upper left corner of D. Then in block form, for some matrices Ci
over U (with 1 ≤ i ≤ 4 and C1 k × k) we have

A =

(
EC1 EC2

C3 C4

)
, B =

(
C1E C2

C3E C4

)
.
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An elementary row splitting of A to an (n+ k)× (n+ k) matrix A′ is given by

A =

(
Ik Ik 0
0 0 In−k

) C1 C2

(−Ik + E)C1 (−Ik + E)C2

C3 C4

 =

(
EC1 EC2

C3 C4

)

A′ =

 C1 C2

(−Ik + E)C1 (−Ik + E)C2

C3 C4

(Ik Ik 0
0 0 In−k

)

=

 C1 C1 C2

(−Ik + E)C1 (−Ik + E)C1 (−Ik + E)C2

C3 C3 C4

 .

An elementary column splitting of B to an (n+ k)× (n+ k) matrix B′ is given by

B =

(
C1 C1(−Ik + E) C2

C3 C3(−Ik + E) C4

)Ik 0
Ik 0
0 In−k

 =

(
C1E C2

C3E C4

)

B′ =

Ik 0
Ik 0
0 In−k

(C1 C1(−Ik + E) C2

C3 C3(−Ik + E) C4

)

=

C1 C1(−Ik + E) C2

C1 C1(−Ik + E) C2

C3 C3(−Ik + E) C4

 .

Define

W =

 0 Ik 0
Ik E − 2Ik 0
0 0 In−k

 , with inverse W−1 =

2Ik − E Ik 0
Ik 0 0
0 0 In−k

 .

A computation shows A′W = WB′. If A and B are nondegenerate and U has no
zero divisors, then the constructed matrices A′ and B′ are nondegenerate. This
finishes the proof for the case k < n. If k = n, then simply remove block rows and
columns through C4 from the proof above, and repeat the proof with D in place of
E. �

3. From strong shift equivalence to conjugacy

Let U be a nondiscrete unital subring of R. Two n× n matrices A and B with
entries in U are conjugate over U , or similar over U , if there exists W in GL(n,U)
such that W−1AW = B.

The purpose of this section is to prove the following theorem.

Theorem 3.1. Let U be a nondiscrete unital subring of R. Suppose A,B are
positive matrices over U and are strong shift equivalent over U . Then A and B are
strong shift equivalent over U+ to positive matrices which are conjugate over U .

Moreover, the conjugating matrix can be chosen to have positive determinant and
to send positive eigenvectors to positive eigenvectors.

We begin with the main lemma. We use the following notation: Ik denotes the
k × k identity matrix.

Lemma 3.2 (Splitting Lemma). Let U be a nondiscrete unital subring of R. Sup-
pose the following:
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• A and C are n× n matrices over U
• W is a matrix in GL(n,U) such that W−1AW = C
• C ′ is obtained from C by a finite sequence of row splittings over U .

Then the following hold.

(1) There is a matrix A′ conjugate over U to C ′ such that A′ is obtained from
A by a finite sequence of row splittings over U ; and such that, if A and C ′

are nondegenerate, then A′ is nondegenerate.
(2) If A is a positive matrix, then there is a positive matrix A+ over U such

that A+ is obtained from A by a finite sequence of row splittings of positive
matrices over U+, and A+ is conjugate over U to a matrix of the form(
C′ 0
0 0

)
.

The lemma statement is also true with “row” replaced by “column”.

Proof. Any row splitting to a larger matrix is a composition of row splittings which
increase the matrix size by exactly one. So, we have some positive integer ` and
a finite sequence of elementary row splittings of matrices Ci to Ci+1, 0 ≤ i < `,
with Ci+1 obtained by splitting one row of Ci to two rows, and with C = C0 and
C ′ = C`.

Proof of Claim (1) We first consider the case that ` = 1. For notational conve-
nience, suppose row n of C is split into rows n and n+ 1 of C ′. For any matrix B,
we let Brow(i) denote its ith row. We have matrices

X ′ =


Crow(1)

...
Crow(n−1)

s′

t′

 , U ′ =

(
In−1 0 0

0 1 1

)

such that U ′X ′ = C and X ′U ′ = C ′. Set t = t′W−1 and set s = Arow(n) − t and
define the (n+ 1)× n matrix

Y ′ =


Arow(1)

...
Arow(n−1)

s
t

 .

Then U ′Y ′ = A. Define A′ = Y ′U ′, an elementary row splitting of A. Let E be
the (n+ 1)× (n+ 1) matrix equal to In+1 except that E(n, n+ 1) = −1. Then we
have matrix equations (in block forms)

E−1A′E =

(
A 0
t 0

)
E−1C ′E =

(
C 0
t′ 0

)
(
A 0
t 0

)(
W 0
0 1

)
=

(
W 0
0 1

)(
C 0
t′ 0

)
.

Therefore A′ is conjugate over U to C ′.
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At the inductive step, going from ` − 1 to `, we apply the same argument to
matrices A′`−1 and C ′`−1 given by the induction hypothesis.

Now suppose A is nondegenerate. Then no sequence of row splittings of A can
produce a matrix with a zero column. If C ′ is nondegenerate, then we can choose
all those row splittings Ci to Ci+1, splitting some row as a sum si + ti, such that
si 6= 0 6= ti. Then the construction, splitting A′i to A′i+1, never introduces a zero
row, and in the end A′ will be nondegenerate. This completes the proof of (1).

Proof of Claim (2). As in part (1), we first consider the case ` = 1. Let s′, t′, s, t
be as in part (1). Define matrices

U =

(
In−1 0 0 0

0 1 1 1

)
, X ′′ =



Crow(1)

...
Crow(n−1)

s′

t′

0


, Y ′′ =



Arow(1)

...
Arow(n−1)

s
t
0


.

Set A′′ = Y ′′U . Let F be the (n + 2) × (n + 2) matrix equal to In+2 except that
F (n, n+ 1) = F (n, n+ 2) = −1. Then

F−1A′′F =

A 0 0
t 0 0
0 0 0

 and F−1C ′′F =

C 0 0
t′ 0 0
0 0 0

 .

The matrix F−1C ′′F (and therefore A′′) is conjugate over U to the (n+2)× (n+2)
matrix

(
C′ 0
0 0

)
.

It remains to conjugate A′′ over U to a matrix A+ which is the required row split-
ting of A. For this we will pick a suitable invertible 3×3 matrix M with all column

sums equal to 1, define W+ to be

(
In−1 0

0 M

)
and set A+ equal to W+A′′(W+)−1.

Because M has all column sums 1 (i.e. fixes the row vector with every entry 1),
it follows that M−1 has all column sums 1, and therefore U(W+)−1 = U . Conse-
quently,

A+ = W+Y ′′U(W+)−1 = W+Y ′′U =

(
In−1 0

0 M

)
Y ′′U .

The matrix M will have the form

(3.1)

 x1 x1 + ε1 z1
x2 x2 + ε2 z2

1− (x1 + x2) 1− (x1 + x2)− (ε1 + ε2) 1− (z1 + z2)


and therefore the bottom three rows of W+Y ′′ will equal

(3.2) M

st
0

 =

 x1(s+ t) + ε1t
x2(s+ t) + ε2t

[1− (x1 + x2)](s+ t)− [ε1 + ε2]t

 .

These three rows sum to s + t, which is row n of A. Thus U(W+Y ′′) = A, and
A+ = (W+Y ′′)U is an elementary row splitting of A.

We now complete the definition of M . Given γ > 0, pick positive numbers
x1, x2, ε1 from U with |x1 − 1/3|, |x2 − 1/3| and ε1 all smaller than γ. Pick K ∈ N
such that Kε1 ≤ 1 < (K + 1)ε1 and set ε2 = 1 − Kε1 < ε1. For small γ, this
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guarantees that A+ is positive (the rows in (3.2) are approximately (1/3)Arow(n)).
Define z1 = −1 + x1 and z2 = K + x2. A computation shows

det(M) = ε1(z2 − x2)− ε2(z1 − x1)

= ε1(K)− ε2(−1) = 1 .

Therefore M ∈ SL(3,U), and W+ gives a conjugacy of A+ to A′′ as required.
Let 0i denote the i × i zero matrix. At the inductive step, we begin with a

conjugacy of a positive matrix (A+)`−1 to a matrix with block form
(
C`−1 0

0 0

)
=

C`−1⊕0`−1, and a splitting of C`−1 to C`. The argument of the basic step produces
a row splitting of (A+)`−1 to a positive matrix (A+)` over U and a conjugacy over
U of (A+)` to (C` ⊕ 0`−1)⊕ 01, which equals C` ⊕ 0`.

The final claim of the lemma is clear by passing to transpose matrices. �

Remark 3.3. If the nondiscrete ring U is assumed to have a nontrivial unit, then in
Lemma 3.2, the matrix A+ can be chosen to have size equal to the matrix C (the
extra zero blocks can be avoided). For this, in the proof at the stage of splitting
the row s′ + t′ of C, pick a, b from U such that a closely approximates 1/2 and b is
a sufficiently small unit. In place of the matrices U,X ′′,M in the proof use

U =

(
In−1 0 0

0 1 1

)
, X ′′ =

∗s′
t′

 , M =

(
a a− b

1− a b+ (1− a)

)
.

Then detM = b, so M is invertible over U , and if a is chosen close to 1/2 and b is
sufficiently small, the positivity constraints will be satisfied.

Remark 3.4 (Matrices, module structures and splitting). Suppose U is a unital ring,
and let U [t] denote the ring of polynomials with coefficients in U . If A is an n× n
matrix A over U , then the free U module Un of row vectors is a right U [t] module
MA, where the action of t is by v 7→ vA. Two n×n matrices over U are conjugate
over U if and only if their U [t] modules are isomorphic.

If a matrix C ′ is obtained by an elementary row splitting from a matrix C,
with associated subdivision matrix U , then there is an embedding of MC into
MC′ , given by the rule v 7→ vU . The conjugacy given by W+ in Lemma 3.2 is
constructed to extend the conjugacy of embedded copies ofMA andMC obtained
by lifting W . One finds an A+ and W+ by requiring further conditions on the
vectors en, en+1, en+2.

The module viewpoint may give arguments which are easier and more conceptual,
or help one find implementing matrices. On the other hand, it can be useful to have
matrix arguments which can be verified by direct matrix computation.

It is worth noting that with any string of row splittings from a matrix C to a
matrix C ′, the module MC embeds as a U [t] submodule of MC′ , and such that
as a free U module (forgetting the t action) MC′ is the internal direct sum of the
emebedded copy of MC and another free U module.

We will also use the following easy lemma.

Lemma 3.5. Let U be a unital nondiscrete subring of R. Suppose C is a positive
square matrix over U and M is a square matrix over U of the (block) form ( C 0

X 0 )
or (C X

0 0 ). Then there is a positive matrix over U which is conjugate over U to M
and which is SSE over U+ to C.
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Proof. Clearly it is sufficient to prove the lemma assuming M = ( C 0
X 0 ). Pick κ > 0

in U such that X ′ := X+κJC is positive, where J denotes a matrix of appropriate
size with every entry equal to 1, and set M ′ =

(
C 0
X′ 0

)
. Then M ′ is SSE over U+ to

C, and also conjugate over U to M , since

M ′ =

(
C 0
X ′ 0

)
=

(
I 0
κJ I

)(
C 0
X 0

)(
I 0
−κJ I

)
.

Given ε in U , define another matrix conjugate over U to M ,

Mε :=

(
I −εJ
0 I

)(
C 0
X ′ 0

)(
I εJ
0 I

)
=

(
C − εJX ′ 0

X ′ 0

)(
I εJ
0 I

)
=

(
C − εJX ′ (C − εJX ′)εJ

X ′ X ′(εJ)

)
.

Fix ε > 0 in U sufficiently small to guarantee C − εJX ′ is positive. Then Mε is a
positive matrix SSE over U+ to M ′, and hence to C. �

We are now prepared to prove the main result of this section.

Proof of Theorem 3.1. By assumption, for some ` we have matrices
A = A(0), A(1), . . . A(`) = B and for 0 ≤ k < ` an ESSE over U ,

(3.3) A(i) = R(i)S(i) , A(i+1) = S(i)R(i) .

By Proposition 2.9, we may assume all the matrices A(i), R(i), S(i) are nondegen-
erate. For each i, we can then by Proposition 2.10 associate to the ESSE (3.3) a
diagram of splittings and a diagonal refactorization

(3.4) Xi

(Di,D
−1
i Xi) //

||

Yi

  
A(i−1) A(i)

as described in (2.1). By Lemma 2.13 we can lift each diagonal refactorization by
a row and a column splitting to nondegenerate matrices conjugate over U , giving a
diagram of three levels,

(3.5) •
��

•
��

•
{{

•
!!

A(i−1) A(i)

For visual clarity, we use the horizontal “=” in diagrams to indicate conjugacy over
U (not equality).

We consider an initial diagram (of three levels) formed by taking the union
of the ` diagrams above (one for each ESSE). Arrows point southwest for row
amalgamations and southeast for column amalgamations. For visual clarity, we
suppress matrix names and arrow tips. Here is the initial diagram for the case
` = 3.
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(3.6) • • • • • •

• • • • • •

• • • •

We apply the Fiber Lemma 2.12 to construct a nondegenerate common col-
umn/row splitting for each pair of matrices in the diagram with a common row/column
amalgamation, and iterate this move as far as possible. For our case ` = 3, this
produces the next diagram (with open circles and dotted lines reflecting additions
to the diagram at this step).

(3.7) ◦ ◦

◦ ◦ ◦ ◦

• • ◦ • • ◦ • •

• • • • • •

• • • •

Next, we apply part (1) of the Splitting Lemma 3.2 to lift conjugacies of non-
degenerate matrices by row or column splittings. Where there is a choice, for
definiteness (only) we choose to lift by row splittings. For ` = 3 this produces the
following diagram. A nonhorizontal arrow here arising from the Splitting Lemma
represents the composition of several splittings through nondegenerate matrices.

(3.8) ◦ • ◦ • ◦

◦ • • ◦ • • ◦

• • • • • • • •

• • • • • •

• • • •

We iterate the application of Splitting Lemma and Fiber Lemma until we arrive
at a final diagram of 2`+ 1 levels whose top level consists of matrices which are all
conjugate. For ` = 3, this happens at the next stage, and produces the diagram



PATH METHODS FOR STRONG SHIFT EQUIVALENCE OF POSITIVE MATRICES 15

(3.9) below.

(3.9) ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

• • ◦ • • •

• • • • • • •

• • • • • • • •

• • • • • •

• • • •
At the top of the left side of the final diagram is a nondegenerate matrix C which

is obtained from A by a sequence of row splittings through nondegenerate matrices
over U . By Part (2) of the Splitting Lemma 3.2, there is a matrix A+ SSE over
U+ to A and conjugate over U to a matrix of the form (C 0

0 0 ). Similarly, if E is
the matrix on the right side of the top level of the final diagram, then there is a
positive matrix B+ which is SSE over U+ and conjugate over U to a matrix of the
form (E 0

0 0 ). If A+ and B+ are not of the same size, then we may apply Lemma 3.5
to enlarge one of them, and assume they have the same size. Because C and E are
conjugate over U , it then follows that A+ and B+ are conjugate over U .

