POSITIVE ALGEBRAIC K-THEORY
AND
SHIFTS OF FINITE TYPE

M. BOYLE AND J.B.WAGONER

ABSTRACT. This paper discusses classification of shifts of finite type using positive algebraic
K-theory.

1. INTRODUCTION

Since R.F. Williams’ work in the early 1970's, one of the main themes in studying shifts of
finite type and their isomorphisms has been strong shift equivalence theory. See the overviews
[B1,KR2,W5]. On the other hand, an important technique in coding theorems and concrete applica-
tions involving shifts of finite type has been state splitting and merging. See [LM, M]. The purpose
of this article is to place state splitting and merging into an algebraic setting directly related to alge-
braic K-theory and to show how this is related to strong shift equivalence theory. We discuss how to
associate a shift of finite typeX (A4), o(A)) to a matrixA which has nonnegative integral polyno-
mial entries and which satisfies the Z-cycles condition (NZGh (2.1). In addition, we show how
positive row and column operations ov8I" [t] on I — A as in (3.2) give rise to conjugacies of shifts
of finite type. Fix a pair of indicegk,!) wherek # [. Letb be an integral polynomial satisfying
0 < b < Ay. A positive row operation addstimes thel*” row to thek'” row of I — A, and a posi-
tive column operation addstimes thek'” column to the'” column ofI — A. The resulting matrix
is of the formI — B where B has nonnegative integral polynomial entries and satisfies NZC too.
Corresponding respectively to these row and column operations there are topological conjugacies
Ly (b) and R (b) from (X (A),0(A)) to (X(B),o(B)). This generalizes the material in [KRW]
and gives geometric content to thelynomial strong shift equivalence equations (PS8Bection
4. The construction of shifts of finite type in the presence of NZC, and various results of this paper
including Theorem 7.2, are also known independently to K.H.Kim and F.W.Roush.

AssumeA and B are nonnegative polynomial matrices satisfying NZC. The main results are

Classification Theorem (X (A),o(A)) and(X(B),o(B)) are topologically conjugate iff there is
a sequence of positive row and column operations a¥eft] connectingl — A and — B.

Conjugacy Theorem Every topological conjugacy froiX (A),o(A)) to (X (B),o(B)) arises
from some sequence of positive row and column operations&vgt connectingl — A and’ — B.

These theorems require the introduction of NZC. See Remark 6.4.

The matriced — A and] — B are the same in the algebraic K-theory grdtp(Q(t)) iff they are
connected by a sequence of row and column operations over the field of rational fudztipnshe
Classification Theorem gives geometric meaning to positive row and column operatior&'gver
The Conjugacy Theorem is really part of the Classification Theorem. But we state it explicitly, be-
cause it is the first step in describing the group of automorphidmigo(A)) of (X (A4),0(A)) as
some kind of positive algebraic K-theory grou»(Z*[t]). A sequence of row and column op-
erations overQ(t) from I — A to itself gives rise to an element iR2(Q(t)). Analogously, the
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Conjugacy Theorem says that any elementlat(c(A)) arises from positive row and column oper-
ations overZ *[t] from I — A to itself. To construct the positive algebraic K-theory grétyg Z +[t]),
it remains to specify what natural relations are satisfied.

Section 2 describes the basic construction of the shift of finite fyped),o(A4)). Section 3
discusses positive row and column operatidngs(b) and Ry;(b) and shows how they are related
to the conjugacies(R, S) arising from strong shift equivalence theory. Section 4 proves the Con-
jugacy Theorem. Section 5 discusses zeta functions and dimension modules from the nonnegative
polynomial matrix viewpoint. Section 6 proves the Classification Theorem. Section 7 describes the
generalization to matrices over integral group rings. Finally, the Appendix gives background on
strong shift equivalence theory necessary for this paper.

We thank the referee for helpful comments which improved the exposition.

2. NONNEGATIVE POLYNOMIAL MATRICES

Matrices with nonnegative polynomial entries provide a very compact, efficient, and powerful
way of representing shifts of finite type. Perhaps the first appearance of this idea is in Shannon’s
work [Sh] on information theory. In [KRW] and [KOR] the polynomial matrix technique is indis-
pensible in studying automorphisms of shift spaces on the one hand and characterizing the nonzero
spectra of primitive, nonnegative integral matrices on the other. Polynomial matrix methods are used
in [BL] to get small presentations of shifts of finite type, and in [KR1] to construct group extensions
of shifts of finite type.

Consider anonnegative polynomial matrit = {A4;;} whereA;; = A;;(¢) lies in Z*[t], the set
of polynomials int with nonnegative integer coefficients. The indi¢esd; will range through the
positive integers, and we will assume tiabhasfinite supporti.e., A;; # 0 for at most finitely many
pairs of indiceg:, j). We will generally let/ denote the identity matrix of infinite size. For matrices
appearing in the fornf + U , we will always assumé has finite support. This section describes
how to construct a shift of finite typeX (A), o(A)) under theno Z-cycles condition{ZC)

(2.1) The nonnegative integer matei0) = {A4,;(0)} has no periodic cycles.

This construction generalizes the one in [KRW] where it was assumedifiiat= 0, i.e., each
polynomial 4;; is divisible byt. From the viewpoint of this paper, a compelling reason to construct
(X(A),0(A)) in the presence of NZC is to give geometric meaning in the context of symbolic dy-
namics to the Polynomial Strong Shift Equivalence equations (PSSE) in Section 4. These are similar
to equations found in algebraic K-theory.

The first step is to construct the directed grapphas follows: The indices and; will be called
the primary vertices Suppose

Aij:a0+a1t+a2t2+...+ant”.

Corresponding to the constant teagin A;; drawag arcs from: to 5. These will be calledonstant
term routes Corresponding to the power termt* in A;; wherek > 0 drawa,, simple paths of
lengthk from i to j, each having: edges an@ — 1 secondary verticesThese paths frormto j will

be calledpower term routesin particular, each route intersects the set of primary vertices only in its
starting vertex and its ending vertex. For example, the matrix

[ t+t2 1428
=00

gives rise to the grapH”
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where the constant term route is shown as a dotted arrow and the power term routes are shown as
solid arrows. The nonnegative polynomial matdxand the grapbd® are essentially identical ways
of presenting the same data, and we will consider them as being the same.

We will explain two equivalent methods for constructing shift spaces ffdmThe first space
(P(A),o(A)) will use thepath space constructiomhich generalizes the well known edge path con-
struction explained in [LM]. This will be useful in showing how certain elementary row and column
operations on the matrix — A give rise to topological conjugacies of shift spaces. The second
space( X (A),a(A)) will come from a zero-one matrid# of finite size. One of its uses is to show
(P(A),0(A)) is actually a shift of finite type.

The Path Space Construction

Consider the seP of all sequence® = {E,,} = {(rn,t,)}, —00 < n < oo, satisfying the
conditions

(1) Eachr,, is a route ofA”, and the end vertex of, is the start vertex of,, , ;.