This concludes the proof, apart from the “moreover” claim for the conjugating
matrix. This is perhaps already clear from previous work, but we will give a self
contained proof in the following lemma. �

Lemma 3.6. Suppose U is a nondiscrete unital subring of R, and A,B are n× n
positive matrices conjugate over U . Then there are positive matrices A′, B′ SSE over
U+ to A,B respectively and a matrix U invertible over U such that U−1A′U = B′,
detU > 0, and U sends positive eigenvectors to positive eigenvectors.

Proof. We are given U ∈ GL(n,U) such that U−1AU = B. We may assume (if
necessary after replacing U with −U) that U sends positive eigenvectors to positive
eigenvectors. In the case detU < 0, it would suffice to have some W invertible over
U such that AW = WA, detW < 0 and W respects positive eigenvectors of A.
(We could then replace U with WU .)

If no such W exists, then for some small ε > 0 we will define an (n+ 1)× (n+ 1)
matrix A′ as a row splitting of A, by splitting the first row A1 of A as εA1+(1−ε)A1.
Here ε > 0, ε ∈ U and ε is small enough that A′ > 0. Let Eij(s) denote the
n+1×n+1 matrix equal to I except that the ij entry is s. Let F = E12(−ε)E21(1).
Then

FA′F−1 =

(
0 0
0 A

)
:= A′′ .

Because the matrix K =
(−1 0

0 I

)
has negative determinant, commutes with A′′ and

fixes eigenvectors for nonzero eigenvalues, the matrix W = F−1KF will have the
same properties with respect to A′ = F−1A′′F .

Now define B′ from B in the same way. The matrices A′, B′ are positive, SSE
over U+ to A,B respectively, and conjugate by a matrix with positive determinant
which sends positive eigenvectors to positive eigenvectors. �
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We prepare for the last result of this section with the next lemma.

Lemma 3.7. Suppose A,B,D,B′ are matrices over a field U such that D is diag-
onal nonsingular, A = D−1BD and B′ is a row splitting of B. Then there is a row
splitting A′ of A and a diagonal matrix D′ over U such that A′ = (D′)−1BD′ .

The same statement is true if “row”is replaced with “column”.

Proof. Clearly it suffices to prove the row statement. Let U be the subdivision
matrix for the assumed row splitting, BU = UB′ . Define the diagonal matrix D′

in the obvious way, D′(i, i) = D(i, i) where i satisfies U(i, i) = 1. Define A′ to be
(D′)−1BD′. Then U is also the subdivision matrix for a row splitting of A to A′.
For an example of this, take

A =

(
a b δ1δ2
c δ2δ1 d

)
B =

(
a b
c d

)
D =

(
δ1 0
0 δ2

)

A′ =

 a1 a1
δ1
δ2
b1

a2 a2
δ1
δ2
b2

δ2
δ1
c δ2

δ1
c d

 B′ =

a1 a1 b1
a2 a2 b2
c c d

 U =

(
1 1 0
0 0 1

)
.

�

If U is not a field, then the definition of A′ in the proof of Lemma 3.7 above
might not give a matrix over U .

We will need the following result from [15].

Theorem 3.8. Suppose A,B are nondegenerate matrices SSE over U+, where U is
a subfield of R. Then there is a nondegenerate matrix C over U+ and a nonsingular
diagonal matrix D over U+ such that C is reached from A by finitely many row
splittings through matrices over U+ and D−1CD is reached from B by finitely many
column splittings through matrices over U+. If A is primitive, then C is primitive.

Proof. The proof is a simplification of part of the proof of Theorem 3.1. We begin
with a lag ` SSE from A to B through nondegenerate matrices over U+. As in (3.4),
from each elementary SSE we produce a row splitting, diagonal refactorization and
column splitting. For example, with ` = 4 we get a diagram

(3.10) • //

��

•
!!

• //

}}

•
!!

• //

}}

•
!!

• //

}}

•
��

A A(1) A(2) A(3) B

A southwest pointing arrow represents a row amalgamation. A southeast pointing
arrow represents a column amalgamation. A horizontal arrow represents a diagonal
refactorization over U .

Above each A(i), we apply Lemma 2.12 to produce a common splitting: With
this move, we have added another level to the top of the diagram:

(3.11) •
�� ��

•
�� ��

•
�� ��

• //

��
•
��

• //

��

•
��

• //

��

•
��

• //

��

•
  

A • • • B
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Then we apply Lemma 3.7 to lift each diagonal refactorization on the old top row
by a splitting to the new top row:

(3.12) •
��

// •
�� ��

•
��

// •
�� ��

•
��

// •
�� ��

// •
��

• //

��
•
��

• //

��

•
��

• //

��

•
��

• //

��

•
  

A • • • B

When there is a choice, for definiteness (only) we make the choice to lift with a row
splitting.

Iterating this pair of moves ` − 1 additional times, we produce a diagram with
`+ 1 horizontal levels. For ` = 4, this is the following diagram, in which we insert
some matrix names (whose generalizations to arbitrary ` should be clear) and for
visual simplicity suppress arrowheads and bullets.

(3.13) C4 E4

C3 E3

C2 E2

C1 E1

A B

Define A′ = C` and B′ = E`. The diagonal matrix D such that D−1A′D = B′

is produced by composing the ` diagonal refactorizations on the top level of the
diagram. If A is primitive, then C is primitive, because C is nondegenerate and
SSE over R+ to A. �

4. The Centralizer

Definition 4.1. Given an n × n matrix A over R, we let CentR(A) denote {B ∈
GL(n,R) : AB = BA}, the centralizer of A in GL(n,R). Let GL+(n,R) denote
the connected component of the identity in GL(n,R) (the matrices with positive
determinant). Define Cent+R (A) to be CentR(A) ∩GL+(n,R),

This section provides some background and notation for CentR(A), needed for
the results to come on strong shift equivalence over nondiscrete unital subrings of
R.

In the next lemma, U could be for example a field, or it could be obtained from
a real algebraic number ring by inverting all but finitely many primes.

Lemma 4.2 (Centralizer Lemma). Suppose that U is a dense unital subring of R
which contains an ideal J 6= U such that every element of U outside J is a unit in
U . Suppose that A is an n× n matrix over U .

Then every connected component of CentR(A) contains an element of GL(n,U).

Proof. Let F denote the field of fractions of U . The set of (not necesarily invertible)
real matrices which commute with A, as the solution set of AX − XA = 0, is a
real vector space VR in which the matrices over F are an F vector space VF of equal
dimension. Thus VF is dense in VR. It suffices to show GL(n,U) ∩ VR is dense in
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VF (in which case it is also dense in every connected component of GL(n,R) ∩ VR,
which is CentR(A)).

If J = {0}, then U is a field. Then any element of VF close to an element of
GL(n,R) ∩ VR has nonzero determinant and thus lies in GL(n,U).

So, let J be a proper ideal of U . Then J is dense in R. Suppose X ∈ VF, and
ε > 0. Pick a nonzero d1 ∈ U such that d1X has all entries in U . Pick d2 ∈ U such
that |d1d2−1| < ε. Let Y = d1d2X. Then Y has entries in U and ||Y −X|| < ε||X||.
Pick c in J such that |1− c| < ε. Let M = (1− c)I + cY . Then M ∈ VF and

||Y −M || = ||(1− c)(Y − I)|| ≤ ε||Y − I|| .

Since det(M) = det(I + c(Y − I)) ≡ 1 mod J , we also have M ∈ GL(n,U). �

For completeness we recall an example from [16].

Example 4.3. Let U = Z[1/p], where p is a prime (e.g., 5) which does not split

in the algebraic number ring Z[
√

3]. Let A be a nonzero 2 × 2 matrix of the form
c1I + c2B, with c1, c2 in U , where B = ( 0 3

1 0 ).
Then GL(2,U) does not intersect every connected component of CentR(A). If

C is the 3 × 3 matrix B ⊕ 1, then GL(3,U) does not intersect every connected
component of Cent+R (C).

Proof. There is an isomorphism of fields from Q[
√

3] to Q[A] induced by
√

3 7→ B.

A fundamental unit for the algebraic number ring Z[
√

3] is 2 +
√

3, which has
positive norm 1. If p is an odd prime and p > 3 and 3 is not a square mod p (for

example p = 5), then p does not split in Z[
√

3] [21, p.74].
The matrix A has distinct real eigenvalues and can be diagonalized over the

reals. When diagonalized, its centralizer becomes all diagonal matrices and is all
linear combinations over U of I, A. So that is also true when it is not diagonalized.
The real centralizer will be a direct sum of two copies of the reals and has four
components. Some components have negative determinant. The centralizer of A
within the 2 × 2 matrices over U consists of linear combinations of I, A over U ,
and is isomorphic as a ring to the quadratic number ring R = Z[

√
3] with the

prime p inverted. By assumption p is prime in R, so any unit of U has the form
pm(2+

√
3)n for some integers m,n. The norms of all units in U are positive, which

translates to the determinants of all elements of GL(2,U) in the centralizer of A
being positive. Therefore the negative determinant components of CentR(A) will
not intersect GL(2,U).

A matrix in the centralizer of C will act like a matrix in the centralizer of
A together with multiplication by a scalar on the fixed direction. A negative-
determinant component of CentR(A), with multiplication by a negative number on
the fixed direction, will yield a positive-determinant component of CentR(C) which
does not intersect GL(3,U). �

Definition 4.4. Given a square real matrix A, let J (A) denote the set of pairs
(λ, j) such that λ ∈ R, j ∈ N and the Jordan form of A contains a j × j Jordan
block for λ. Then define

γ(A) =|J (A)| .

For A n× n over R and (λ, j) ∈ J (A), define the vector space

V (A, λ, j) = {x(A− λI)j−1 ∈ ker(A) : x ∈ Rn \ image(A)} ∪ {0} .
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A matrix B in CentR(A) maps each V (A, λ, j) to itself. Let σ(λ, j) be the sign of
the determinant of this map determined by B.

Recall, π0(X) is the set of connected components of a topological space X.

Proposition 4.5. Let A be an n× n real matrix. Then with γ as defined above,

|πo(CentR(A))| = 2γ(A) .

Two matrices lie in the same component if and only if they have the same sign
σ(λ, j) for all (λ, j) in J (A).

Proof. If A is zero, the claim holds because |πo(GL(n,R)| = 2 . Now suppose
A 6= 0. A is a sum of commuting nonzero real matrices Aλ, where λ denotes a
root of χA with nonnegative imaginary part, and Aλ − λI is nilpotent if λ ∈ R,
and (Aλ − λI)(Aλ − λI) is nilpotent if λ ∈ R \ C. The centralizer CentR(A) is
homeomorphic to the product

∏
λ CentR(Aλ). So it suffices to show the claim for

each Aλ.
If λ is real, then CentR(Aλ) = CentR(Aλ − λI), and we can consider CentR(M)

for M nilpotent. Let Cj denote a matrix of the form J ⊗ I, where J is a j × j
Jordan block with zero diagonal. Then CentR(Cj) has a banded form, e.g. for C3

a (3k × 3k)× (3k × 3k) matrix,

C3 =

0 I 0
0 0 I
0 0 0

 , CentR(C3) =

{X Y Z
0 X Y
0 0 X

 : X ∈ GL(k,R)

}
.

Each CentR(Cj) has exactly two connected components, depending on the sign of
the determinant of the repeated diagonal block, which is σ(λ, j). Up to conjugacy,
the nilpotent matrix M will be block diagonal of the form diag(M1,M2, . . . ,Mj)),
i.e.

M =


M1 0 0 . . . 0
0 M2 0 . . . 0
0 0 . . . . . . 0
0 0 0 . . . Mj


where Mi = Cn(i), n(1) > n(2) > · · · > n(j) and j = γ(M). CentR(M) is a subset
of the set of block upper triangular matrices such that an element of CentR(Mi)
occupies the ith diagonal block. There is a homotopy from CentR(M) to the set of
its block diagonal matrices, which is homeomorphic to

∏
j CentR(Mj), which has

2j connected components.
If λ is complex and Aλ is (2k)× (2k), then let M be the k × k complex matrix

which is the direct sum of the λ-Jordan blocks in the Jordan form of Aλ (or A).
Then CentR(Aλ) is homeomorphic to CentC(M), the centralizer of M in GL(k,C).
The triangular structure described earlier applies to CentC(M). However, because
GL(n,C) is connected for every n, we have that CentC(M) is connected. �

5. From paths of similar matrices to strong shift equivalence

In this section, we will see how to pass from a path of positive conjugate matrices
to a strong shift equivalence through positive matrices. (The problem of finding
such a path we consider later.) For completeness, we begin with a proof for the path
lifting Proposition 5.3, for which we make some preparation. Below, the particular
choice of norm for Rn is unimportant. The next lemma was proved in [15] with a
citation to [9]; we include a proof for completeness.
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Lemma 5.1. Suppose B is a matrix over R and ε > 0. Then there exists δ > 0
such that if ||B −B′|| < δ and B′ is conjugate over R to B, then there exists U in
GL(n,R) such that U−1BU = B′ and ||U − I|| < ε.

Proof. We begin with a Claim: Suppose ε > 0 and M is an n × n matrix of rank
r over scalar field C or R, and u1, . . . , un−r is a basis of ker(M). Then there is
δ > 0 such that for any M ′ with ||M −M ′|| < δ and rank(M ′) = r, there is a basis
u′1, . . . , u

′
n−r of ker(M ′) with ||uj − u′j || < ε||uj ||, for each j.

Proof of Claim. Without loss of generality, suppose 0 < r < n. To set notation,
we use row vectors for kerM = {v : vM = 0}. Let projW denote orthogonal
projection onto W . Let colM denote the vector space generated by column vectors
of M .

Within the set of n× n matrices M of rank r, the map projcolM varies continu-
ously with M . (For M ′ near a given M , the same r linearly independent columns
can be used to construct an orthonormal basis with the Gram-Schmidt algorithm.)
So we may suppose δ is small enough that ||projcolM ′(v)|| ≤ ||projcolM (v)||+ ε||v||,
for all v. Set u′j = projkerM ′(uj). Considering (kerM ′)⊥ = {vtr : v ∈ colM ′}, we
have

||uj − u′j || = ||proj(kerM ′)⊥(uj)|| = ||projcolM ′(u
tr
j )||

≤ ||projcolM (utrj )||+ ε||utrj || = ε||utrj || .

This proves the claim.
Now suppose λ is an eigenvalue of B and Jλ = {u1, . . . , us} is a Jordan basis for

the restriction of B − λI to ker(B − λI)n. (∪λJλ is a Jordan basis for B.) Define

Jλ(t) = {ui ∈ Jλ : ui(B − λI)t = 0 and ui /∈ image(B − λI)} .

(The number of vectors in Jλ(t) equals the number of t × t Jordan λ-blocks in
the Jordan form of B.) For B′ close to B, let {u′1, . . . , u′s} be the nearby basis of
ker(B′ − λI)n, given by the Claim. With B′ close enough to B,

ui ∈ Jλ(t) =⇒ u′i(B
′ − λI)t−1 6= 0 .

Consider the t in decreasing order, we then deduce from the conjugacy of B and
B′ that also

ui ∈ Jλ(t) =⇒ u′i(B
′ − λI)t = 0 .

For λ real, those vectors ui, u
′
i can be chosen to be real, and the map on Jλ defined

by

ui(B − λI)j 7→ u′i(B
′ − λI)j , if ui ∈ Jλ(t) and 0 ≤ j < t ,

determines a map ker(B−λI)n → ker(B′−λI)n which conjugates the restrictions of
B and B′ to these invariant subspaces. For λ not real, say with positive imaginary
part, pull back the complex conjugacy to define a map from a real Jordan form
basis for B for ker(B− λI)n(B− λ̄I)n to a corresponding nearby real Jordan basis
for B′ for ker(B′ − λI)n(B′ − λ̄I)n.

The matrix U in GL(n,R) implementing these maps on invariant subspaces
induces a conjugacy of B and B′ and is close to the identity. �

Below, we suppose A is an n× n real matrix, Cent(A) = {U ∈ GL(n,R) : UA =
AU}; Conj(A) = {U−1AU : U ∈ GL(n,R)}; γ : U 7→ U−1AU ; the topology of
Conj(A) is by the metric induced by a matrix norm, and the image of π has the
quotient topology.
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Proposition 5.2. The map φ which makes the following diagram commute

GL(n,R)
π
**

γ

��

GL(n,R)/Cent(A)
φ

tt
Conj(A)

is a homeomorphism.

Proof. For U, V in GL(n,R), we have γ(U) = γ(V ) if and only if V U−1 ∈ Cent(A).
So, φ is a well defined bijection. The map φ is continuous because γ is continuous,
π is open and GL(n,R)/Cent(A) has the quotient topology.

It remains to show that φ is an open map. This holds if γ is an open map.
Suppose V is an open subset of GL(n,R) and V ∈ V. Choose ε > 0 such that
V contains the open set {V U ∈ GL(n,R) : ||U − I|| < ε}. Then γ(V) contains
{U−1CU : ||U − I|| < ε}, which by Lemma 5.1 contains some neighborhood of C
in Conj(C) = Conj(A). This shows the map γ is open and finishes the proof. �

Above, ((GL(n,R), π,GL(n,R)/Cent(A)) is a principal bundle [11, Ch. 4.2].
The projection π is locally trivial: for every x in GL(n,R), there is a neighborhood
U of x and a neighborhood V of πx and a homeomorphism h : U → V × Cent(A)
such that on U , π is equal to h followed by projection onto V, (v, c) 7→ v .

Proposition 5.3. Suppose (At)0≤t≤1 is a path of conjugate n × n real matrices,
U ∈ GL(n,R) and U−1A0U = A0. Then there is a path (Gt) in GL(n,R) such that
G0 = U and G−1t A0Gt = At for 0 ≤ t ≤ 1.

Proof. The map γ has the topological properties of the principal bundle projection
π in Proposition 5.2. The proposition translates to γ the path lifting property
which π enjoys on account of its local triviality as a projection. �

Let H(I,Cent+R (A)) denote the homotopy classes of paths in GL+(n,R) from the

identity to Cent+R (A) (by homotopy through paths with initial point I and terminal

points in Cent+R (A)). In a topological space X, π0(X) denotes the set of connected
components and π1(x,X) denotes the fundamental group at basepoint x in X.

Proposition 5.4. Suppose (At)0≤t≤1 is a loop from A to A in Conj(A). Then
there is a path (Gt) in SL(n,R) such that G0 = I and At = (Gt)

−1AGt, 0 ≤ t ≤
1. Moreover, the homotopy class of the loop (At) determines both the element of
H(I,Cent+R (A)) containing (Gt) and the connected component of Cent+R (A) which
contains G1. The induced maps

π1(A,Conj(A))→ H(I,Cent+R (A)) ,

π1(A,Conj(A))→ π0(Cent+R (A))

are bijections.

Proof. Proposition 5.3 explains the existence of the lift of (At) to a path (Gt)
in GL(n,R) beginning at G0 = I. By continuity, each Gt has positive determi-
nant, and we may replace Gt with (detGt)

−1/nGt to put the conjugating path into
SL(n,R). It is straightforward to check the remaining claims about well defined
induced bijections. �
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Definition 5.5. Suppose U is a nondiscrete unital subring of the reals. Given A
an n× n matrix over U . We say the centralizer condition holds for (A,U) if every
connected component of Cent+R (A) has nonempty intersection with GL(n,U). We
say that U satisfies the centralizer condition if the centralizer condition holds for
(A,U) for every square matrix A over U .

One equivalent statement of the Centralizer Condition is that Cent+R (A) is gen-

erated by U ∩Cent+R (A) and the connected component of the identity in Cent+R (A).

Lemma 5.6. Suppose A is a positive n × n real matrix. There is an ε > 0 such
that for U ∈ SL(n,R) with ||U − I|| < ε, U can be written as a product of m =
(n + 4)(n − 1) basic elementary matrices, U = E1 · · ·Em, where each Ek depends
continuously on U .

Proof. The given U can be made upper triangular by (n− 1) + (n− 2) + · · ·+ 1 =
n(n−1)/2 operations of adding multiples of rows successively to lower rows. For U
close to the identity, at each stage the diagonal terms will remain positive, and the
multiples of row i added to lower rows to zero out entries in column i will depend
continuously on U . Likewise, the same number of additions of lower rows to upper
rows will diagonalize U . Finally, for a 6= 0,(

a 0
0 1/a

)
=

(
1 a(a− 1)
0 1

)(
1 0

1/a 1

)(
1 1− a
0 1

)(
1 0
−1 1

)
.

So, we can multiply a diagonal determinant 1 matrix by 4(n−1) elementary matrices
to produce the identity. In total we have factored U as a product of m = 2[n(n−
1)/2]+4(n−1) = (n+4)(n−1) basic elementary matrices. We may fix the order of
operations. Then in each Ek, there is a single offdiagonal element which is allowed
to be nonzero (or zero), and it varies continuously as a function of U . �

Lemma 5.7. Given 0 < ε < κ and n ∈ N, there is a δ > 0 such that for every
n× n real matrix M with all entries bounded below by ε and above by κ, for every
U ∈ SL(n,R) with ||U − I|| < δ, the matrix U−1MU is positive and SSE over R+

to M .

Proof. Pick δ > 0 small enough that for every n×n positive matrix M with entries
bounded below by ε and above by K, with m = (n+ 4)(n− 1) we have

• for U ∈ SL(n,R) with ||U − I|| < δ, there is a continuous factorization
U = E1 . . . Em of U into basic elementary matrices, as in Lemma 5.6, and
• with E0 = I and Vi = E0 · · ·Ei, for 0 ≤ i < m all of the matrices V −1i MVi,

V −1i MViEi+1 and E−1i+1V
−1
i MVi are positive.

Given such a matrix M , set Bi = V −1i MVi; then B0 = M and Bm = U−1MU . For

1 ≤ i ≤ m, Bi is positive, and one of the pairs (Ei, E
−1
i Bi), (EiBi, E

−1
i ) will give

an ESSE over R+ from Bi−1 to Bi. Thus M and U−1MU are positive matrices
which are SSE over R+. �

Lemma 5.8. Suppose U is a nondiscrete unital subring of R, B is an n×n positive
matrix over U and d > 0.

Then there is ε > 0 such that V ∈ GL(n,U) with ||V − dI|| < ε implies the
matrix V −1BV is positive and is SSE over U+ to B.

Proof. If ||V − dI|| < ε with ε sufficiently small, then we may add small positive
multiples of a row i of V to other rows to make all off diagonal entries of column
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i positive and still small. Iterating, we may find nonnegative elementary matrices
E1, . . . , Ek over U , with k ≤ n(n − 1), such that with E = EkEk−1 · · ·E1, the
matrix EV is a positive matrix in GL(n,U).

Set E0 = I and B0 = B. For 1 ≤ i ≤ k set Bi = EiBi−1E
−1
i . For ε small, we

may choose the matrices Ei close enough to I that all of the following matrices are
also positive: BE−1; V −1(BE−1); Bi−1E

−1 and Bi = EiBi−1E
−1
i , for 1 ≤ i ≤ k.

Then V −1BV = (V −1BE−1)(EV ) > 0, and the pair (V −1BE−1, EV ) gives an
ESSE over U+ from V −1BV to EBE−1. There is also an SSE over U+ between
B = B0 and EBE−1 = Bk: for 1 ≤ i ≤ k, the pair (Bi−1E

−1
i , Ei) gives an ESSE

over U+ from Bi−1 to Bi.
�

Definition 5.9. Let U be a semiring in R. Matrices A,B are SSE over U+, through
positive n × n matrices, if for some ` ∈ N there are n × n positive matrices A =
A0, A1, . . . , A` = B such that Ai−1 is ESSE over U+ to Ai, 1 ≤ i ≤ `.

In the next theorem, part (1) was proved in [15]. Parts (2) and (3) were proved in
[16] under the condition that elements of GL(n,U) are dense in GL(n,R). Here we
remove this condition by working with the special linear group and scalar matrices.

Theorem 5.10 (Path Theorem). Let U be a unital nondiscrete subring of R, and
suppose (At)0≤t≤1 is a path of positive, real n×n matrices, all in the same conjugacy
class over R, from A = A0 to B = A1. Then the following hold

(1) A and B are SSE over R+, through positive n× n matrices.
(2) Suppose there is a path (Gt) in GL(n,R) such that G0 = I and G−1t AGt =

At for all t, and there is a W in GL(n,U) such that W−1AW = B and
WG−11 is in the connected component of the identity in CentR(A).
Then A and B are SSE over U+, through positive n× n matrices.

(3) Suppose A and B are conjugate matrices over U such that every connected
component of CentR(A) contains a matrix from GL(n,U).
Then A and B are SSE over U+, through positive n× n matrices.

(4) Suppose A and B are conjugate matrices over U and U is a field, or more
generally contains an ideal J 6= U such that every element of U outside J
is a unit in U .
Then A and B are SSE over U+, through positive n× n matrices.

Proof. (1) Proposition 5.3 gives us a path (Gt) in SL(n,R) with G0 = I and
(G−1t AGt) = (At). The entries of the positive matrices At are by compactness
of the path uniformly bounded below by some positive ε and above by some κ. Let
δ > 0 be chosen as in Lemma 5.7 for ε, κ. Now by uniform continuity pick k ∈ N
such that s ≤ t ≤ s + 1

k implies ||Gt(G−1s ) − I|| < δ. By Lemma 5.7, Ai/k is SSE
over R+ to A(i+1)/k, for 0 ≤ i < k. Therefore A = A0 and B = A1 are SSE over
R+.

(2) Let Xt, 0 ≤ t ≤ 1, be a path from the identity to WG−11 in the centralizer
of A in GL(n,R). Then (XtGt) is a path from the identity to W in GL(n,R),
and W−1AW = B. For all t, (XtGt)

−1A(XtGt) = G−1t AGt. So we may assume
G1 ∈ GL(n,U).

Next define the path Ht in SL(n,R) by Ht = ctGt, 0 ≤ t ≤ 1, where ct =
(det(Gt))

−1/n. We have H−1t AHt = G−1t AGt, 0 ≤ t ≤ 1. As in (1), from Lemma
5.7 we get an SSE through positive real matrices from A to B. We denote these
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matrices in order as A = B0, B1, . . . , B` = A1 = B. For 1 ≤ i ≤ `, we have from
Lemma 5.7 a conjugacy Bi = E−1i Bi−1Ei, with Ei close enough to I that E−1i Bi−1
and Bi−1Ei are positive, which guarantees that there is an ESSE from Bi−1 to Bi.
We also have E1E2 · · ·E` = H1.

Now for 1 ≤ i ≤ ` we will choose a basic elementary matrix E′i over U , setB′0 = A,
and recursively define B′i = E−1i Bi−1Ei, 1 ≤ i ≤ `. Define H ′1 = E′1E

′
2 · · ·E′`

and A′1 = B′`. Set V = (H ′1)−1G1 ∈ GL(n,U). Then V −1A′1V = B. Let d =

[det(G1)]1/n. Then H1 = (1/d)G1 and

V =
(

(H ′1)−1 − (H1)−1
)
G1 + (H1)−1G1

=
(

(H ′1)−1 − (H1)−1
)
G1 + dI .

Now choose ε > 0 for B as in the statement of Lemma 5.8. We choose the E′i
sufficiently close to the Ei to guarantee

• B′i is positive and ESSE over U+ to B′i−1, for 1 ≤ i ≤ ` , and
• ||V − dI|| < ε .

We have A′1 SSE over U+ through positive matrices to A. It remains now to show
A′1 is SSE over U+ through positive matrices to B. This now follows from Lemma
5.8.

(3) Again find a path Gt in GL(n,R) such that At = G−1t AGt. By assumption,
there is a Y in GL(n,U) such that Y −1AY = B. Therefore Y G−11 ∈ CentR(A). By
assumption there is a matrix Q in GL(n,U) such that Q and Y G−11 are in the same
connected component of CentR(A). Let W = Q−1Y ∈ GL(n,U). Then WG−11

is in the connected component of the identity in CentR(A), and W−1AW = B.
Therefore (3) follows from (2).

(4) This claim follows from (3) and Lemma 4.2. �

Remark 5.11. For a given n×nmatrix A, the set of all positive matrices conjugate to
A has only finitely many connected components. This is an observation of Sompong
Chuysurichay [6, Theorem 1.4.2], made in the language of invariant tetrahedra
(discussed in the appendix C). It holds because the set of matrices conjugate to a
given matrix can be defined by finitely many inequalities in finitely many variables,
and a semialgebraic set has only finitely many connected components [1, Theorem
2.4.4]. Chuysurichay [6, Introduction] pointed out the following corollary of this
fact and Theorem 5.10(1) (which was proved in [14]). We record this fact as the
following theorem.

Theorem 5.12 ([6, 14]). Suppose A is a positive n × n matrix. The collection of
positive n× n matrices conjugate over R to A contains only finitely many SSE-R+

classes.

Remark 5.13. Note, the set of matrices of a given size which are SSE-R+ to a
given matrix is not a priori semialgebraic when the lag is unbounded. Indeed, in
contrast to Corollary 5.12, Chuysurichay gave an example [6, Theorem 1.9.1] of a
connected component C in a conjugacy class of positive 2 × 2 real matrices such
that the lag of the SSE over R+, guaranteed to exist between any two matrices
in C by Theorem 5.10(1) above (which was proved in [14]), cannot be uniformly
bounded in C. (The unboundedness of the lag arises for a component of positive
conjugate matrices whenever there is a matrix on its boundary with more than one
irreducible component.)
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The fact that the components method produces the finiteness result (5.12) de-
spite the possibility of unbounded lag is an indication of the power of the method.