(2) Eacht,, is an integer and,,; = t,, + |r,|, where|r, | is zero ifr,, is a constant
term route and is the number of arcsinif r,, is a power term route.

The intuitive idea is thaf is an infinite trip through4” where at timet,, the voyager is at the
starting vertex of the route,, and is about to traverse,. Let Q denote the (infinite) alphabet
consisting of all pairgr,t) wherer is a route ofA> andt is an integer. We givé) the discrete
topology and endowP with the topology it inherits as a subset of the infinite prodaét We say
E = {(rpn,t,)} isequivalento E' = {(r/,,t,)} and write E ~ E’ provided there is some integer

n»’n

m so thatr,, ., = r/, andt, ., = t!, for all n. Use the quotient topology to define

(2.2) P(A) = P modulo ~

We remark tha?(A) is compact. To see this, let L be the length of the longest rout& irLet Py,
denote the compact subspacefbtonsisting of thosdr satisfyingd < tq < L. Then the quotient
map fromPy, to P(A) is still onto, because the NZC implies that afiymust have) < ¢,, < L for
somen. Next define a shift map : P — P by the equation

(2.3) o(E)n = (rn,tn — 1) .
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This respects the equivalence relatiorand induces a continuous shift map

(2.4) o(A): P(A) — P(A) .

The #-Construction

We will now construct a zero-one matri¢# with finite support from the grapi®, and by
definition, we will let

(2.5) (X(A),0(A)) = {Xa#,00%}

where the bracket notation on the right denotes the standard “vertex shift” construction as explained
in [LM,W5] and in the Appendix.

Special CaseA(0) =0

This is just the edge path construction for the graghNamely, the set of state* is the set of
arcs between primary and/or secondary verticed’inand A#(«, 3) = 1 iff the end vertex ofy is
the start vertex ofs.

General Case

The first step is to define the s&t* of states ofd#. The states will be quintuples

(2.6) a= (i, j,a" k)

where

(1) Each ofi, j, andk is a primary vertex.

(2) If i # j, thena’ is a connected path of constant term routes fidmj
andc«” is a subarc of a power term route frgito k.

(3) If i = j, then there are no paths of constant term routes frtny because
of NZC. So we letr’ be the symbol, and we requirer” to be a subarc of
a power term route fronj to .

Wheni = j , the statex is really just the triple(j,o”, k). So, for example, ifd;;, = ¢, thena
is identified with the power term arc frognto k. But we also writex as a quintuple as in (2.6) to
preserve uniformity of notation. There are no states consisting only of a constant term path from one
vertex to another.

The next step is to define the transition function

.7 A* L S% % S (0,1} .
Leta = (Z‘)Oélﬂj7 a”’ k) andﬂ = (p) /6/? Q7 /B/,7T)' Then
A#(a,3) =1 when the conditions in Case 1

or Case 2 below hold
A#(a,3) =0 otherwise .
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Case 1. We have=p, j = ¢, k = r, anda’ = 3. Botha” and3” are subarcs on the same power
term route fromyj to k& and the ending vertex ef” is the starting vertex gf”.

Case 2. The subarg” is the last one along a power term route frgito & and therefore the ending
vertex ofa”’ is k. We requirek = p, and we require that the suba#t is the first one along a power
term route frony to r. In particular, the beginning vertex of’ is g.

The final step is to makd” into ann™ x n* matrix wheren* is the number of states. We do
this by

(2.8) choosing an ordering of the s&t .

Two different choices of orderings & will produce matricesﬂ‘7é andA;‘7E related by the equation
(2.9) A =Q7'ATQ
where@ is a permutation matrix? induces a conjugacy fromXAf , GA?&) to (XAf, UA;*) .

Comment NZC implies that the number of paths consisting only of constant term routes is finite.
ThereforeS# is a finite set, and X 44, o 4 } will be a shift of finite type.

In the case where the constant term matti¢0) = 0, there are no constant term routes and the
matrix A# is the same as the one constructed in [KRW]Alfs a matrix overZ*, then{tA}’ is

the graph associated to the matdxand{tA}* is precisely the zero-one matrix describing the edge
path presentation matrit~ of the shift of finite type associated th In particular, we have

(2.10) (X(tA),0(tA)) ={X 4,04} .
See [LM] and the Appendix.

Example 2.11Consider the matrix

The graph4® is

There are three states:
(651 = .

(€5)

The matrixA# is
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Hence
(X(A),0(A)) = {X 4%,04%} = the full Bernoulli 2-shift

As discussed in the Appendix, we don’t require each row and each column of a matdhave a
nonzero entry in forming X s, o}

Example 2.12Consider the matrix

The graph4® is

There are four states:

2
I
)
=

Qg = 2‘

o = 211D
o AT

The matrixA# is

11
0 0
1 1

o

0 1 1

which is just the matrix for the edge path presentation, as discussed in [LM], of the shift of finite

type associated to the graph

Qo m
Hence, we again have

(X(A),0(A)) = {X g#,04#} = the full Bernoulli 2-shift.
Equivalency of the Path Construction and the#-Constuction

Theorem 2.13. There is a topological conjugady : (P(A),0(A)) — (X(A4),0(A4)).
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Proof. Here is how® and its inversel : (X(A),0(A4)) — (P(A),0(A)) are constructed.

Definition of ®: Let E = {(rp, t5)} represent an infinite path if(A) where—co < h < co. We
want to find an infinite allowable sequenééE) = {®(E), } of states inS#. The NZC condition
(2.1) implies we can write the set of integers as the union of intef¥gls, 1, . .., tp+q+1] Where
tp—1 < lp = ... = tprq < tprq1 and the intervals overlap only at their endpoints. Léie
the start vertex of-,, j be the start vertex of,,, andk be the final vertex of,,,. If ¢ = 0,
leto’ = ¢. If ¢ > 0, let o/ be the path of constant term routes leading froto j which is
the concatenation of,,...,r,44,—1. The power term route,., is the concatenation of subarcs
of,...,af wheret, .11 =t,1,+L Thenwe le®(E), = (i,d/,j, o, k) wheres = n+1—t,.,
for tp+q <n< tp+q+1.

Definition of U: Letz = {z,} be in X(A) wherex, = (iy, a, jp, ;. kp). We want to get
U(x) = {(rn,tn)} in P(A). The constant term pathg, and the power term routesg fit together
compatibly to produce a sequence of primary vertiggst and a sequence of routés, } wherer,,

goes fromv,, to v,11. To establish the indexing of these routes which concatenate together, it suf-
fices to specifiy that is the power term route containing the arg. To get the required sequence

of times{t, }, firstletty = —(k — 1) = 1 — k whereq is thek-th arc along-y going fromu, to

v1. Then we recursively defing, for n # 0 by the conditiont,, 1 = ¢, + |ry|.