Remark 5.14. There are examples [2, Appendix E] of primes p in Z and primitive
matrices over U = Z[1/p] which are SE over U+ (and hence SSE over U , since U is a
principal ideal domain) but are not SSE over U+. (We do not know whether these
examples are SSE over Q+ or R+.) There are no positive matrix examples known,
for any nondiscrete unital subring U of R, of matrices which are SSE over U but
not SSE over U+. The examples [2, Appendix E], based on the work over Z in [18],
are matrices with zero trace, and the general method relies in a fundamental way
on the existence of certain matrix powers having zero trace.

Unfortunately, if p is a prime in Z, then the ring Z[1/p] does not satisfy the ideal
hypothesis of Theorem 5.10(4), and the Centralizer Condition 5.5 is not satisfied
by Z[1/p] (Example 4.3). Therefore Theorem 5.10 does not rule out the possibility
that for some p there are positive matrices SSE over Z[1/p] which are not SSE
over (Z[1/p])+, even in the case the matrices are connected by a path of positive
conjugate matrices.

The rest of this section is devoted to generalizing Theorem 5.12 to arbitrary dense
subrings of R. To prepare, we need more definitions. Let U be a dense subring of R.
Suppose A and B are matrices over U ; W ∈ GL(n,U); and W−1AW = B. Given a
path P = (At)0≤t≤1 of positive conjugate matrices from A to B, let G be a matrix

such that there is a path (Gt) in GL(n,R) such that G−1t AGt = At, 0 ≤ t ≤ 1,
with G0 = I and G1 = G. Let πU0 (CentR(A)) denote the subgroup of π0(CentR(A))
consisting of those connected components which contain a matrix with all entries
in U . Define π0(P,W ) to be the connected component of π0(CentR(A)) contain-
ing WG−1. This component is uniquely determined by P and W . Finally, let
π0,U (P,W ) be the coset of πU0 (CentR(A)) in π0(CentR(A)) which contains WG−1.
(We remark as an aside that the coset space π0(CentR(A))/πU0 (CentR(A)) is a
group, because the group π0(CentR(A)) is abelian, because all its elements have
order two.)

Lemma 5.15. Let U be a dense subring of R. Suppose A,A1, A2 are positive
matrices over U and for i = 1, 2 that

• Wi is a matrix in GL(n,U) such that (Wi)
−1AWi = Ai

• Pi is a path of positive conjugate matrices from A to Ai.

Suppose π0,U (P1,W1) = π0,U (P2,W2).
Then A1 and A2 are SSE over U+.

Proof. For each path Pi, let Gi be as in the preceding definitions, with WiG
−1
i in

the coset π0(Pi,W ). We get a path P of positive conjugate matrices from A1 to A2

by composing the reversal of P1 with P2. Let W = W−11 W2; then W−1A1W = A2.
For the path P, we have G = G−11 G2. We compute

WG−1 = W−11 W2G
−1
2 G1 =

(
W−11 (G1W

−1
1 )W1

)(
W−11 (W2G

−1
2 )W1

)
= W−11 CW1

where C = (W1G
−1
1 )−1(W2G

−1
2 ). There is a matrix V over U which lies in the

connected component of CentR(A) containing C, and therefore the connected com-
ponent of CentR(A1) containing WG−1 contains the matrix V ′ = W−11 CW1 from
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GL(n,U). Now ((V ′)−1W )G is in the connected component of the identity in
CentR(A1) and (V ′)−1W ∈ GL(n,U). It follows from the Path Theorem 5.10(2)
that A1 and A2 are SSE over U+. �

The number γ(A) below was defined in Definition (4.4).

Theorem 5.16. Let U be a dense subring of R. Suppose C is a path connected
set of positive, conjugate n × n matrices containing a matrix A over U . Then the
number of distinct SSE-U+ classes of matrices which contain a matrix in C which
is conjugate to A over U is finite and cannot exceed

|π0(CentR(A))|/|πU0 (CentR(A))|
which is not greater than 2γ(A)−1.

Consequently, the set of positive matrices conjugate over U to A intersects only
finitely many SSE-U+ classes.

Proof. The upper bound by the displayed ratio follows from the lemma and the
pigeonhole principle. The bound 2γ(A)−1 follows from Proposition 4.5 and the
observation that |πU0 (CentR(A))| ≥ 2 (since −I ∈ CentR(A)). The final claim
follows from the lemma and the fact that the set of positive matrices conjugate
over R to A contains only finitely many connected components. �

6. Finding positive paths: the case of one nonzero eigenvalue

Definition 6.1. A matrix A is eventually rank m if it is square and rank(Ak) = m
for all large k. That A has eventual rank 1 means that its characteristic polynomial
has the form χA(t) = tm(t− λ) with λ nonzero.

Lemma 6.2. Suppose A and B are positive n×n real matrices with spectral radius
λ. Let `A, rA be positive left, right eigenvectors of A. Suppose there is U ∈ GL(n,R)
with positive determinant such that U−1AU = B and the eigenvector `AU of B is
positive.

Then there is a path {Ut}0≤t≤1 in GL(n,R) with U0 = I and U1 = U such that

for 0 ≤ t ≤ 1, the vectors `AUt and U−1t rA are positive eigenvectors for eigenvalue
λ for the matrix At = U−1t AUt.

Proof. After passing to (1/λ)A and (1/λ)B, without loss of generality we can sup-
pose λ = 1. Let D be the diagonal matrix such that D(i, i) = rA(i). Then D−1AD
is stochastic (the right eigenvector has every entry 1). Let Dt = (1−t)I+tD. Then
{D−1t ADt}0≤t≤1 is a path of positive matrices from A to a positive stochastic ma-
trix. The same argument holds for B, so without loss of generality we may suppose
A and B are stochastic, with positive right eigenvector r = rA having every entry
1.

Because the subspace of row vectors W = {v ∈ Rn : vr = 0} is the annihilator of
r, the matrix U maps W to W . From the assumptions, if B is a basis of W , then the
matrix representing the restriction to W of U with respect to B must have positive
determinant. Because there is a path from the identity to this matrix in SL(n−1,R),
there is a path {Tt}0≤t≤1 of invertible linear transformations Tt : W → W such
that T0 = I and T1 = U |W .

Now we determine the required path of matrices, {Ut}0≤t≤1, by specifying the
corresponding linear transformations. For w ∈ W , set wUt = Tt(w). Also require
`AUt = (1 − t)`A + t`AU := `t. Then `t > 0 for all t. Because W contains
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no positive vector and W has codimension one, the matrices Ut are well defined
and invertible. The vectors `AUt and U−1t rA := rt are eigenvectors of At for the
eigenvalue 1. If w ∈W , then there is a w′ in W such that w′Ut = w, and therefore
wrt = w′UtU

−1
t rA = w′rA = 0. Since W has codimension 1, there must be a

constant ct such that rt = ctr. Because 0 < `Ar = `aUtU
−1
t r = `tcr = c`tr, we

conclude c > 0. Consequently, both `t and rt are positive, as required. Clearly,
U0 = I and U1 = U . �

For the next lemma, we note that if M is a nilpotent real matrix and c 6= 0, then
M is conjugate to cM . For a concrete example,1 0 0

0 c−1 0
0 0 c−2

0 1 0
0 0 1
0 0 0

1 0 0
0 c 0
0 0 c2

 = c

0 1 0
0 0 1
0 0 0

 .

Lemma 6.3. Suppose A and B are positive eventually rank one matrices with
nonzero eigenvalue λ, and there is a path (Ut)0≤t≤1 in GL(n,R) such that U0 = I,

U−11 AU1 = B and for each At = U−1t AUt, the left and right eigenvectors of At are
positive.

Then there is a path (Vt)0≤t≤1 in GL(n,R) such that V0 = I, V1 = U1 and each

matrix V −1t AVt is positive.

Proof. Without loss of generality, suppose λ = 1. Let `t and rt be the left and right
positive eigenvectors of At, normalized so that `trt = (1). Let Pt = rt`t. Let Qt
be the nilpotent matrix such that At = Pt + Qt. Then Pt > 0, PtQt = QtAt = 0,
U−1t P0Ut = Pt and U−1t Q0Ut = Qt.

Along the path, the entries of the Pt have a positive lower bound m and the
absolute values of entries of the Qt have a positive upper bound M . Choose a
positive ε < m/M . Then we have a path of positive conjugate matrices Pt + εQt
from P0+εQ0 to P1+εQ1. Taking s from ε to 1, we get a path of positive conjugate
matrices from P + εQ0 to P +Q0 = A, and likewise from P1 + εQ1 to P1 +Q1 = B.
Composing paths, we get a path of positive conjugate matrices from A and B.
Reparametrizing, we get the path (Vt)0≤t≤1 such that V0 = I and V1 = U1. �

The next result was proved in [14] for the case U = Q or R. The positive matrix
path construction below is a matrix version of the invariant tetrahedra argument
in [14]. We describe the approach from [14] of “positive invariant tetrahedra” in
Appendix C.

Theorem 6.4. Suppose U is a nondiscrete unital subring of R, and A and B are
nonnegative eventually rank one matrices which are SSE over U .

Then A and B are SSE over U+.

Proof. After passing to matrices SSE over U+, we may assume that A and B are
primitive (using the eventually rank one assumption), and then positive (by Propo-
sition B.3). By Theorem 3.1, we may assume also we have U ∈ GL(n,U) such
that AU = UB, detU > 0 and U sends a positive eigenvector of A to a positive
eigenvector of B. By Lemmas 6.2 and 6.3, there is a path (Ut)0≤t≤1 in GL(n,R)

such that U0 = I, U1 = U and each U−1t AUt is positive. By Theorem 5.10(2), it
follows that A and B are SSE over U+. �

Remark 6.5. The one eigenvalue result above looks better in contrast to the lack of
other general results. For every subring U of R, for every primitive matrix A over



28 MIKE BOYLE, K. H. KIM, AND F. W. ROUSH

U , it is unknown whether there exists an algorithm which given B primitive and
SSE over U to A decides whether B is SSE over U+ to A.

Theorem 6.4 is not a complete solution to the problem of classifying eventually
rank one positive matrices over U (for an arbitrary dense subring of R). It is
complete with regard to addressing positivity, but we do not understand in general
how SSE refines SE over U . Especially,

Problem 6.6. Suppose U is a nondiscrete unital subring of R, and A,B are even-
tually rank one matrices which are shift equivalent over the ring U . Must they be
strong shift equivalent over U?

However, we are able to handle some classes of rings, as follows.

Theorem 6.7. Suppose U is a nondiscrete unital subring of R, and A is a non-
negative eventually rank one matrix over U , with nonzero eigenvalue λ. Then the
following hold.

(1) If U is a Dedekind domain and A is shift equivalent over U to the matrix(
λ
)
, then A is SSE over U+ to

(
λ
)
.

(2) If U is a principal ideal domain (e.g., a field), then A is SSE over U+ to(
λ
)
.

Proof. (1) Over a Dedekind domain U , SE-U implies SSE-U [3, Prop. 2.4], so
Theorem 6.4 applies.

(2) Over the principal ideal domain U , A is SSE-U to a nonsingular matrix [7, 31].
This matrix can only be

(
λ
)
, so again Theorem 6.4 applies. �

Remark 6.8. Example 2.2 in [3] provides a 2×2 positive matrix A′ with eigenvalues

0 and 1 over the Dedekind domain U = Z[
√

15] which is not shift equivalent over
U to a nonsingular matrix.

Whenever a Dedekind domain U is not a principal ideal domain, there will be
matrices over U which are not SSE-U to a nonsingular matrix [3].

Remark 6.9. The proofs above easily adapt to prove the result stated next, which
is one version of the “positive models” result in [16].

Theorem 6.10. Suppose A and B are n× n positive real matrices, and there are
matrices P,Q0, Q1, U such that the following hold.

• P is a positive matrix
• A and B are internal direct sums, A = P +Q0 and B = P +Q1, with the

matrices Q0, Q1 nilpotent
• There is U ∈ SL(n,R) such that UP = PU and UQ0 = Q1U .

Then there is a path of positive matrices At = U−1t AUt from A = A0 to B = A1,
such that U0 = I and U1 = U .

Theorem 6.10 looks like a powerful tool, but so far it has not led to a general
result.

Problem 6.11. Suppose A is a positive real matrix. Must there exist a positive
matrix P , with rank(P ) = rank(P 2), and a nilpotent matrix Q, such that PQ =
QP = 0 and A is strong shift equivalent over R+ to P +Q?
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7. The Connection Theorem

Below, ||C||max denotes the maximum absolute value of an entry of C.

Definition 7.1. For an n× n real matrix A, and ε > 0, Nε(A) denotes the set of
n× n matrices B such that ||B −A||max < ε.

Definition 7.2. For an n× n real matrix A and ε > 0, N SE
ε (A) denotes the set of

n×n matrices B which are shift equivalent over R to A and satisfy ||B−A||max < ε.

Theorem 7.3 (Connection Theorem). Suppose A is an n×n positive matrix. Then
there is a δ > 0 such that for any B,C in N SE

δ (A) and m ≥ n2/2, there are row
splittings of B,C to positive conjugate matrices B′, C ′ such that there exists a path
of positive conjugate matrices from B′ to C ′, and therefore the matrices B,C are
SSE-R+, through positive matrices not larger than (n2/2)× (n2/2).

Moreover, if B and C have their entries in a nondiscrete subring U of R, then
the splittings to B′ and C ′ can be done through matrices over U+. If in addition U
is a field, then the matrices B,C are SSE-U+, through positive matrices not larger
than (n2/2)× (n2/2).

In the Connection Theorem, A = B is allowed. Before proving the theorem, we
record some immediate consequences.

Corollary 7.4. If A is a positive n × n matrix and dim(ker(A)) ≥ 1, then A is
SSE over R+ to a positive n× n matrix B such that dim(ker(B)) = 1.

Proof. Given dim(ker(A)) > 1, there are positive matrices shift equivalent to A
which are arbitrarily close to A such that dim(ker(A)) = 1, as one can see by
replacing each superdiagonal zero in the Jordan form of the nilpotent part of A
with ε. Therefore Theorem 7.5 applies to prove the corollary. �

The Path Theorem 5.10 produced SSE’s over R+ from paths of positive matrices
which are conjugate. The following consequence of the Connection Theorem shows
we only need those matrices to be shift equivalent.

Theorem 7.5. Suppose (At), 0 ≤ t ≤ 1, is a path of positive shift equivalent n× n
matrices. Then A0 and A1 are SSE over R+.

Proof of Theorem 7.5. It follows from compactness that for 0 ≤ t ≤ 1, the Con-
nection Theorem holds for At in place of A, for a uniform ε (independent of t).
Consequently A0 and A1 are SSE over R+. �

The rest of this section is devoted to the proof of the Connection Theorem, which
relies also on Theorem D.2. The consequences of the Connection Theorem in later
sections can be read independent of the proof of Theorem D.2.

We prepare for the proof with two lemmas. The idea behind Lemma 7.6, apart
from the generality of U , can be found in [17] and [14, Lemma 1]. Jk denotes the
standard k× k Jordan block matrix (zero except for entries 1 in positions (i, i+ 1),
1 ≤ i < k). J0(A) denotes the nilpotent part of the Jordan form of a matrix A.

Lemma 7.6. Suppose U is a nondiscrete subring of R, n ∈ N, A and B are positive
n × n matrices over U , ||A − B|| < ε, 0 < α < 1 and the ith rows of A and B are
denoted wA and wB. Let A′ be the (n+ 1)× (n+ 1) matrix obtained by a splitting
of its ith row corresponding to w = αw+ (1−α)w. Suppose B is an n× n positive
matrix. Then there is an (n+1)×(n+1) positive matrix B′, obtained by a splitting
of its ith row, such that the following hold.
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(1) ||B′ −A′|| < ε
(2) J0(B′) can be chosen to be either (i) J0(B) ⊕ [0] or, (ii) for any k such

that J0(A) has a k× k Jordan block, J0(B′) can be obtained from J0(B) by
replacing a k × k Jordan block with a (k + 1)× (k + 1) Jordan block.

(3) If B has entries in U , then the splitting to B′ can be done over U .

Proof. Without loss of generality, we may assume α ∈ U . For (i), use the splitting
of row i by αw + (1− α)w. For (ii), we have by assumption that there is a vector
v such that vBk = 0, vBk−1 6= 0 and v is not in the image of A. Let F denote the
field of fractions of U . The kernel of Bk contains a dense subset of vectors from
Fn. Pick v′ in ker(Bk) ∩ Un with ||u − v′|| small enough that v′Bk−1 6= 0 and v′

is not in the image of B. Pick β 6= 0 from U such that βv′ ∈ Un. Pick γ > 0 in
U arbitrarily small, and small enough that for s := αwB + γβv we have s > 0 and
wB − s > 0. Now form B′ by splitting row i of B according to wB = s+ (wB − s).
Then B′ is conjugate to (B 0

s 0 ) and to
(

B 0
γβv′ 0

)
. This last matrix has the required

Jordan form. For small γ, we have ||B′ −A′|| < ε. �

For the next lemma we establish some notation. For a square matrix M , we let
GM , HM denote the unique matrices G,H such that M = G+H, GH = HG = 0, H
is nilpotent and rank(G) = rank(G2). We also use UM , NM , FM to denote matrices
such that U−1M MUM = FM ⊕NM , where FM is nonsingular and NM is nilpotent,

and for concreteness NM is in Jordan form. In this case, U−1M GMUM = FM ⊕ 0

and U−1M HMUM = 0⊕NM , where 0 denotes a zero matrix of appropriate size. The
norm used below is the max norm.

Finally, we define a notion critical for our proof of the Connection Theorem.

Definition 7.7. Suppose N is an n×n nilpotent matrix and C is a conjugacy class
of n × n nilpotent matrices. We say C is locally connected at N if for every ε > 0
there exists δ > 0 such that any two matrices in C ∩Nδ(N) are connected by a path
in C ∩ Nε(N).

Lemma 7.8. Suppose ε > 0 and A,B are positive n × n matrices such that GA
and GB are conjugate, and the conjugacy class C of NB is locally connected at NA.

Then there is a δ > 0 such that any two matrices in Nδ(A) which are conjugate
to B are connected by a path of positive conjugate matrices in Nε(A).

Proof. Fix a matrices U,FA, NA such that U−1AU = FA ⊕ NA. The idea of the
proof is the following. For δ small enough, given two matrices conjugate to B inside
Nδ(A), we show there are paths from them in Nε(A) to matrices C1, C2 which are

conjugated by U to matrices C ′1 =
(
FA 0
0 N1

)
and C ′2 =

(
FA 0
0 N2

)
such that there is

a path of conjugate matrices from N1 to N2 which induces a path from C ′1 to C ′2
which U−1 conjugates to the desired path from C1 to C2. We spell out quantifiers
for this next, for a matrix C conjugate to B.

Take ε to be smaller than ||A||. Pick ε1 > 0 such that ||N ′ −NA|| < ε1 implies
||U(FA ⊕N ′)U−1 −A|| < ε . Pick ε2 > 0 such that if conjugate nilpotent matrices
N1, N2 are in Nε2(NA), then there is a path of conjugate matrices in Nε2(NA) from
N1 to N2. Pick ε3 > 0 such that ||X −A|| < ε3 implies ||U−1(X −A)U || < ε2 .

Finally, pick δ > 0 such that if C is conjugate to B and ||A− C|| < δ, then the
conjugate matrices An and Cn are sufficiently close that there is a V in SL(n,R)
such that V −1AnV = Cn (which means V −1(GA)nV = (GC)n) and ||V − I|| is
sufficiently small that the following hold:
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(1) V −1GAV = GC .
(2) ||V −1CV −A|| < ε3 .
(3) There is a path (Vt) in SL(n,R) from I = V0 to V = V1 remaining suffi-

ciently close to I that V −1t CVt ∈ Nε(A), 0 ≤ t ≤ 1 .

Because V maps ker(Cn) onto ker(An), the matrix U−1(V −1BV )U has the form(
FA 0
0 N ′

)
, with (

0 0
0 N ′

)
−
(

0 0
0 NA

)
=

(
FA 0
0 N ′

)
−
(
FA 0
0 N ′

)
= U−1(V −1BV −A)U .

Since ||V −1BV −A|| < ε3, we have

||N ′ −NA|| =

∣∣∣∣∣
∣∣∣∣∣
(

0 0
0 N ′

)
−
(

0 0
0 NA

) ∣∣∣∣∣
∣∣∣∣∣ < ε2

which shows our δ is small enough to establish the conclusion of the lemma. �

Proof of the Connection Theorem. If B and A are conjugate, then the theorem fol-
lows from the Path Theorem. So we assume B and A are not conjugate, which
implies n ≥ 3.

The strategy of the proof is to take a row splitting of A to a suitable positive
matrix A′ chosen independent of B and C; pick a suitable class C of nilpotent
matrices which is locally connected at NA′ ; and then for δ > 0 taken from Lemma
7.8, perform row splittings of B and C to matrices B′ and C ′ in C ∩ Nδ(A′).

To begin the proof, we choose A′ and a sequence of matrices Ai, n ≤ i ≤ m, such
that A = An, A′ = Am and for n ≤ i < m, the matrix Ai+1 is obtained by splitting
a row of Ai into two proportional rows. For example, if m = sn+ p with s ≥ 1 and
1 ≤ p < n, then we could split each of the first p rows into s equal rows and split
each of the remaining rows into s − 1 equal rows. Then rank(A′) = rank(A), and
A′ is conjugate to A⊕ 0m−n.

Using notations from Definition D.1, we define h = max{h(A), h(B), h(C)} and
β = max{β(A), β(B), β(C)}. (If B is in N SE

ε (A) and ε is sufficiently small, then
h(B) ≥ h(A) must hold.) Let r be the rank of FA. For any C shift equivalent to A
over R, we have FC conjugate to FA and rank(FC) = r. So, if C is m×m and shift
equivalent to A, then C is conjugate to FA ⊕NC , and the nilpotent matrix NC is
(m− r)× (m− r). We will define C to be the conjugacy class of (m− r)× (m− r)
matrices which contains the matrix (Jh)β ⊕ 0q, where q is m− r− βh. We need to
check this makes sense (q ≥ 0) and also that q > 0. Because n ≥ 3 and

(β)(h) ≤
(n− r

2

)
(n− r − 1) =

n2

2
− r

2
(3n− 1) ,

we have

(β)(h) + r ≤ n2

2
− r

2
(3n− 3)

≤ n2

2
− 1

2
(3(3)− 1) =

n2

2
− 3r <

n2

2
≤ m ,

and therefore q > 0. Clearly

(1) C has a zero Jordan block (because q > 0).
(2) h(C) = h ≥ h(A) = h(A′) .
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(3) βtop(C) = β ≥ β(A) = β(A′) .

It follows from Theorem D.2 that C is locally connected at NA′ . Therefore, we can
specify any ε > 0 and for that ε pick δ > 0 in the statement of Lemma 7.8. This
will be the δ in the statement of the Connection Theorem.

Now we describe the splitting of B to B′ (the argument to split C to C ′ is the
same), such that NB′ ∈ C. Starting with Bn = B and ||B −A|| < δ, for n ≤ i < m
we inductively appeal to Lemma 7.6 to split Bi to Bi+1, with ||Ai+1 −Bi+1|| < δ.
We use condition (2) of Lemma 7.6 at each stage as follows, applying the first listed
criterion for which Bi satisfies the required condition.

(1) If NBi has no zero Jordan block, then NBi+1 = NBi ⊕ 01.
(2) If NBi has fewer than β Jordan blocks which are 2×2 or larger, then NBi+1

is NBi with a zero block replaced by 2× 2 Jordan block.
(3) If NBi has a k × k Jordan block of with 2 ≤ k < h, then for a maximum

such k, NBi+1
is NBi with a Jordan k-block replaced by a (k + 1)-block.

(4) If NBi has β Jordan blocks which are h× h, then NBi+1 = NBi ⊕ 01.

Clearly B′ has the required form, and there is a path of positive conjugate matrices
from B′ to C ′. By the Path Theorem (5.10), B′ and C ′ are SSE over R+, through
positive m×m matrices.

The “Moreover” condition of keeping splittings over U can be achieved by con-
dition (3) of Lemma 7.6. If U is a field, then the conjugacy of B′ and C ′ over R
implies their conjugacy over U , and (again using that U is a field) by the Path
Theorem we have an SSE-U+ through positive matrices from B′ to C ′, and hence
also from B to C. This finishes the proof. �

8. From SSE over R+ to SSE over U+

Theorem 8.1. Suppose A,B are positive matrices over R which are SSE-R+.
Then A,B are SSE over R+ through positive matrices: there are positive matrices
A = A0, A1, . . . , A` = B, with Ai elementary SSE over R+ to Ai+1, 0 ≤ i < `.

Proof. Appealing to Theorem 3.8, choose a primitive matrix C over R+ and a
nonsingular diagonal matrix D over R+ such that C is reached from A by finitely
many row splittings through primitive matrices and D−1CD is reached from B
by finitely many column splittings through primitive matrices. Then choose a

construction, by the procedure described in Appendix B, of a positive matrix C̃
SSE over R+ to C. Appealing to the Connection Theorem, choose δ > 0 such

that matrices shift equivalent to C̃ and δ close to C̃ are SSE to each other through
positive matrices. Appealing to Lemma B.4, pick ν > 0 such that for any positive
matrix M with ||M − C|| < ν there is a strong shift equivalence over R+ through

positive matrices from M to a positive matrix M̃ such that ||M̃ − C̃|| < δ.
Now, perform row splittings from A through positive matrices to a positive

matrix A∗ such that ||A∗ − C|| < ν. This is done simply by approximating the
string of splittings from A to C over R+ by a string of splittings from A to C
through positive matrices. By composition, we have an SSE over R+ from A to a

matrix Ã within δ of C̃.
The argument to obtain an SSE over R+ through positive matrices from B to a

matrix B̃ within δ of C̃ is similar. We obtain a positive matrix B∗ near D−1CD
by approximating the given column splittings from B to D−1CD. There is an
elementary SSE over R+ from B∗ to the positive matrix D−1B∗D := B∗∗. We take
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B∗ close enough to D−1CD to guarantee ||B∗∗ − C|| < ν. Then we apply Lemma

B.4 again to obtain the SSE through positive matrices from B∗∗ to the desired B̃

near C̃. By the Connection Theorem, Ã and B̃ are SSE over R+ through positive
matrices. By composing the assembled SSEs, the theorem is proved. �

Theorem 8.2 below was proved in [17] for U = Q under the additional assumption
that A and B are SSE over R+ through positive matrices.

Theorem 8.2. Let U be a subfield of R. Suppose A,B are positive matrices over U
which are SSE over R+. Then A and B are SSE over U+, through positive matrices.

Proof. We examine the proof of Theorem 8.1 and check that the SSEs constructed
in the various steps can be taken through positive matrices over U .

The splittings to A∗ and B∗ can be done over U .
ApproximateD by a diagonal matrixD′ over U+. In place ofB∗∗, use (D′)−1B∗D′ :=

B′. Because U is a field, the positive matrix B′ has its entries in U and is ESSE
over U+ to B∗ (by the matrices (D′)−1 and B∗D′).

The matrices Ã and B̃ are constructed from A∗ and B′ (matrices over U) by ap-
peal to Proposition B.3, and therefore they can be taken over U . Lemma B.4 allows
the approximating SSE through positive matrices to be taken over U . Because U is
a field, the Connection Theorem then gives an SSE through positive matrices over

U from Ã to B̃.
This completes the proof. �

Theorem 8.3. Suppose A is a positive n × n matrix. The collection of positive
n× n matrices conjugate over R to A contains only finitely many SSE-R+ classes.

Proof. This follows immediately from Theorem 5.12 and Theorem 8.2. �

Problem 8.4. Let U be a dense subring of R Suppose A and B are positive matrices
which are strong shift equivalent over U and also over R+. Must they be strong shift
equivalent over U+?

Appendix A. Making SSE nondegenerate

The purpose of the appendix is to prove Proposition 2.9, which we now restate.

Proposition 2.9 Suppose U is a ring which is torsion free as an additive group.
Suppose nondegenerate matrices A and B are SSE over U . Then they are SSE
through a chain of ESSEs Ai−1 = RiSi, Ai+1 = SiRi such that all the matrices
Ai, Ri, Si are nondegenerate.

Recall, a matrix is nondegenerate if it has no zero row and no zero column.
Below, by a nonzero matrix we mean a matrix which is not the zero matrix.

We will prove Proposition 2.9 after proving three lemmas.

Lemma A.1. Suppose U is a ring and there are matrices A,B,C,R, S,R′, S′ over
U satisfying the following conditions A = RS , B = SR ; B = R′S′ , C =
S′R′; A 6= 0 , B = 0 , C 6= 0 . Then there are nonzero matrices A =
A0, A1, . . . , A6 = C such that Ai−1 is ESSE over U to Ai, 1 ≤ i ≤ 6.
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Proof. In block form, define

A1 =

(
RS 0
S 0

)
A4 =

(
0 0
S′ 0

)
=

(
R′S′ 0
S′ 0

)
A2 =

(
0 0
S SR

)
=

(
0 0
S 0

)
A5 =

(
0 0
S′ S′R′

)

A3 =

0 0 0
S 0 0
0 S′ 0

 A6 =
(
S′R′

)
= B .

The matrices S and S′ cannot be zero (because A and C are not zero), so the Ai
are not zero. An ESSE from A→ A1 is given by

A =
(
I 0

)(RS
S

)
, A1 =

(
RS
S

) (
I 0

)
.