Verification that® and¥ commute witho(A) and that they are continuous inverses of each other
is straightforward.
O

For future reference, we now generalize Nasu’s definition [N,W4] of simple automorphisms of
a shift of finite type. His work has played an important role. élementary simple automor-
phismof (X (A),o(A)) is one coming from an automorphism of the graph which fixes the
primary vertices. Asimple automorphisnof (X(A),o(A)) is one of the forma©a~! where
a: (X(A),0(4)) — (X(B),o(B)) is a topological conjugacy an@ is an elementary simple
automorphism of X (B), o(B)). Composition is read from left to right.

Definition 2.14. Simp(c(A)) is the subgroup oflut(c(A)) generated by simple automorphisms.

We briefly discuss in (4.20) below why this yields the same group as Nasu’s original definition.

3. PosITIVE Row AND COLUMN OPERATIONS

In this section we discuss how positive row and column operations on matrices give rise to conju-
gacies between shifts of finite type defined by matrices satisfying NZC. In this section, as elsewhere
in this paper, composition is read from left to right. Also, we use the terms conjugacy and topologi-
cal conjugacy interchangeably.

Let A = {A;,} be a nonnegative polynomial matrix with finite support satisfying NZC (2.1). Fix
an entryAy,; of A wherek # [, and leth denote a polynomial iZ [t]. Let T}, (b) denote the matrix
which has the entry in the k*" row and!** column and zeros elsewhere. Lietlenote the infinite
identity matrix. Define

(3.1) Er(b) = I + Ti(b)
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Ex(b) will be called apositive sheaif b lies in Z*[t]. Define a new matrix of finite suppoR by
one of the equations

I-B = Eu()(I-A)

(3:2) [-B = (I-A)Eu®)

We will say thatE;;(b) goes froml — Atol — B.

If a(t) = >, art” andb(t) = > b,t" are polynomials, we define < b iff a, < b, for each
r. We also defin&ZO|t] to be the set ofero-one polynomialshose polynomiala(t) = > a,t"
such that each coefficient is equal to zero or one.

Positive Shear Lemma 3.3.Assumd) < b < Ag;. ThenB is nonnegative and satisfié&ZC.
Corresponding to the first and second equations in (3.2) respectively there are conjugacies

Lii(b) : (P(A),0(A)) — (P(B),o(B))

Ry (b) : (P(A),0(A)) — (P(B),o(B))

The conjugacied; (b) and Ry; (b) are uniquely determined up to composition on the left by elements
in Simp(o(A)) and composition on the right by elementsSimp(o(B)). If A and B have all
entries inZO[t], then the conjugacieby; (b) and Ry, (b) are uniquely determined.

Proof. For simplicity, letb = t? be a single route from the primary vertgxo the primary vertex
of lengthp > 0. The matrixB (i.e., the graphB®) is obtained from the matrix by first deleting
the routeb betweenk and! and then inserting a routé of length|r'| = p + |r| from & to ¢ for
each route- starting atl and ending ay. Every infinite trip throughA corresponds uniquely to a
concatenation of routes iB and this determines. More precisely, le&Z = {(r,,t,)} be inP(A).
Consider a part of’ like

sy (Tna tn)’ (rn-&-la tn+1)a (Tn+2a t'rz+2)7 s

wherer,, = b andr,,1; = r as above. Deleté,,,1,t,+1) and replacér,, t,) with (+',¢,). Note
thatt, 1o = t, + |r|. The result is just a subsequentéof E where some of the items have been
changed. Now renumber this subsequence in an increasing fashion so that it becomes a sequence
E’ = {E/,} wheren runs througtall the integers. The equivalence class modulof E’ does not
depend on this renumbering, so the rille~ E’ induces a maf : P(A) — P(B). This mapL is
bijective; L andL~! are continuous; anfloc = o L.

In the case thdtis a sum of term¢?, to defineL. we make the replacements above separately for
each summant? of b. There is no contradiction of definitions becaés¢ . The only freedom in
the construction involves the choice of particular corresponding routes, in the case that an entry of
A or B has the form)_ _a,t” with somea, > 1. Permutations of such routes are given by simple
automorphisms.

O

We now discuss a generalization of the Positive Shear Lemnfa=f{P;;} and@Q = {Q;; } are
nonnegative polynomial matrices, we sBy< @ providedP;; < @;; for each pair of indicesi, 7).

AssumeX is the conjugate of an upper triangular matrix by a permutation. Define an invertible
matrix

(3.4) BEX)=T+X .
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Let A be a nonnegative polynomial matrix satisfying NZC as in (2.1). Define a new niathy
one of the equations
I-B = EX)I-A)

(35) [-B = (I-A)E(X)
Generalized Positive Shear Lemma 3.6Assumé < X < A andX? = 0. ThenB is nonnegative
and satisfiedNZC . Corresponding to the first and second equations in (3.5) respectively there are
conjugacies

L(X) : (P(A),0(4)) — (P(B),0(B))

R(X) : (P(A),0(A)) = (P(B),0(B)) .
If A, X and B have all entries inZO[t], then the conjugacies(X) and R(X) are uniquely de-
termined. For the category of matrices ov&r [¢], L(X) and R(X) are well defined up to mul-
tiplication on the left by elements iflimp(o(A)) and multiplication on the right by elements in
Simp(c(B)).
Proof. The proof is a straightforward generalization of the proof for the Positive Shear Lemma. The
idea is that the conditiotX? = 0 allows the construction in (3.3) to be done at various place$ in
simultanously in view of the following lemma. O

Lemma 3.7. Let X be a nonnegative polynomial matrix satisfying the conditoh = 0. Then
there are disjoint sets of indicdsandJ such thatX;; = O unlessi isin / andj isin J.

Proof. Let I be the set of those indicéssuch thatX;; # 0 for somej. Let.J be the set of those
indices; such thatX,; # 0 for somei. Nonnegativity withX? = 0 impliesI N .J = 0. ]
4. CONJUGACIES

The purpose of this section is to show that all conjugacies between shifts of finite type are gener-
ated by the positive row and column type conjugadiggb) and Ry (b) of (3.3). Polynomial matri-
cesA, B, etc. will have finite support. For each such matvixsatisfying NZC, we fix a topological
conjugacy®,, : (P(A),0(A)) — (X(A),0(A)). To any conjugacyL from (P(A),o(A)) to
(P(B),o(B)), we associate a conjugady= (®4) ' L®p from (X(A),o(A))to (X (B),o(B)).

Theorem 4.1. Let A and B be nonnegative polynomial matrices satisfyMgC. Any conjugacy
A:(X(A),0(A)) — (X(B),o(B)) can be written as a composition

A= Hékili(bi)éi
i=1
whereA, = A, A,, = B, andC},,;, (b;) is a positive row or column conjugady; (b) or Ry (b) as
in (3.3) which goes fromi — A, _1tol — A;ife; =1andfroml — A;tol — A, ife; = —1.

This will be a consequence of the next two results. The first is a special case of (4.1).