There are ESSEs A2 → A3, A3 → A4, A5 → A6 of this type or a transpose type.
An ESSE A1 → A2 is given by

A1 =

(
RS 0
S 0

)
=

(
RS RSR
S SR

)(
I −R
0 I

)
A2 =

(
0 0
S SR

)
=

(
I −R
0 I

)(
RS RSR
S SR

)
The remaining ESSE A4 → A5 is of the same type. �

Lemma A.2. Suppose U is a unital semiring and A is ESSE over U to 0m, the
m×m zero matrix. Then A is ESSE over U to 0m+k, for all k in N.

Proof. We are given A = RS, 0M = SR. Then A = (R 0 ) ( S0 ) and 0m+k =
( S0 ) (R 0 ) where 0 denotes a zero block of the necessary size. �

Lemma A.3. Let U be a unital ring which is torsion free as an additive group.
Suppose A is an n × n matrix over U which is not the zero matrix. Then there is
V in SL(n,Z) such that V −1AV is nondegenerate.

Proof. We can assume n > 1. For example, suppose row 1 of A is nonzero and
row n of A is zero. Given M ∈ N, let E be the basic elementary matrix such that
E(n, 1) = M and set C = EAE−1. Then

C(i, 1) = A(i, 1)−MA(i, n) if i < n

C(n, 1) = MA(1, 1)−M2A(1, n)

C(n, j) = MA(1, j) if j > 1

C(i, j) = A(i, j) if i < n and j > 1 .

Appealing to the torsion free assumption, choose M such that

1 ≤ i < n and A(i, 1) 6= 0 =⇒ A(i, 1) 6= MA(i, n) .

Then A(i, j) 6= 0 implies C(i, j) 6= 0. In addition, row n of C is not zero, as follows.
If there exists j > 1 with A(1, j) 6= 0, then C(n, j) 6= 0; otherwise, A(1, 1) is the
only nonzero entry of row 1 of A, and C(n, 1) = MA(1, 1) 6= 0.

Iterating this move as needed, with other indices (i, j) in place of (1, n), and
interchanging the role of column and row as needed, we produce V ∈ SL(n,Z) such
that V −1AV is nondegenerate.
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�

Remark A.4. We are not concerned in this paper with finding the sharpest version of
Proposition 2.9. However, we note that Lemma A.3 would be false if the “torsion
free” assumption were simply dropped. Over the field Z/2, let A = ( 1 0

0 0 ) and
B = ( 1 1

1 1 ). Then A 6= 0 but A is not conjugate over Z/2 to a nondegenerate
matrix, because B is the only rank one nondegenerate 2× 2 matrix over Z/2, and
A2 6= 0 = B2.

We are now ready to prove Proposition 2.9.

Proof of Proposition 2.9. We are given some string of ESSEs over U from A = A0

to B = A`,

A = A0 → A1 → A2 → · · · → A`−1 → A` = B

with matrices Ri, Si over U such that Ai−1 = RiSi, Ai = SiRi, for 1 ≤ i ≤ `.
Suppose for some i and some k > 2 that Ai and Ai+k are not zero, but Aj is

a zero matrix for i < j < i + k. By Lemma A.2, there is a zero matrix Z ESSE
to Ai and to Ai+k. We replace the ESSEs Ai → Ai+1 → · · · → Ai+k with ESSEs
Ai → Z → Ai+k. After iterating this move as necessary, we may assume that
Ai = 0 implies Ai−1 6= 0 and Ai+1 6= 0.

Then, by Lemma A.1, if Ai = 0, we may replace the ESSEs Ai−1 → Ai → Ai+1

with a string of ESSEs from Ai−1 to Ai+1 through nonzero matrices. After iterating
as needed, we may assume every Ai is not zero.

If 0 < i < ` and U−1AiU = A′i, then we can replace

(A.1) Ai−1
(Ri,Si) // Ai

(Ri+1,Si+1) // Ai+1

with

(A.2) Ai−1
(RiU,U

−1Si) // A′i
(U−1Ri+1,Si+1U

−1) // Ai+1 .

Thus by repeated application of this move, with U−1AiU = A′i nondegenerate by
Lemma A.3, we can pass to an SSE through nondegenerate matrices as required. �

Appendix B. Boolean matrices and positivity

Let U be a nondiscrete unital subring of R.
We will include in this section a proof of the result of [12] that every primitive

matrix over U is SSE over U+ to a positive matrix. As in [12],this is done by proving
the result for Boolean matrices and then carrying it over. We can then prove the
approximation result Lemma B.4, which we need in Section 8.

Boolean matrices are matrices with entries in the Boolean semiring B = {0, 1},
in which 1 + 1 = 1. The usual row and column splitting and amalgamations can be
used to produce SSEs over B. In particular, if a row i of A is less than or equal to
row j of A, then adding column j of A to column i produces a matrix B SSE over
B to A; for the corresponding elementary matrix E, we have A = EA and B = AE.
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An example, assuming row 1 of A is less than or equal to row 2, is

A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 = EA =

1 0 0
1 1 0
0 0 1

a1 a2 a3
b1 b2 b3
c1 c2 c3


B =

a1 + a2 a2 a3
b1 + b2 b2 b3
c1 + c2 c2 c3

 = AE =

a1 a2 a3
b1 b2 b3
c1 c2 c3

1 0 0
1 1 0
0 0 1

 .

If A is the Boolean image of a matrix A′ over U+, then there are E′, B′ over U+
with Boolean images E,B such that A′ = E′A′ and B′ = A′E′. Here, E′ is an
elementary matrix whose off diagonal entry can be chosen arbitrarily close to zero,
and B′ is conjugate over U to A′. In the example (using the letter entries in A
above to denote entries of A′, for simplicity), we have

B′ = (E′)−1A′E′ =

 1 0 0
−ε 1 0
0 0 1

a1 a2 a3
b1 b2 b3
c1 c2 c3

1 0 0
ε 1 0
0 0 1


=

 a1 a2 a3
b1 − εa1 b2 − εa2 b3 − εa3
c1 c2 c3

1 0 0
ε 1 0
0 0 1


=

 a1 + εa2 a2 a3
b1 − εa1 + εb2 − ε2a2 b2 − εa2 b3 − εa3

c1 + εc2 c2 c3

 .

For any sufficiently small and positive ε from U , we have (E′)−1A′ ≥ 0, and therefore
an ESSE over U+ between A′ and (E′)−1A′E′.

The next result is proved in [12] and we take that proof.

Proposition B.1. Suppose A is a primitive Boolean matrix with positive trace.
Then A is SSE over B to [1].

Proof. A is the adjacency matrix of a directed graph. Take a closed walk through
the graph which passes through every vertex at least once. Suppose the walk passes
through vertex i ni times. Define a matrix V which has, for each i, ni copies of
row i of A. (Over B, a row copying is an example of a row splitting.) Let U be the
subdivision matrix such that UV = A, and set V A = B, SSE over B to A. Then
there is a closed walk through the graph of B which hits every vertex exactly once.
Without loss of generality, then, suppose B is m×m and B(1, 1) = 1 and P ≤ B,
where P is the matrix with positive entries at (1, 1), (1, 2), (2, 3), . . . , (m, 1).

Next, define an ESSE from B to a 2m× 2m matrix C, by

C =

(
P B
P B

)
=

(
Im
Im

)(
P B

)
B =

(
P B

)(Im
Im

)
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An example with C 10× 10 is

C =

(
P B
P B

)
=



1 1 0 0 0 1 1 • • •
0 0 1 0 0 • • 1 • •
0 0 0 1 0 • • • 1 •
0 0 0 0 1 • • • • 1
1 0 0 0 0 1 • • • •

1 1 0 0 0 1 1 • • •
0 0 1 0 0 • • 1 • •
0 0 0 1 0 • • • 1 •
0 0 0 0 1 • • • • 1
1 0 0 0 0 1 • • • •


in which a bullet denotes an entry which could be 0 or 1, depending on A.

Note, column 1 of C is greater than or equal to column 2. So, we may add row
1 of C to row 2 (to produce an SSE matrix). Now in the order i = 2, 3, ...,m − 1,
add row i to row i+ 1. At the point row i is added, column i will be greater than
or equal to column i + 1, so the addition will give an ESSE. After these moves,
row m has every entry 1. In order, for i = m,m − 1, . . . , 2, 1, add column i to
every other column. At the point column i is added, row i will be all 1’s, so SSE
is respected. Because every row has an entry 1 in one of the columns 1, 2, 3, . . . ,m,
at the conclusion of this C will be transformed to a matrix with every entry 1.
Such a matrix equals vvtr, where v is a column vector with every entry 1, and then
vtrv = [1]. �

The next result extends a result in [15], with essentially the same proof. Let ω(n)
denote the maximum size of a minimal length closed walk which hits all vertices in
a strongly connected directed graph with exactly n vertices. Clearly, ω(n) ≤ n2 by
composition of shortest paths i→ i+ 1 to get 1→ 2→ · · · → n→ 1. On the other
hand, there is an example which shows that up to a modest multiplicative factor,
in general one can’t do better. We thank Richard Brualdi for this example.

Example B.2. For n = 2k ≥ 4, consider the directed graph on vertices {1, 2, . . . , 2k}
for which the set of nonzero entries of the adjacency matrix is the union of the fol-
lowing sets:

{(1, j) : 1 ≤ j ≤ k} , {(i, k + 1) : 1 ≤ j ≤ k} ,
{(i, i+ 1) : k ≤ i < 2k} , {(2k, 1)} .

For this directed graph, ω(2k) ≥ (k − 1)(k + 2) and therefore ω(n) ≥ 1
4n

2.

Proposition B.3. Suppose U is a unital nondiscrete subring of R and A is an
n × n primitive matrix over U+ with positive trace. Then A is SSE over U+ to a

positive matrix Ã which is not larger than 2n2 × 2n2.

Proof. The matrix operations used in the proof of Proposition B.1 give elemen-
tary SSEs over B, which can be mimicked over U+ by matrices with the same

zero/nonzero pattern to give the SSE over U+ to a positive matrix Ã. The matrix

Ã is not larger than 2ω(n)× 2ω(n), and 2ω(n) ≤ 2n2. �

Lemma B.4. Suppose U is a unital nondiscrete subring of R, A is an n × n

primitive real matrix positive trace and Ã is a positive matrix SSE over R to A and
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constructed from A using the algorithm of the proof of Proposition B.3. Suppose
δ > 0. Then there is ν > 0 such that the following holds. If A′ is a positive matrix
over U and ||A′ −A|| < ν, then A′ is SSE over U+, through positive matrices over

U , to a matrix Ã′ such that ||Ã′ − Ã|| < δ .

Proof. The construction of Ã in proposition B.3 proceeds by mimicking over R+

the Boolean construction in the proof of Proposition B.1. There are three steps in

the construction of Ã.

(1) Mimicking the row splittings of the Boolean image of A to a Boolean matrix
B, there are row splittings over R+ of A to some matrix B∗.

(2) Mimicking the splitting of the m×m Boolean B to the 2m× 2m Boolean
C, there is a real 2m× 2m matrix C∗ split from B∗.

(3) Mimicking the Boolean SSE from C to a matrix with no zero entry, there
is a string of elementary matrices Et which produces an SSE from C∗ to

Ã. Let ` be the lag of this SSE, and use a notation C∗ = M0, Ã = M`,
Mt = (Et)

−1Mt−1Et. For 1 ≤ t ≤ `, there is an εt > 0 which without loss
of generality we assume is in U , such that
• if 1 ≤ t ≤ m− 1, then (Et)

−1 ≥ 0 and Mt−1Et is obtained from Mt−1
by subtracting εt times column t+ 1 from column t.

• if m ≤ t ≤ `, then Et ≥ 0 and there are i, j such that (Et)
−1Mt−1 is

obtained from Mt−1, in which row j has no zero entry, by subtracting
εt times row i from row j.

First consider step 3. Suppose M ′0 is a positive 2m × 2m matrix. We recursively
define M ′t = (Et)

−1M ′t−1Et, for t = 1, 2, . . . , `. Then define δ′ to be the minimum
of δ and the smallest positive entry in a matrix of the form Mt, Et, (Et)

−1Mt−1 or
Mt−1Et, 1 ≤ t ≤ `. Suppose the following hold:

(i) M ′0 is close enough to M0 that for 1 ≤ t ≤ `, if G is a matrix in one of
the four forms above, and G′ is defined by replacing Mt with M ′t wherever
it appears in the definition of G, then ||G′ −G||max < δ′.
(ii) For 1 ≤ t < m and 1 ≤ i ≤ 2m, if C(i, t) = C(i, t + 1) = 0, then
M ′0(i, t+ 1) < (1/εt)M

′
0(i, t).

We claim that the matrices M ′t are then positive, and for 1 ≤ t ≤ `, there is an
ESSE over U+ from M ′t−1 to M ′t . For 1 ≤ t < m − 1, the conditions (i) and (ii)
imply that M ′t−1Et ≥ 0 and M ′t > 0, and the matrices (Et)

−1 and M ′t−1Et give the
required ESSE over U+. For t ≥ m, condition (i) implies the matrices (Et)

−1M ′t−1
will be nonnegative, and again we get the ESSE over U+. It also follows from (i)

that ||M ′` − Ã||max < δ.
To finish, we first note that by taking ν sufficiently small we can approximate

the splittings from A to B∗ in the first step arbitrarily closely by splittings from A′

to a matrix B′∗ through positive matrices over U ; and for the second step, given a
positive matrix over U close toB, we can splitB′∗ to a positive matrixM ′0 =

(
P ′ B′

P ′ B′

)
over U close to C∗ and also satisfying the inequalities listed in condition (ii). �

Appendix C. Positive invariant tetrahedra

Suppose A and B are positive n× n matrices over R, and are conjugate over R.
In this section we describe the approach introduced in [14] for finding a positive
path At of conjugate matrices from A to B. Without loss of generality, we suppose
that A and B have spectral radius 1.
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First we give some terminology from [14]. A positive tetrahedron is an n-tuple τ
of vectors in an n−1 dimensional real vector space such that the origin is contained
in the interior of its convex hull C(τ). With respect to a given linear endomorphism
T , an invariant positive tetrahedron is a positive tetrahedron τ such that C(τ) is
mapped into its interior by T .

Now, suppose that (At) = (G−1t AGt) is a path of positive matrices from A = A0

to B = A1. We can deform such a path to a path of positive stochastic matrices,
so we assume now that the At are positive and stochastic (so, letting r denote the
column vector with every entry 1, we have Atr = r). Let ei denote the row vector
which is the ith canonical basis vector. Let `t be the stochastic left eigenvector of
At and set vti = ei−`t, the projection of ei along Rr to the At invariant subspace W
of vectors whose entries sum to zero. The tuple (vt1, . . . , v

t
n) has convex hull which

contains the origin in its interior. Set wti = viG
−1
t . Then τt = (wt1, . . . , w

t
n) is a

positive invariant tetrahedron with respect to the linear transformation T : W →W
defined by w 7→ wA.

The path (At) gives rise to the path τt. Given t, the matrix At is recovered from
the action of A on τt, as follows. For each i, the vector wtiA is a unique convex
combination of the wtj (which are the extreme points of C(τt)), and the coefficients
for this convex combination are provided by row i of the matrix At, as follows:

wtiA = (vtiG
−1
t )(GtAtG

−1
t ) = vtiAtG

−1
t =

∑
j

Atijv
t
jG
−1
t

=
∑
j

Atijw
t
j .

Conversely, starting from a path of positive invariant tetrahedra from τ0 to τ1,
we have a path (At) of positive stochastic matrices, with the At defined as above.
Given t, there is a unique matrix Gt such that v0iGt = vti for 1 ≤ i ≤ n and Gtr = r,
and for this matrix we have At = G−1t AGt.

Now, to find a path of positive invariant tetrahedra, one passes (for example, see
Lemmas 6.2, 6.3) to considering a path of matrices At = G−1t AGt with Atr = r for
every t. As before, define the vectors vti and wti to get a path of positive tetrahedra
τt. Now, if At is not positive, then τt will not be an invariant positive tetrahedron.
The problem of deforming the path (At) to a path of conjugate positive matrices is
replaced with the problem of deforming the path (τt) to a path of invariant positive
tetrahedra. So, one is led to study the set of connected components of invariant
positive tetrahedra for a positive matrix.

There is more information about these components in the thesis [6] of Chuy-
surichay.

Appendix D. A local connectedness condition for nilpotent matrices

Recall, ||C||max denotes the maximum absolute value of an entry of C. This is
the norm we use through this appendix. For convenient reference, we repeat two
definitions.

Definition 7.1. For an n × n real matrix A, and ε > 0, Nε(A) denotes the
set of n× n matrices B such that ||B −A||max < ε.

Definition 7.7. Suppose N is an n × n nilpotent matrix and C is a conjugacy
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class of n × n nilpotent matrices. We say C is locally connected at N if for every
ε > 0 there exists δ > 0 such that any two matrices in C ∩Nδ(N) are connected by
a path in C ∩ Nε(N).

We introduce some notation. It is the t × t identity matrix, 0t is the t × t zero
matrix, and ei denotes a zero-one row vector whose only nonzero entry is in coor-
dinate i. The direct sum of square matrices A,B is the matrix (A 0

0 B ). Jn is the
n × n Jordan block matrix: the n × n zero-one matrix J such that J(i, j) = 1 iff
1 ≤ i < n and j = i+ 1. A matrix in Jordan form is a direct sum of Jordan blocks;
the matrix has a zero Jordan block iff its kernel is not contained in its image.

Definition D.1. Suppose M is a nilpotent matrix in Jordan form. Then

• h(M) is the maximum size of a Jordan block summand of M .
• β(M) is the number of Jordan block summands of M of size at least 2× 2.
• βtop(M) is the number of Jordan block summands of M of size h(M) ×
h(M).

For N nilpotent in a conjugacy class C, we define h(N) and h(C) to be h(M) for
any M in Jordan form conjugate to N . Similarly for β and βtop.

Theorem D.2. Suppose N is a nilpotent n× n matrix and C is a conjugacy class
of nilpotent n× n matrices, such that the following hold:

(1) The Jordan form of a matrix in C has a zero block.
(2) h(C) ≥ h(N).
(3) βtop(C) ≥ β(N).

Then C is locally connected at N .

The necessity of condition (2) in the statement is clear. Without condition (1), N
can be the limit of matrices from different connected components of C, as happens
with t > 0 in the following example:

N =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Mt =


0 1 0 0
0 0 t 0
0 0 0 t
0 0 0 0

 , Pt =


0 1 0 0
0 0 t 0
0 0 0 −t
0 0 0 0

 .

Question D.3. Does Theorem D.2 remain true if the assumption (3) is removed?

Our partial result and the structure of the nilpotent matrices as a stratified space
[26, 27, 29] suggest the answer may be yes.

It is clear that the theorem holds for N if and only if it holds for some matrix
conjugate to N . For the proof, we will make explicit constructions using a matrix
of a specific form. We will formulate the constructive result below as a technical
lemma, for which we make some preparations.

Theorem D.2 is true if N ∈ C (Lemma 5.1) and it is vacuously true for C if N
is not a limit of matrices from C. So, we assume from here that N /∈ C and N is
a limit of matrices from C, which implies for M in C that rank(Mk) ≥ rank(Nk),
0 ≤ k ≤ n. If N = 0, then Theorem D.2 can be proved quickly with the argument
of Step 2 of Stage 4 below. So we also assume from here that N 6= 0, which means
β(N) ≥ 1. Set β = β(N) and h = h(C).
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Given k with 1 ≤ k < h, we define the h× h matrix Nk by the rule

Nk(i, j) = 1 if 1 ≤ i ≤ k and j = i+ 1

= 0 otherwise .

The first k rows of Nk equal those of Jh and the remaining rows of Nk are zero.
We also fix a list k1, . . . , kβ with ki ≥ 2 for each i, such that N is conjugate to

the direct sum of Jk1 ⊕ Jk2 ⊕ · · · ⊕ Jkβ and a zero matrix. Then we fix the form we
will use for our matrix N :

N = Nk1 ⊕Nk2 ⊕ · · · ⊕Nkβ ⊕ 0n−βh

and define some associated subsets of {1, 2, . . . , n},

J = {i : row i of N is nonzero}
K = {i : row i of N is zero}
T = {1 + rh : 0 ≤ r < β} .

Definition D.4. Given M = Jh ⊕ Jh ⊕ · · · ⊕ Jh, let J be an (n− βh)× (n− βh)
matrix in Jordan form such that (M 0

0 J ) is in C and has row n and column n zero.

(The condition that the nth row and column of C can be chosen zero is possible
by the condition (1) in Theorem D.2.) The set T indexes the rows of M through
the top rows of its first β Jordan blocks, each of which is Jh. These are also the
top rows of the diagonal blocks Nki in N .

Given ε > 0, define M(ε) to be the n× n matrix such that

M(ε)(i, j) = N(i, j) if i ∈ J
= εM(i, j) if i /∈ J .

Given δ > 0, Mδ denotes the set of n× n matrices C such that the following hold:

(i) C is conjugate to M .
(ii) ||C −N ||max < δ.

We say C ∈M0
δ if C ∈Mδ and in addition

(iii) If i ∈ J , then row i of C equals row i of N .

We will useM andM0 to denote the union over δ > 0 ofMδ andM0
δ (respectively).

Example D.5. For the matrix arguments to follow, it may be helpful to have the
block structure of an example in view. For this example, we take

h = 5 , β = 2 , n = 12 , k1 = 2 , k2 = 1 ,

M = J5 ⊕ J5 ⊕ 02 ,

N = N2 ⊕N1 ⊕ 02 .
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Now a matrix C in M0
δ has a block structure:

C =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

0 0 0 0 0 0 1 0 0 0 0 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • •


in which each • has absolute value less than δ. If C is only inMδ, then the entries
marked 0 and 1 above are only approximated to within δ. Continuing the example,
we have

M(ε) =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 ε 0 0 0 0 0 0 0 0
0 0 0 0 ε 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 ε 0 0 0 0
0 0 0 0 0 0 0 0 ε 0 0 0
0 0 0 0 0 0 0 0 0 ε 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


The example is somewhat special in that the summand 02 of M could have

been much more complicated. However, it turns out that this possible complication
doesn’t matter in the proof below until the last stage, where it is not a big problem.

We are finally ready to state the technical lemma, from which Theorem D.2
follows immediately.

Lemma D.6. Given 0 < γ < 1/49, there exists δ > 0 such that for all C in Mδ

and all ε such that 0 < ε < δ, there is a path in Mγ from C to M(ε).

Proof. The path will be a concatenation of paths constructed in four stages. Com-
bining the estimates, given 0 < γ < 1/49, the lemma will hold for

δ =
n1/2

n

γ2
n

4(2n+ 2)n
.

We do not claim this estimate or the requirement γ < 1/49 are sharp.
Below, subscripted matrices C in different stages are dummy variables not related

to subscripted matrices C in other stages.
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Stage 1. Given C in Mµ, we produce a path in Mκµ to a matrix CS in M0
κµ,

where κ = [2(n + 1)]S and S = #J < n. For this stage, let i1 < i2 < · · · < iS
denote the elements of J . Set C0 = C. For 1 ≤ s ≤ S, given Cs−1, we will define

inductively Cs and a path (C̃t)0≤t≤1 from Cs−1 = C̃0 to Cs = C̃1 such that there
is a κ > 0, independent of C, such that the following hold whenever 0 < µ < 1/2.

(1) For i = is, eiC̃1 = ei+1 .

(2) For i = it < is, eiC̃1 = ei+1 .

(3) If Cs−1 ∈Mµ, then C̃t ∈Mκµ, 0 ≤ t ≤ 1.

(Then the rows i1, i2, . . . , is of Cs will equal the corresponding rows in N .) The
path will be a (renormalized) concatenation of two paths. The first path (C ′t)0≤t≤1
moves the (is, is + 1) entry of Cs−1 to 1 = N(is, is + 1). Let η = Cs−1(is, is + 1).
For 0 ≤ t ≤ 1, define C ′t = DtCs−1D

−1
t , where Dt is diagonal and equal to I except

at Dt(is + 1, is + 1) = ηt. (Note, given µ < 1, we have η > 0.) For each t, the rows
i1, i2, ..., is−1 of C ′t equal those of N , by the induction hypothesis. At the two types
of entry where C ′t(i, j) might not equal s−1(i, j), we have the following.

• If j 6= is + 1 and i = is + 1, then C ′t(i, j) = ηtCs−1(i, j) .
• If i 6= is + 1 and j = is + 1, then C ′(i, j) = η−tCs−1(i, j) .

In both of these cases, if (i, j) 6= (is, is + 1), then N(i, j) = 0 and |Cs−1(i, j)| < µ.
Also, because 1/2 < η < 3/2, for |t| ≤ 1 we have ηt < 2, and consequently in
both cases |N(i, j) − C ′t(i, j)| = |C ′t(i, j)| < 2µ. Lastly, as t moves from 0 to 1 ,
C ′t(is, is + 1) moves monotonically from η to 1 . We conclude (C ′t)0≤t≤1 is a path
in M2µ.

We now replace Cs−1 with C ′1, and for notational simplicity denote it as C. For
0 ≤ t ≤ 1, define an n× n matrix Vt by setting

Vt(is + 1, i) = −tC(is, i) if i 6= is + 1

Vt(i, j) = I(i, j) otherwise .

Define C̃t = V −1t CVt. Then V1 acts to add multiples of column is + 1 of C to other

columns so that row is of CV1 equals eis+1. The rows of C̃t and CVt must be equal,
except for row is + 1. It follows that (1) and (2) hold. Also,

||N − V −1t CVt|| ≤ ||N − C||+ ||C − CVt||+ ||CVt − V −1t CVt||
≤ µ+ µ2 + (n− 1)µ < (n+ 1)µ .

So, combining this path together with the diagonal conjugation path, property (3)
holds with κ = 2(n + 1). We now pass from C0 to CS . This completes the proof
for Stage 1.

Stage 2. Given C0 in M0
µ, with µ > 0, we produce a path in M0

µ to a matrix
M satisfying the following condition:

(iv) If i ∈ T , then eiM
h−1 6= 0.

So, suppose C0 ∈ M0
µ, and let U = {i : eiC

h−1
0 6= 0}. Suppose T 6⊂ U . We have

#U ≥ #T , because βtop(C0) ≥ β(N) = β = #T . Therefore, we can choose an
injection T \ (T ∩ U)→ U \ (T ∩ U), i 7→ ξ(i). Let {i1, . . . , iR} now denote the set
T \ (T ∩ U). We will define matrices C1, . . . , CR inductively. For 1 ≤ r ≤ R, given

Cr−1 we will define a path C̃t, 0 ≤ t ≤ ν, such that C̃0 = Cr−1 and such that the
following hold for each t.

(1) For t 6= 0 and i = ir, ei(C̃t)
h−1 6= 0 .
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(2) If i ∈ T and ei(Cr−1)h−1 6= 0, then ei(C̃t)
h−1 6= 0.

(3) If i ∈ J , then eiC̃t = ei+1

(4) ||C̃t − Cr−1||max < µ− ||Cr−1 −N ||max .

(The conditions (3) and (4) keep the path in M0
µ.) We then define the matrix M

of (iv) to be CR.
So, to define the path, suppose we are given Cr−1. For notational simplicity,

we let C denote Cr−1; j denote ξ(ir); k be the ki such that row ir is the top row
of Nki ; and let ir be 1. Because ei is in the image of C if 1 < i ≤ k, we have
j /∈ {1, . . . , k}. Given a scalar t, let Vt be the n× n matrix such that

row i of Vt = ei + tejC
i−1 , 1 ≤ i ≤ k + 1 ,

= ei , otherwise .

We keep t small enough that Vt is invertible, and define

C̃t = VtCV
−1
t .

Now we verify the induction conditions. The proof of (1) is a computation:

e1(VtCV
−1
t )h−1 = e1Vt(C

h−1V −1t ) = (e1 + tej)(C
h−1V −1t )

= tejC
h−1V −1t 6= 0 .

The proof for (2) is similar. If i ∈ T and eiC
h−1 6= 0, then

ei(VtCV
−1
t )h−1 = eiVt(C

h−1V −1t ) = ei(C
h−1V −1t ) 6= 0 .

For (3), given i ∈ J , we must show that eiC̃t = ei+1. We do this for two cases. If
1 ≤ i ≤ k, then

ei(VtCV
−1
t ) = (eiVt)(CV

−1
t ) = (ei + tejC

i−1)(CV −1t )

= (ei+1 + tejC
i)V −1t = ei+1 .

If i ∈ J \ {1, . . . , k}, then {i, i+ 1} ∩ {1, . . . , k} = ∅; so, if eiC = ei+1, then

eiVtCV
−1
t = eiCV

−1
t = ei+1V

−1
t = ei+1 .

It is clear that (4) holds if ν is sufficiently small. This completes the proof for Stage
2.

Stage 3. We begin with C in M0
µ, with 0 < µ < 1/49, with C (from Stage

2) the matrix M satisfying condition (iv) of Stage 2. We produce a path in M0
ν

from C to a matrix CG whose first βh rows have the form of M(ε), but with the ε’s
replaced perhaps by various positive numbers, with ν = (2n)2µ1/2n . Then, given
0 < ε < 1, we will have CG ∈M0

ε if

µ <
n(1/2

n)ε2
n

4
.

For the proof, we will inductively produce a finite sequence of matrices Cg and
index sets Sg, 0 ≤ g ≤ G, with G < βh, beginning with C0 = C. Property (iv)
from Stage 2 will be preserved at every step, because successive matrices will be
conjugate by a conjugacy respecting the subspaces Rei, i ∈ T .

Given M inM0, define the set S(M) to be the largest subset S of {1, 2, . . . , βh}
satisfying the following conditions:
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(A1) If i ∈ S, then

row i of M = ei+1 if i ∈ J
= 0 if h divides i

= a positive multiple of ei+1 , otherwise .

(A2) If 0 ≤ r < β and 1 ≤ j ≤ h and rh+ j ∈ S,
then S contains {rh+ i : 1 ≤ i ≤ j}.