Proposition 4.2. Let A and B be zero-one matrices. Any conjugacy
A (X(tA),o(tA)) — (X (tB),o(tB)) can be written as a composition

A= H 6kll1 (t)ei
=1

whereAy = tA, A, = tB, andCy,,, (t) is a positive row or column conjugacy as in (3.3) which
goes froml — A;_ytol — A;ife;, = 1and froml — A;tol — A;_, if ¢, = —1. Moreover, each
A; = tD; whereD; is a zero-one matrix.
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Proposition 4.3. Let A be a nonnegative polynomial matrix satisfyiNgC. There is a path of
positive row and column operations ov&rt [t] connectingl — A and I — tA*.

We first show how (4.1) follows from (4.2) and (4.3). Later we will prove (4.2) and (4.3).

Proof of (4.1). By Proposition 4.3 and the Positive Shear Lemma 3.3, there are conjugacies
pa(X(A),0(4)) — (X(tAF),0(tA%)),
pp  (X(B),0(B)) — (X (tB*),0(tB*))

which are compositions of positive row and column conjugacies. Reading composition from left to
right, we define a conjugacy

v =(pa) App ¢ (X(tAF),0(tA%)) — (X(tB¥),0(tB7)).

By Proposition 4.2; is a composition of positive row and column conjugacies, and therefore so is

paY(pB) ™t = pal(pa) tApsl(pp) L =A. )

Given an infinite, finitely supported matrix/, we define itssupportto be the largest integer
s = supp(M) such thatM,;, # 0 or My, # 0 for some integek. (If M is the zero matrix, we
definesupp(M) = 1.) Now supposed, B, R, S are infinite finitely supported matrices ovir-
such that

(4.4) A=RSandB=SR.

Pick an integem greater than or equal teupp(A), supp(B), supp(R), andsupp(S). Let [
denote then x n identity matrix. The following set of equations will be our key to transferring
strong shift equivalence results into the polynomial setting.

Polynomial Strong Shift Equivalence Equations (PSSE)
(45) (" (s 1) = (0™ 1)
w (U)LY - ()
4.7) (_is _]R)<é ?) - (—iS I—(iSR)

I o/ I o I
(4.8) (tS I)(—tS I—tSR) = (0 I—tSR)

For each matrix\/ in the PSSE, there isix 2 block structure, which we will use below to define
associated conjugacies. For examfilg (¢5) will denote a conjugacy associated by Lemma 3.6 to
the equation (4.5). Recall, we read composition from left to right.
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Lemma 4.9. Let A, R, S, B be matrices ove,+ satisfying (4.4) witm chosen as above for the
PSSE. Then there is a conjugacy of path space shifts

s (4) -~ o(3 )

defined as a composition of maps from the PSSE equations (4.5),(4.6),(4.7),(4.8) as follows:
F(R,S) = Ry (tS) ' L12(R) ' Ri2(R)L12(tS) = L12(R) ' Ria(R) .

The conjugacyf (R, S) is uniquely determined modulo composition with simple automorphisms,
and it is uniquely determined i, R, S and B are zero-one matrices.

Proof. The proof is a straightforward computation. The second equality displayed holds because
R51(tS) and R12(R) are identity maps, which is possible because from the path space construction
we have equalities of shifts of finite type

tRS 0 tRS 0 0 0 0 0
P( 0 O>_P<t5 0) and P<tS tSR)_P(O tSR)

Given the lemma we have the following definition.

Definition 4.10. Given A, R, S, B as in Lemma 4.9, let(R, S) denote the conjugacy of path space
shifts P(A) — P(B) defined asf (R, S) f(I, B)~*.

Next we specify a definite choice &, when)/ is zero-one, in which casg (A4) = Xaany# =
X, - (The truth of Propositions 4.1 and 4.2 does not depend on the particular choice.)

Definition 4.11 (Definition of ®;,,). If M is a zero-one matrix and € P(tM), let {(ry,tx)} be
a sequence representimgsuch that, = 0; then®,,,(x) is the pointz in X, such thaty, is the
unique edge from the initial vertex of, to the terminal vertex ofy.

We can now turn to the proof of Proposition 4.2.

Proof of (4.2). The basic idea of the proof is simple: we've known since Williams [Wi] that any
conjugacy of shifts of finite type defined by zero-one matrices arises from some strong shift equiv-
alence using zero-one matrices, and the PSSE lets us transport this result to the polynomial matrix
setting. The complication is now only in precisely tracking definitions.

By definition a conjugacyA from (X (tA),o(tA)) to (X (¢tB),c(tB)) is a conjugacy from
(Xgeay#,0ppay#) 0 (Xppy#, opey# ). From (A.14) we know that\ is the subdivision of a con-
jugacy from(X 4,04) to (X, 0p). This means that

(4.12) A =] e(R 8

where(R;, S,) is the subdivision of a strong shift equivalende;, S;) in the category of zero-one
matrices.

Now &(R,S) = (®;4) te(R,S)®,5, and it suffices to prove(R',S) = &(R,S) when the
elementary strong shift equivalen¢g, S) : A — B of (4.4) is a strong shift equivalence in the

category of zero-one matrices.
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We computeli2(R) : z — z andR;2(R) : z — w where

0 R
zeP(tS 0)’

tA 0 tA 0
xeP(tA):P( 0 O)ZP(tS O),and

0 O 0 O
weP(tS tB>_P(tC),whereC_(0 B)’
Consider the diagram

(4.13)

Herer; is one of theRy,,;, constant term arcs from; to [, ands;t is one of theS;,
arcs of length one from to k; ;. We use the notation

.+, bower term

z={...,r_1,t5_1,|70,tS0, ...}
when the equivalence classontains asequenge. ., (r_1,t_2), (ts—1,t—1), (ro, to), (ts0,t1) . . .}
with to = 0 (i.e., the vertical bar specifies that the rouge'begins at time 0”). We havé < k; <n
andn + 1 < I; < 2n. Because the matricdsS andS R are zero-one; determines uniquely the ad-
ditional routes/edges dP(A) and P(C), denotedi;t andc;t. Examination ofL,5(R) and R12(R)
shows that
x={...,a_1t,|aot,...} and w={... c_1t,|cot,...}.

and thereforev = f(R, S)(z). Lety = e(R, S)(z), i.e., f(I, B)(y) = (w). Theny is equal tow
except for a permutation of indices: i.&.,.= p; + n. Examination of the proof of the construction
of ¢(R’, S") in [W4,Section 2] now shows thatR’, S") = &(R, S) as required. O

Proof of (4.3). First supposel(0) is nonzero. Then there exists some emyy(t) such that

. Akl(O) 75 0 and

e row | of A(0) is zero.
Leta = Ay (0) and setE = Ey,;(«). Define amatrixd’ by E(I — A) = I — A’; this gives a positive
row operation taking — A to I — A’, and the number of nonzero entriesAn(0) is one less than
in A(0). After applying a finite sequence of such moves to remove all nonzero constant tedms of
we arrive at a matrixC'(t) such that”'(0) = 0.

We next produce a zero-one matiix and a path of positive row and column operations from

I —tDtolI — C. Suppose™ < C,, with n > 1; for concreteness, let = 3 (which is essentially
the general case). In the graph, there is a corresponding route

O O q|

tS

Letr, s be distinct indices for whicld’ has zero rows and zero columns. We will produce a path
of positive row and column operations @from a matrixC”’ whose grapi{C”')* agrees with the
graphC” except that the route above is replaced by the path
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Claim 4.14. There is a matrixC"" as described above and a path of positive row and column oper-
ations overZ*[t] fromI — C" to I — C.

Proof of (4.14). There are two cases depending on whethgrq or p = q.

Case 1:p # ¢ . Write the vertices o€” in the orderp, r, s, ¢ followed by the other vertices. Then
I — C"” has the form

l—a(t) —t 0 —b(t) =

0 1 —t 0 0

I-C" = 0 0 1 —t 0
—c(t) 0 0 1-d(t) =

* 0 0 * *

where the last row and column indicate the remaining portioh-efC” (which agrees witd — C).
Then! — C has the form

l—a(t) 0 0 —bt)—t> x

0 1 0 0 0

I1-C = 0 0 1 0 0
—(t) 0 0 1-d(t) =

* 0 0 * *

A sequence of positive row and column operations flom C” to I — C'is (from left to right)
Rsq(t) , Rys(t) , Rrg(t2) , Lypr(t) , Lps(?) .

Case 2:p = ¢ . Write the vertices of” in the order, r, s followed by the other vertices. We have
the forms

l—a(t) -t 0 =x l—a(t)—t> 0 0 x

0o 0 1 -t 0 o 0 1 00
- = —t 0o 1 0 |~ I-c= 0 010
* 0 0 = * 0 0 =x

A sequence of positive row and column operations fiomC’ to I — C'is (from left to right)

Rys(t) ) Lpr(t) s Lps(t?) ) Rep(t) -
This finishes the proof of the Claim 4.14. O

Iterating the move provided by the Claim, we produce the required path of positive row and
column operations fromh — C to I — ¢ D with D a zero one matrix. Becausg” andD are zero-one
matrices which define topologically conjugate shifts of finite type, it follows from Proposition 4.2
that there is a path of positive row and column operations between them. Concatenating paths gives
the required path fronh — Ato I — t A%, O

Discussion of simple automorphisms 4.15.
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Here is an example illustrating why the definition of simple automorphisms in (2.14) yields the
same group as Nasu’s original definition in [N]. Consider a portiod‘ofvhich hasm power term
routes of length two going from the primary vertgxo the primary vertex as in the following
diagram.

(4.16) O 4]

mt?

Any permutationy of thesem routes determines a permutatiémof them routes of length one from
the primary vertex to the primary vertey in the diagram below.

(4.17) - T’?@

Observe thap gives a simple automorphism in the sense of [N]. Bétbe the graph obtained from
AP by replacing (4.16) with (4.17). The conjugacy frqi(B), o (B)) to (P(A), o (A)) intertwin-
ing @ andg is L, (t) followed by R,.,(mt). This procedure is callezipping

5. ZETA FUNCTIONS AND DIMENSION MODULES

This section generalizes the material in [KRW] on zeta functions and dimension modules to shifts
of finite type built from nonnegative polynomial matricaswith finite support satisfying NZC.

The Zeta Function

We define the zeta function 6X (A),c(A)) to be

(5.1) Calt) = Car(t) -

By Proposition 4.3 and the formulas in (3.2), we know that
(5.2) defl — tA%) = de{I — A) .
Consequently

(5.3) dett] — A%) = t'de(I — A(t™1))

where the matrix4# is v x v and whereA(¢~!) is obtained fromA by substitutingt—! for ¢. The
Bowen-Lanford formula [Sm] for the zeta function yields

(5.4) Ca(t) = m
and we also have
(5.5) Entropy of( X (A),0(A)) = log(Aa)

where) 4 is the largest root of'det(7 — A(t71)).

The Dimension Module

We will present the dimension modulé&(A), G+ (A), s(A4)) of (X(A),o(A)) as an ordered
Z[t,t='] module, and then show in (5.16) that this matches the usual definition of the dimension
triple of { X 4#, 0 4% }. Letn denote a positive integer. Lét” be the standard free, left|t]-module
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of rankn. Let F*° denote the free, lefZ[t]-module which is the direct sum of countably many
copies ofZ[t]. Elements off™ and F">° will be written as row vectors. Define

(5.6) G(A) = Coker(I — A) = F*/Image(I — A) .
Letn > supp(A). The inclusionF™ C F*° induces an isomorphism
(5.7) F"/Image(I(n,n) — A(n,n)) = F*°/Image(I — A)

where, as in the AppendiX(n,n) andA(n, n) are the finiten x n-matrices obtained by considering
just the firstn rows and columns of and A. ThereforeG(A) is a finitely generated [¢]-module.

The action of onG(A) is invertible. To see this, pick large enough that (by the NZC condition)
the matrixA™ has no constant term, and ét= (1/¢) A™; then for everyjv] in Coker(I — A) we
have

[v] = (t))C = [o(I = tO)] = p(I = A")] = p(I = A)(I + A+ -+ A" )] = [0]

soC gives the required inverse. Consequently, we may (and from here do) &gayds aZ[t, ¢ ']
module. Then we define

the endomorphism of th&([t, t—]-moduleG(A)

coming from multiplication by 1.

Let F'° denote the subset af* consisting of elements that have all coordinates nonnegative.
Define

(5.9) G*(A) = Image of F3° in G(A) .

(5.8) s(A) =

Let X be a polynomial matrix of finite support and assume there is a permutation ritagtich
that PX P~! is upper triangular with diagonal entries equal to zero. The matrixX is invertible
over Z[t]. Let A be a polynomial matrix of finite support. As in (3.5), define the maRiky one of
the equations
I-B (I+X)I-A)
I-B (I —A)(I+X)
Corresponding to the first and second equations respectively, we have two commutative diagrams
of exact sequences of leftt, t—!]-modules which induce isomorphisms6ft, t~!] modules. The
first diagram is

(5.10)

(5.11) 0 P> —— P> ——>G(A) —=0
TI-{-X IT 1
0 F® ——= F>* ——>G(B) —>0

In this case(#(A) = G(B) and the induced isomorphism &f¢,¢~1] modules is the identity. The
second diagram is

(5.12) 0 P> 4 P> ——>G(A) —0
IJ/ I+Xi g(X)
0 F* 4 F* —> G(B) —0

which yields the isomorphism &f[t,¢~] modules
(5.13) 9(X): G(A) — G(B)
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Proposition 5.14. Assumed is a nonnegative polynomial matrix satisfyiNgC. If 0 < X < A
and X? =0, then
9(X) : (G(A),GT(A),5(4)) — (G(B),G*(B),s(B))
is an isomorphism of dimension modules.
Proof. SinceX > 0 we know that/ + X takesF:° into F'3°. Thereforeg(X) takesG*(A) into
GT(B). ltisinjective, becausg(X) is an isomorphism. It remains to verify thatX') takesG+ (A)
ontoG™*(B). The conditionX? = 0 yields the matrix equation
I=(A-X)I+X)+(I-A)I+X)=A-X)I+X)+ (I -B) .
So modulolmage(I — B) we see that any elemeatof G*(B) is of the form
w=v(l+ X)
wherev = w(A — X) lies in F¢° becaused — X > 0.
O

Remark 5.15. We defined the dimension moduleéfas the ordered[t, ¢ '] modulecoker(I—A)
from the action off — A on F’>°, whereF = Z[t]. Using instead” = Z[t,t~!] would produce an
isomorphic module, with isomorphism induced by the inclustdf) — Z[t, ¢ 1].