Note, S(M) contains J . Also define

R(M) = {i : i ≤ βh, i /∈ S(M), i− 1 ∈ S(M)}
P(M) = {(i, j) : i ∈ R(M), j /∈ S(M) ∪R(M), M(i, j) 6= 0} .

Let Sg = S(Cg), Rg = R(Cg), Pg = P(Cg). Continuing Example D.5, with
Sg = {1, 2, 3, 6, 7} we would see the matrix Cg having the following form:

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 ε1 0 0 0 0 0 0 0 0
• • • • • • • • • • • •
• • • • • • • • • • • •

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 ε2 0 0 0 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • •


In this example, Rg = {4, 8}; (i, j) ∈ Pg iff i ∈ {4, 8} and j ∈ {5, 9, 10, 11, 12}.

We will arrange by induction that the following hold for g ≥ 1.

(B1) If #Sg−1 6= βh, then Sg−1 is properly contained in Sg.
(B2) If Cg−1 ∈M0

µ, with µ < 1, then there is a path inM0
2n
√
µ from Cg−1

to Cg.

Given all this, we define G to be the index g at which Sg = {1, 2, . . . , βh}.
Now, suppose we are given Cg−1 and Sg−1 with #Sg−1 < βh (i.e., Rg−1 is

nonempty). We will show Pg−1 is nonempty. Pick i ∈ Rg−1.
If i is divisible by h, then (by property A2) let t in T be such that row i of

Cg−1 (which is eiCg−1) is a positive multiple of etC
h, and therefore is zero. Since

i − 1 ∈ Sg−1, it follows that i ∈ Sg−1, a contradiction. So i is not divisible by h.
Let k be the positive integer in [1, h− 1] such that eiCg−1 = etC

k
g−1

Now suppose Cg−1(i, j) 6= 0 implies j ∈ Sg−1 ∪ Rg−1. Then eiCg−1 is a linear
combination of the vectors eτC

j such that τ ∈ T and 0 ≤ k < h. This is a
contradiction, because the set {etCjg−1 : t ∈ T , 0 ≤ j < h} is linearly independent,

by property (iv). Therefore there is a j such that (i, j) ∈ Pg−1.
From here, we will handle the inductive transition from g−1 to g in three steps,

given Cg−1 and Sg−1 with #Sg−1 < βh. By a signed transposition matrix for
indices i,j we mean a matrix Q which is equal to the permutation matrix P for the
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transposition exchanging i and j, except that one of the entries Q(i, j) or Q(j, i) is
−1.

STEP 1. Given Cg−1 ∈ M0
µ, we produce an index i in Rg−1, and a matrix Q

which is either I or is a signed transposition matrix for indices outside Rg−1∪Sg−1,

such that the following hold for the matrix C = Q−1Cg−1Q:

(D1) (i, i+ 1) ∈ P(C) .
(D2) C(i, i+ 1) = max{|C(i′, j′)| : (i′, j′) ∈ P(C)} .
(D3) There is a path in M0√

µ from Cg−1 to C .

(D4) S(C) = Sg−1, and ||N − C||max = ||N − Cg−1||max < µ .

STEP 2. For the matrix C produced in Step 1, defining α = ||N − C||max, we
produce a matrix C ′ and (i, i+ 1) ∈ Pg−1 such that the following hold.

(C1) ||N − C ′||max = |C ′(i, i+ 1)| =
√
α .

(C2) If r ∈ Sg−1, then |C ′(i, r)| < µ .

(C3) There is a path in M0√
µ from C to C ′ .

STEP 3. Given C ′ from Step 2, we produce a path in M0
2n
√
µ from C ′ to the

desired matrix Cg.
PROOF FOR STEP 1.

Choose (i, j) from the nonempty set Pg−1 such that

|Cg−1(i, j)| = max{|Cg−1(i′, j′)| : (i′, j′) ∈ Pg−1} .

There are two cases.
CASE 1: j 6= i+ 1. Both j and i+ 1 are outside Rg−1 ∪Sg−1. Let Q denote the

n× n signed transposition matrix for indices i+ 1 and j such that

Q(j, i+ 1) = −1 , if Cg−1(i, j) < 0

Q(i+ 1, j) = −1 , if Cg−1(i, j) > 0 .

Set C = Q−1Cg−1Q. We have Q ∈ SL(n,R), and for a path from Cg−1 to C we can

use U−1t Cg−1Ut, 0 ≤ t ≤ 1, with (Ut) a path from I to Q. E.g., for Q =

(
0 1
−1 0

)
,

we may use (in the principal submatrix on coordinates {i+ 1, j})

Ut =

(
1 0
−t 1

)(
1 t
0 1

)(
1 0
−t 1

)
=

(
1− t2 t
−2t+ t3 1− t2

)
.

Then for 0 ≤ t ≤ 1,

||U−1t Cg−1Ut||max ≤ 4||Ut||max||Cg−1||max < 5||Cg−1||max .

CASE 2: j = i + 1. If Cg−1(i, i + 1) > 0, then set Q = I and C = Cg−1.
If Cg−1(i, i + 1) < 0, then let W be the matrix in SL(n,R) obtained from In by

multiplying rows i + 1 and n by −1, and define C = W−1Cg−1W . As in Case

1, we may produce a path from Cg−1 to C by conjugating with a path (Wt),
0 ≤ t ≤ 1, from I to W . One such path is given (on the principal submatrix on
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indices {i+ 1, n}) by

Wt =

(
1 0
−2t 1

)(
1 t
0 1

)(
1 0
−2t 1

)(
1 t
0 1

)
=

(
1− 2t2 2t− 2t3

−4t+ 4t3 1− 6t2 + 4t4

)
Then

||W−1t Cg−1Wt||max ≤ 4||Wt||max||Cg−1||max < 7||Cg−1||max .

In both cases, (D1) and (D2) hold, and the path from Cg−1 to C is contained in
M0

7µ, and consequently inM0√
µ, since µ < 1/49. This completes the proof for Step

1.
PROOF FOR STEP 2.
Given C and (i, i + 1) ∈ P(C) from Step 1, define β = max{|C(i, j)| : (i, j) ∈

P(C)} . Define a path C ′t = DtCD
−1
t , 1 ≤ t ≤

√
α/β, from C = C ′1 to C ′ = C ′√

α/β
,

in which Dt is the diagonal matrix defined by

Dt(i
′, i′) = t , if i′ ∈ Sg−1 ∪Rg−1

= 1 , otherwise .

We have |Cg−1(i, r)| < µ for all r, because i /∈ J . Therefore, |C(i, r)| < µ for all

r. So, if r ∈ Sg−1 ∪ R(C), then |C ′t(i, r)| ≤ |C(i, r)| < µ; this establishes (C2). If

i′ ∈ Sg−1 and j′ /∈ Sg−1 ∪R(C), then Cg−1(i′, j′) = 0, and C(i′, j′) = 0. Therefore,

|C ′t(i′, j′)| > |C(i′, j′)| is possible only if i′ ∈ Rg−1 and j′ /∈ Sg−1∪R(C). It follows
then from (D2) that ||C ′t − N || ≤

√
α for all t, with (C1) holding for C ′ = C ′1.

Because α < µ, (C ′t) is a path in M0√
µ, and then (C3) follows from (D3). This

finishes the argument for Step 2.
PROOF FOR STEP 3.
For a lighter notation, in this step we will write C in place of C ′ for the matrix

satisfying (C1)-(C3) for a given (i, i + 1) from P(C ′). For 0 ≤ t ≤ 1, we define an
n×n matrix Vt equal to I outside row i+1. In that row, we define Vt(i+1, i+1) = 1
and

Vt(i+ 1, r) = −tC(i, r)/C(i, i+ 1) , if r 6= i+ 1 .

Define the path C̃t = V −1t CVt, 0 ≤ t ≤ 1. Then C = C̃0, and we define Cg = C̃1.
First we will check that Cg satisfies condition (B1). The matrix V1 acts to add

multiples of column i+1 of C to other columns so that row i of CV1 has exactly one
nonzero entry, which is at position (i, i+ 1). Suppose i′ ∈ Sg−1. If C(i′, i+ 1) 6= 0,
then i+1 = i′+1, which forces i = i′ ∈ Sg−1, contradicting (i, i+1) ∈ P. Therefore

C(i′, i + 1) = 0. Therefore row i′ of CVt equals row i′ of C. The matrix V −1t CVt
can differ from CVt only in row i + 1, which is not in Sg−1, since (i, i + 1) ∈ P.
Consequently, Sg contains Sg−1 and also {i}. Since i /∈ Sg−1, the condition (B1) is
satisfied.

Now we turn to (B2). We have

||N − V −1t CVt||max(D.1)

≤ ||N − C||max + ||C − CVt||max + ||CVt − V −1t CVt||max

and we will bound the three terms on the right.
We have ||N − C||max <

√
µ, since C ∈M0√

µ .
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Because C−CVt = C(I−Vt), column r of C−CVt is zero if r = i+1 and otherwise
equals column i+1 of C (whose entries are smaller in absolute value than

√
µ, since

i /∈ Sg−1 ⊃ J ) multiplied by −tC(i, r)/C(i, i+1) (which by (C1) has absolute value
at most 1). Therefore ||C − CVt||max <

√
µ (and then ||N − CVt||max < 2

√
µ).

The last term in (D.1) is the maximum over (i′, j′) of the absolute value of

(CVt − V −1t CVt)(i
′, j′) =

(
(I − V −1t )(CVt)

)
(i′, j′) .

This quantity is zero if i′ 6= i+1, since row i+1 is the only nonzero row of (I−V −1t ).
For i′ = i+ 1, we have(

(I − V −1t )(CVt)
)

(i+ 1, j′) =
∑
r

(I − V −1t )(i+ 1, r)(CVt)(r, j
′)

=
∑

r: r 6=i+1

(
−tC(i, r)

C(i, i+ 1)

)
(CVt)(r, j

′) .

Now we bound the terms in the last sum by two cases.
CASE 1: r ∈ J .
Then (CVt)(r, j

′) = Vt(r + 1, j′) and also r 6= i. If j′ 6= r + 1, then (CVt)(r, j
′) =

Vt(r + 1, j′) = 0. If j′ = r + 1, then (CVt)(r, r + 1) = Vt(r + 1, r + 1) = 1. So,∣∣∣∣∣ −tC(i, r)

C(i, i+ 1)

∣∣∣∣∣(CVt)(r, r + 1) =

∣∣∣∣∣ −tC(i, r)

C(i, i+ 1)

∣∣∣∣∣
=

∣∣∣∣∣−tC(i, r)√
α

∣∣∣∣∣ by (C1)

<
µ√
α

by (C2)

<
µ
√
µ

=
√
µ by (C3) .

CASE 2: r /∈ J .
Then N(r, j′) = 0 and∣∣∣∣∣ −tC(i, r)

C(i, i+ 1)

∣∣∣∣∣|(CVt)(r, j′)| ≤ (1)||N − CVt||max < 2
√
µ .

Using the estimates above to bound the third term of (D.1) by (n−1)2
√
µ , and

then substituting bounds into (D.1), we get

||N − V −1t CVt||max <
√
µ+
√
µ+ (n− 1)2

√
µ = 2n

√
µ .

This finishes the proof for Step 3, and for Stage 3.
Stage 4.
Given 0 < ε < µ and a matrix C inM0

µ with the first βh rows agreeing with those
of M(ε) (except that the epsilons are allowed to be different positive numbers), we
produce a path in M0

µ from C to M(ε).

The n× n matrix C has a block form C = (X 0
Y Z ), in which X is βh× βh.

STEP 1: Defining Ct = ( X 0
tY Z ), 1 ≥ t ≥ 0, we show (Ct) is a path of conjugate

matrices. Conjugacy is clear for 0 < t ≤ 1, where

Ct =

(
(1/t)I 0

0 I

)(
X 0
Y Z

)(
tI 0
0 I

)
.
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For 1 ≤ i ≤ h, let Zi denote the set of indices from {1, . . . , βh} (which indexes rows
and columns of X) which are congruent to i mod h. To check conjugacy of C0 and
C, we first note there is a conjugacy of the form

C ′ =

(
X 0
Y ′ Z

)
=

(
I 0
L I

)(
X 0
Y Z

)(
I 0
−L I

)
such that column i of Y ′ is zero if i /∈ Z1. This result from a composition of
conjugations arising from elementary row and column operations as follows. In
decreasing order for i = h − 1, h − 2, . . . , 1: for each j ∈ Zi, and for each i′ in
[βh+ 1, n] such that position (i′, j + 1) of the current matrix has a nonzero entry,
we add a multiple of row j to row i′, and then subtract the same multiple of column
i′ from column j.

We will show Y ′ must be zero. For this, consider row vectors in the form (u, v),
where u has βh entries and v has n − βh entries. For 1 ≤ t ≤ h, let Wt be the
subspace of Rβh spanned by the vectors ej such that j ∈ Zi and 1 ≤ i ≤ t. Let W0

be the trivial space {0}. Given (0, v) and k ≥ 1, define (u(k), v(k)) = (0, v)Ck. We
claim for 1 ≤ k ≤ h that

(1) u(k) ∈Wk.
(2) If u(1) 6= 0, then u(k) ∈Wk \Wk−1.

The claim is clear for k = 1, because column j of Y ′ is zero if j /∈ Z1. Suppose
1 ≤ k < h, and the claim holds for k. Then

(0, v)Ck+1 = (u(k), v(k))C = (u(k), 0)C + (0, v(k))C

= (u(k)X, 0) + (u′′, v′′)

for some u′′ ∈ W1. The claim then holds for k + 1 because X maps Wk \Wk−1
injectively into Wk+1 \Wk (since k < h) and Wk contains W1.

If Y ′ 6= 0, then there must be some v for which (0, v)C = (u(1), v(1)) with
u(1) 6= 0. It follows from the claim that (0, v)Ch is nonzero. That contradicts
Ch = 0. So, Y ′ = 0, and C0 is conjugate to C.

STEP 2. We begin with C = (X 0
0 Z ) in M0

µ and define a conjugacy in M0
µ to

M(ε). Clearly, after applying a path inM0
µ, we can suppose that X exactly equals

the corresponding βh×βh block in M(ε), and write M(ε) as (X 0
0 J ), where J is the

matrix of Definition D.4. Let m = n− βh.
The conjugacy of C and M(ε) and the fact that J has a Jordan zero block imply

that there is a matrix U ∈ SL(m,R) such that U−1ZU = J . Then there is a path
(Ut) in SL(m,R) from I to U , giving a path of conjugate matrices from Z to J ,
Zt = U−1t ZUt. Given δ > 0, we can follow a path (X 0

0 sZ ), 1 ≥ s ≥ δ, with a path(
X 0
0 sZt

)
, 1 ≥ s ≥ δ, and then a path (X 0

0 sJ ), δ ≤ s ≤ 1. This gives a path of
conjugate matrices from C to M(ε), and with δ small enough, the path is contained
in M0

µ. This completes the proof of Stage 4, and the lemma.
�
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