If M is ann x n matrix overZ™, let (GM,GL,SM) denote the usual dimension group triple
defined by direct limits. Recall, as a $&t; = {[(v, k)] : v € Z", k € N}, with [(v,7)] = [(w, j)]
iff vAITE = wA*F for somek > 0; GT, = {[v] € Gar : v > 0}; andsyy : [v] — [vM].

Proposition 5.16. AssumeA is a honnegative polynomial matrix satisfyiNgZC. There is an iso-
morphism of triples

(G(A), G (A),5(A)) = (Gax, Gy, 5a%) -

Proof. As in [KRW] or [LM], the rule [t*v] +— [(v, k)] defines an isomorphism
(G(tA#), G (tA#), 5(tA%)) — (Gaw, Gy sa%) -
The result now follows from (5.14) and (4.3). O

An irreducible componenbf a directed grapld is a subgrapti such that any two verticesand
j in H may be joined by a directed path frano j using edges irf and, moreoverf is contained
in no larger subgraph with this property.

Corollary 5.17. Let A and B be nonnegative polynomial matrices satisfyiigC. Then the follow-
ing conditions are equivalent:
(G): There is an isomorphism between thig, t ~]-modulesG (A) andG(B).
(E): Thereis a sequence of row and column operations &f8rconnectingl — A andl — B.
If, in addition, the graphsA® and B” each have one just one irreducible component, and this com-
ponent is primitive, then botfG) and (E) are equivalent to

(G™): There is an isomorphism between the dimension module tripléd), G*(A), s(A))
and(G(B), G*(B). s(B)).
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Proof. That condition (E) implies (G) comes from (5.13). We now show that (G) implies (E). From
(5.16) we know that (G) implies there is an isomorphi8&y«, s 4# ) ~ (Gp#, sp#). The proof of
Krieger's result [LM,7.5.8] shows that# and B# are shift equivalent oveZ. Effros and Williams
showed this impliest# and B# are strong shift equivalent ovér. See [W3]. The PSSE show that

I — tA# andI — tB# are connected by row and column operations g¥g}. Therefore, so are

I — Aandl — B by (4.3).

Clearly (G") implies (G). We want to show (G) implies (G under the assumption that and
B’ each have just one irreducible component, which is primitive. This property is respected by
positive elmentary row and column operations, so by Prop. 4.3 it is inherited by the gréihis
and(B#)". From (5.16) we know that there are isomorphisms of dimension module triples

(G(M)7G+(M)35(M)) = (GM#aGXI#asM#) = (qufdaG;I#dstfd)

for M = Aand M = B where, as in the Appendimﬁl is a nondegenerate zero-one matrix
connected ta\/# by a path of strong shift equivalences R6(Z0). SinceA(0) = B(0) = 0,
the graphsA# and B# come fromA” and B” by considering all vertices to be primary. Therefore
the graphsAfd andde are primitive. For primitive matrice® and@, it is well known [LM] that
isomorphism of G, sp) and(Gg, sq) implies isomorphism ofGp, G}, sp) and(Gq, G, 5q).

(I

6. CLASSIFICATION

This section summarizes the discussion of conjugacy and eventual conjugacy [LM] in terms of
row and column operations on polynomial matrices of finite support.

Theorem 6.1. Let A and B be nonnegative polynomial matrices satisfyMgC. There is a con-
jugacy betweer{ X (A),o(A)) and (X (B),o(B)) iff there is a path of positive row and column
operations ovetZ *[t] connecting/ — Aand/ — B.

Theorem 6.2. Let A and B be nonnegative polynomial matrices satisfyiigC. Assume the graphs

A® and B’ each have just one irreducible component, which is primitive. There is an eventual con-
jugacy betweeilX (A),o(A)) and (X (B),o(B)) iff there is a path of row and column operations
over Z[t] connectingl — AandI — B.

Examples 6.3.Here are examples of (6.1) for the matrices

t 1 t t 2t 0 t t
=(ha)om=(ia) e (T n) =(00)
All these give the shifts conjugate (X, o2) which comes from the matri€’. The matrix] — C'is
obtained froml — A by first multiplying on the left byF;5(1) and then on the right b, (¢). The

matrix I — C'is obtained froml — B by first multiplying on the left byF15(¢) and then on the right
by E51(1). The matrix] — D is obtained from?/ — A by multiplying on the right byF5(1).

Remark 6.4. If we presented shifts of finite type only by matrices ok#r" [¢] (as in [KRW]), then

it would be impossible to produce a path of elementary positive equivalenced fro@ito I — D,

with C, D as in (6.3) above. This motivates the presentation of shifts of finite type by matrices over
ZT[t] satisfying NZC.

Let A and B be nonnegative integral matrices of finite support. Recall from [LM] the following
well known facts:(X 4,04) and(X g, o) are conjugate iffA and B are strong shift equivalent over
7T, (Xa,04) and(Xp, op) are eventually conjugate iff the matricdsand B are shift equivalent
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over Z; primitive matricesd and B are shift equivalent over  iff they are strong shift equivalent
overZ. Parallel to (6.1) and (6.2) we have the following results.

Theorem 6.5. Let A and B be nonnegative integral matrices. Thehand B are strong shift
equivalent oveZ* iff there is a path of positive row and column operations a¥ert] connecting
I —tAandl —tB.

Theorem 6.6. AssumeA and B are integral matrices. Then and B are strong shift equivalent
over Z iff there is a path of row and column operations ov#t] connectingl — tA andl — tB.

Proof of (6.1). This is really just a combination of the results (3.3) and (4.1). O

Proof of (6.2). If there is a path of row and column operations ov&t] connecting/ — A and
I — B, then the dimension modules(A) and G(B) are isomorphic. Acccording to (5.16) and
(5.17) this implies there is an isomorphism between the dimension module t@ples G, s.4#)
and (Gg#,GL,,sp#). Therefore, we have an eventual conjugacy betwg€nd), o(A)) and
(X(B),o(B)). Conversely, if(X(A),0(A)) and (X(B),o(B)) are eventually conjugate, then
there is an isomorphism of dimension module trip@éSA#,ng#,sA#) and (GB#,GE#,SB#).
Using (5.16) and (5.17) , we conclude there is a sequence of row and column operatiof#gtpver
connecting/l — A and/ — B. O

Proof of (6.5). This is a special case of (6.1), becaysd}# = A" and because there is the subdi-
vision strong shift equivalendg? 4, 54) : A — A" asin (2.1) of [W4]. See the Appendix. O

Proof of (6.6). This just like the proof in (5.17). If —tA andI — ¢t B are connected by row and col-
umn operations, thefG(tA), s(tA)) = (G4, sa) and(G(tB), s(tB)) = (Gg, sp) are isomorphic.
Conversely if the dimension groups are isomorpHignd B are strong shift equivalent ovér. The
PSSE show that — tA andI — tB are connected by row and column operations @&/g}. O

7. THE INTEGRAL GROUPRING SETTING

Much of the material in the previous sections can be developed WHeis replaced byZ +[G]
whereG is a group. For simplicity we just state ti&"[G] version of the main algebraic classifi-
cation theorem. This has various applications and interpretations depending on the cligi¢erof
example, classifying fre& actions on shifts of finite type whe@ is finite or classifying Markov
chains whert is free abelian. See [B2, BS, MT, P].

LetA = Z[G]. Letp = > pgg andv = > v,g. Definep < viff p, < v, for all g. Define
At = ZT[G] to be thoseu = >~ g9 Wwherep > 0, i.e.,pg, > 0forall g. Let A = {A;;} be
a matrix of finite support with entried;; in A*[t]. AssumeA satisfies theno Z-cycles condition
(NZC). This means that

(7.1) The matri{ A| obtained by letting = 0 and eacly = 1 has no cycles.

The first step is to define the weighted graph. Consider the matrix entryt;;. This is a sum of
terms of the formyt? whereg is a group element i6f andp > 0. If p = 0, place a dotted arc from
the primary vertex to the primary vertey and give it the weighy. If p > 1, place a solid route
from ¢ to j consisting ofp subarcs. Give the first arc the weightaind give the remaining arcs the
weighte, the identity element in the grou@. To obtain the matrixd# with entries inA*, we let
the setS# of states be quintuples

o= (Za O/,j,OL//, k)
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as before in (2.6) , but now in addition the consecutive args. ., a.in o/ and the aray” in A
have weights. Choose an ordering%t. Let 3 = (p, 3, ¢, 3", r) be another state. We then define

A* 8% x §* - @G
as follows:

Case 1A. We havée = p, j = q, k = r, anda’/ = [8’. The arca” is the first one along the power
term route fromj to k and3” is the second arc fromto k.

A (o, f) = {H weight (o, ) }weight(a”)

Case 1B. We have=p, j = ¢, k = r, anda’ = 3. The arca’ is at least the second arc along the
power term route fromj to £ and3” is the arc fromj to k& which followsa” .

A#(a,B) =

Case 2A. The subakg” is the only arc along a power term route frgno k& and has ending vertex
k. We requirek = p, and we require that the subas€ be the first one along a power term route
from g to r. In particular, the beginning vertex gf’ is q.

A*(a, ) = {H weight (o, ) }weight(a”)

Case 2B. The ara” is the last one along a power term route frgrto £ which has length at least
two, and the ending vertex ef’ is k. We requirek = p, and we require that the subast be the
first one along a power term route framo r. In particular, the beginning vertex ¢f’ is q.

A (a,f) =e
Case 3. Otherwisd* (o, ) = 0.

Algebraic Classification Theorem 7.2.Assumed and B are matrices oveA ™ [¢] with finite support
which satishNZC. ThenI — A andI — B can be connected by positive row and column operations
over At [t] iff A# and B# are strong shift equivalent over'.

The proof that SSE implie§ — A andI — B can be connected by positive row and column
operations oveA ™ [t] comes directly from the PSSE. The proof in the opposite direction comes by
showing that state splittings and mergings in the constructidiy.gb) and R, (b) give rise to cor-
responding strong shift equivalences oxer.

APPENDIXA. APPENDIX

The purpose of this section is to clarify a certain nondegeneracy condition which has appeared
in earlier discussions of shifts of finite type and their automorphisms in the context of strong shift
equivalence theory. The main reason for this is that relaxing the nondegeneracy condition gives al-
gebraic flexibility which is necessary for relating strong shift equivalence theory to the positive row
and column operation approach to shifts of finite type and their automorphisms which is developed
in this paper.

Let P = (P;;) be a zero-one matrix dfnite supportwhere the indices and; run through the
positive integers. This means thBf; # 0 for at most finitely many pairs of indices, j). The
supportof P is the least integet = supp(P) such thatP;; = 0if ¢ > norj > n. If P =0, we let
supp(P) = 1. Any finite n x n matrix will be considered as an infinite matrix of support less than
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or equal ton by appending identically zero rows and columns to it. As in [LM], construct the shift
of finite type{Xp,op} from P as follows:

(A1) Xp = {

bi-infinite sequencest = {x;} where
P(zy,xp41) = 1for —oo < k < o0.

If i is a state (i.e., a positive integer) such thatifierow or thei** column is zero, thendoes not
appear as a symbal, in anyz in Xp. The shift mapp : Xp — Xp is defined byop(z) = y

wherey, = x+1. Xp has the product topology which makes it a Cantor setands the shift

homeomorphism{ X p, op} is thevertex shifassociated t&. More generally, ifP is a matrix over
Z7T, then there is thedge pathshift of finite type(X p, op) associated td by the formula

(A.2) (Xp,op) = {XP/7UP'}

whereP" is the zero-one matrix of the edge path presentation of the directed graph arising fism

in [LM]. Namely, the states are the arcs in the directed graph associafedatod P’ (a, 3) = 1 iff

the end vertex ofv is the start vertex of.. Strictly speaking, an order of the arcs is chosen as well to
get the matrixP’. If another order is chosen, corresponding féwvill be conjugate to the first one
by a permutation, and the resulting vertex shifts will be topologically conjugate.idfa zero-one
matrix, there is a topological conjugacy betwdetip, op} and{X, 0 }. See the discussion of
subdivision below.

Let @ be a zero-one matrix of finite support. A strong shift equivaleiReS) : P — @ in the
categoryZO of zero-one matrices with finite support is a zero-one mafriaf finite support and
zero-one matrixs of finite support satisfying the strong shift equivalence equations

(A.3) P=RSandQ = SR .
This data produces a conjugacy
(A.4) o(R,S) : {Xp,op} = {Xq,0q}

in the following way . Letr = {z;} be inXp, and lety = {y;} in X be the image of under
¢(R,S). We know that

1= Az, 2541) = 3 R(z1,0)S(p, Th11) -
p

Since the matriced, R, andS are zero-one, there is exactly améor which R(zx, p)S(p, zx41) =
1. We set

(A.5) Yo =D -

A strong shift equivalencéR, S) : P — @ of matrices with finite support over+ is defined
similarly and induces a conjugacy

(A.6) ¢(R,S): (Xp,op) — (Xg,00)

which is well defined up to simple automorphisms. See [W4, Section 2].

Now as in [W2,W4] construct the spac&sS(Z0) and RS(Z*) of strong shift equivalences
for zero-one orZ+ matrices with finite support. We then have the following two versions of R.F.
Williams’ results in strong shift equivalence theory.

Theorem A.7. Up to topological conjugacy shifts of finite type are in one-to-one correspondence
with the path components 8§ (RS(Z0)) of RS(ZO). The inclusionRS(Z0O) c RS(Z*)induces
a bijection of path components (RS(Z0)) = mo(RS(ZT)).
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Theorem A.8. Let A and B be zero-one matrices. Any topological conjugacy {X 4,04} —
{XB,op} can be written as a composition

o = H C(Ri, SZ)SL

corresponding to a path of strong shift equivalences connectiagd B in RS(ZO).

We will give proofs for these theorems below. The point of these theorems is to eliminate the
following nondegeneracy condition which has often been tacitly and/or explicitly assumed in the
literature. LetX = {X,;} be a matrix with finite support. LeX'(m, n) be the finitem x n matrix
obtained by considering the first rows and the first. columns ofX. We sayX is anm x n matrix
provided

(A.9) Xij=0ifi>morj>n
and we say am x n matrix X is nondegeneratgrovided
(A.10) no row or column ofX (m, n) is entirely zero.

Let RS,4(Z0) andRS,,4(Z") denote the subspaces®F (Z0) andRS(Z") formed by taking
vertices to be nondegeneratex m matricesP and edge$R, S) : P — @ between a nondegen-
eratem x m matrix P and a hondegeneratex n matrix () to be a nondegenerate x n matrix
R and a nondegenerate x m matrix S satisfying the strong shift equivalence equations (A.3).
The nondegeneracy condition we are referring to is that Theorem A.7 and Theorem A.8 are usually
stated withR.S,,4(Z0) andRS,,4(Z™") instead ofRS(Z0O) andRS(Z™"). The technical reason for
this is the requirement that all atoms of a Markov partition are assumed to be nonempty sets. See
[W1,W2,W4,BW].

Proposition A.11. Let A # 0 be a zero-one oZ* matrix of finite support. Then there is a path in
RS(Z0), respectivelyRS(Z™"), from A to some nondegenerate matedx, ;.

The proof of Proposition A.11 follows immediately from repeated application of Lemma A.12,
for which we need two definitions. I is anm x m matrix such thaP’(m, m) is invertible, then we
let P~! denote then x m matrix such tha®=!(m,m) = P(m,m)~!. If X is anm x m matrix,
then we sayX is trimmableprovided there is a row or column &f (m, m) which is entirely zero.

Lemma A.12. AssumeX is a trimmablem x m zero-one orZ+ matrix which is not identically
zero. There is am x m permutation matrix” and a two step path of strong shift equivalences
(P,P7'X): X - P 'XP
(R,S): PIXP—Y
in RS(ZO) or RS(Z™) respectively wher& is ann x n matrix withn < m.

Proof of A.12.We give the proof for the case whexi(m,m) has a zero column. The argument
when it has a zero row is similar. L&t be anm x m matrix such thatP(m, m) is a permutation
matrix and the last column @~ ! X P is zero. Leth = m — 1 and write

e, (Y O
P XP_(U 0)

whereY is an x n matrix andU is al x n matrix. Define then x n matrix R and then x m matrix

S to be
r=(1) S=(10)
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where! is then x n identity matrix. Then we have the strong shift equivalence equations

P71XP=RSandY = SR .
O

Proof of (A.7). One result in R.F.Williams’ paper [Wi] as formulated in [W2] is that the isomor-
phism classes of shifts of finite type are in one-to-one correspondence with the path components of
mo(RSRra(Z0)). So the first step in proving (A.7) is to show that

70(RSna(Z0)) — mo(RS(Z0))

is a bijection. Proposition A.11 shows this map is onto. To show this is one-to-one, suppose there is
a pathI’ of strong shift equivalences iRS(ZO) connecting the nondegeneratex m matrix A to
the nondegeneratex n matrix B. The construction (A.4) above yields a topological conjugacy
(Xa,04) — (XB,0p). Then Williams’ work as formulated in [W2] says thatarises from a path
I'nqin RS,4(ZO) connectingd andB. To verify the last statement of (A.7), observe that the proof
in [W4] showing mo(RS,a(Z0)) = mo(RSpa(Z1)) also showsry(RS(Z0)) = m(RS(ZT)).

O

Proof of (A.8).Leta : {X4,04} — {Xp,0p} be an isomorphism wheré and B are zero-one
matrices with finite support. Use Proposition A.11 to find pdthsandI's in RS(ZO) from A
and B to nondegenerate matricés,; and B,,4 respectively. Letls : {X 4,04} — {Xa,,,04,,}
denote the conjugacy which is the product of the conjugaciBsS)*! corresponding to the edges
inT 4. Similarly, letfg : {Xp,05} — {X5,,,08,,} denote the conjugacy which is the product of
the conjugacies(R, S)*! corresponding to the edgeslins. Then, reading composition from left
to right,
a=04(0,"a0p)05" .

By the version of (A.8) usindg?S,,4(ZO), we know that the isomorphism

9210493 : {XAnd7 UAnd} - {XBnd,7 UBnd,}
is a product of conjugacieg R, S)** corresponding to the edges in a path fretp, to B, in

While the argument for (A.7) does produce some fath, connectingd and B in RS,,4(Z0),
we have not shown thdt is homotopic keeping endpoints fixed to a pathif,,;(Z0). As ex-
plained in [W5] we know that

Aut(o4) = 71 (RSpa(Z0), A)
Aut(oa)/Simp(oa) = m1(RSna(Z7), A)
Question 1Are the natural homomorphisms
m1(RSna(Z20),A) — m1(RS(Z0O), A)
1 (RSnd(Z+), A) — 7T1(RS(Z+),
isomorphisms ?

Question 2 Are the inclusionsRS,,;(Z0) c RS(ZO) and RS,q4(Z*) C RS(Z') homotopy
equivalences ?

We end this Appendix with a discussion of subdivision which is needed in this papet4 Let
be a zero-one matrix. There are two ways to associate a shift of finite tyde fhe first is the
vertex shift{X 4,04} as given above. The second is the edge path construglion, o 4/ } as in
[LM,W4]. In (2.1) of [W4] there is the subdivision strong shift equivalerfégs, S4) : A — A
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which induces the subdivision conjugasy, : {Xa,04} — {X,, 04} If (R,S): A — Bis
a strong shift equivalence of zero-one matrices, the diagram (2.1) of [W4] produces a commutative
diagram of conjugacies

(A.13) {Xa,04} “E5) {XB,0B}
SdAl SdBl
(X0} T {Xp,op}
c(R ,S)

The conjugac;c(R', S') is called thesubdivisionof ¢(R, S). In the category of zero-one matrices
there is no ambiguity im(R/ , S') because there is only one choice to be made in (2.5) of [W4]. An
easy consequence of (A.13) is

Proposition A.14. Any conjugacys : {X ,0 4} — {Xp/, 05 } is the subdivision of the conju-
gacya : {Xa,04} — {Xp,op} Wherea = sdafsdy" (reading composition from left to right).
This means that if we write = [], ¢(R;, S;)“, theng = [, ¢(R;, S; )¢
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