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ABSTRACT. This paper discusses classification of shifts of finite type using positive algebraic
K-theory.

1. INTRODUCTION

Since R.F. Williams’ work in the early 1970’s, one of the main themes in studying shifts of
finite type and their isomorphisms has been strong shift equivalence theory. See the overviews
[B1,KR2,W5]. On the other hand, an important technique in coding theorems and concrete applica-
tions involving shifts of finite type has been state splitting and merging. See [LM, M]. The purpose
of this article is to place state splitting and merging into an algebraic setting directly related to alge-
braic K-theory and to show how this is related to strong shift equivalence theory. We discuss how to
associate a shift of finite type(X(A), σ(A)) to a matrixA which has nonnegative integral polyno-
mial entries and which satisfies thenoZ-cycles condition (NZC)in (2.1). In addition, we show how
positive row and column operations overZ+[t] onI−A as in (3.2) give rise to conjugacies of shifts
of finite type. Fix a pair of indices(k, l) wherek 6= l. Let b be an integral polynomial satisfying
0 ≤ b ≤ Akl. A positive row operation addsb times thelth row to thekth row of I −A, and a posi-
tive column operation addsb times thekth column to thelth column ofI −A. The resulting matrix
is of the formI − B whereB has nonnegative integral polynomial entries and satisfies NZC too.
Corresponding respectively to these row and column operations there are topological conjugacies
Lkl(b) andRkl(b) from (X(A), σ(A)) to (X(B), σ(B)). This generalizes the material in [KRW]
and gives geometric content to thepolynomial strong shift equivalence equations (PSSE)in Section
4. The construction of shifts of finite type in the presence of NZC, and various results of this paper
including Theorem 7.2, are also known independently to K.H.Kim and F.W.Roush.

AssumeA andB are nonnegative polynomial matrices satisfying NZC. The main results are

Classification Theorem (X(A), σ(A)) and(X(B), σ(B)) are topologically conjugate iff there is
a sequence of positive row and column operations overZ+[t] connectingI −A andI −B.

Conjugacy Theorem Every topological conjugacy from(X(A), σ(A)) to (X(B), σ(B)) arises
from some sequence of positive row and column operations overZ+[t] connectingI−A andI−B.

These theorems require the introduction of NZC. See Remark 6.4.
The matricesI−A andI−B are the same in the algebraic K-theory groupK1(Q(t)) iff they are

connected by a sequence of row and column operations over the field of rational functionsQ(t). The
Classification Theorem gives geometric meaning to positive row and column operations overZ+[t].
The Conjugacy Theorem is really part of the Classification Theorem. But we state it explicitly, be-
cause it is the first step in describing the group of automorphismsAut(σ(A)) of (X(A), σ(A)) as
some kind of positive algebraic K-theory groupK2(Z+[t]). A sequence of row and column op-
erations overQ(t) from I − A to itself gives rise to an element inK2(Q(t)). Analogously, the
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Conjugacy Theorem says that any element ofAut(σ(A)) arises from positive row and column oper-
ations overZ+[t] from I−A to itself. To construct the positive algebraic K-theory groupK2(Z+[t]),
it remains to specify what natural relations are satisfied.

Section 2 describes the basic construction of the shift of finite type(X(A), σ(A)). Section 3
discusses positive row and column operationsLkl(b) andRkl(b) and shows how they are related
to the conjugaciesc(R,S) arising from strong shift equivalence theory. Section 4 proves the Con-
jugacy Theorem. Section 5 discusses zeta functions and dimension modules from the nonnegative
polynomial matrix viewpoint. Section 6 proves the Classification Theorem. Section 7 describes the
generalization to matrices over integral group rings. Finally, the Appendix gives background on
strong shift equivalence theory necessary for this paper.

We thank the referee for helpful comments which improved the exposition.

2. NONNEGATIVE POLYNOMIAL MATRICES

Matrices with nonnegative polynomial entries provide a very compact, efficient, and powerful
way of representing shifts of finite type. Perhaps the first appearance of this idea is in Shannon’s
work [Sh] on information theory. In [KRW] and [KOR] the polynomial matrix technique is indis-
pensible in studying automorphisms of shift spaces on the one hand and characterizing the nonzero
spectra of primitive, nonnegative integral matrices on the other. Polynomial matrix methods are used
in [BL] to get small presentations of shifts of finite type, and in [KR1] to construct group extensions
of shifts of finite type.

Consider anonnegative polynomial matrixA = {Aij} whereAij = Aij(t) lies inZ+[t], the set
of polynomials int with nonnegative integer coefficients. The indicesi andj will range through the
positive integers, and we will assume thatA hasfinite support, i.e.,Aij 6= 0 for at most finitely many
pairs of indices(i, j). We will generally letI denote the identity matrix of infinite size. For matrices
appearing in the formI ± U , we will always assumeU has finite support. This section describes
how to construct a shift of finite type(X(A), σ(A)) under thenoZ-cycles condition (NZC)

(2.1) The nonnegative integer matrixA(0) = {Aij(0)} has no periodic cycles.

This construction generalizes the one in [KRW] where it was assumed thatA(0) = 0, i.e., each
polynomialAij is divisible byt. From the viewpoint of this paper, a compelling reason to construct
(X(A), σ(A)) in the presence of NZC is to give geometric meaning in the context of symbolic dy-
namics to the Polynomial Strong Shift Equivalence equations (PSSE) in Section 4. These are similar
to equations found in algebraic K-theory.

The first step is to construct the directed graphA[ as follows: The indicesi andj will be called
theprimary vertices. Suppose

Aij = a0 + a1t + a2t
2 + . . . + antn .

Corresponding to the constant terma0 in Aij drawa0 arcs fromi to j. These will be calledconstant
term routes. Corresponding to the power termaktk in Aij wherek > 0 drawak simple paths of
lengthk from i to j, each havingk edges andk− 1 secondary vertices. These paths fromi to j will
be calledpower term routes. In particular, each route intersects the set of primary vertices only in its
starting vertex and its ending vertex. For example, the matrix

A =
(

t + t2 1 + 2t3

t 0

)
gives rise to the graphA[
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where the constant term route is shown as a dotted arrow and the power term routes are shown as
solid arrows. The nonnegative polynomial matrixA and the graphA[ are essentially identical ways
of presenting the same data, and we will consider them as being the same.

We will explain two equivalent methods for constructing shift spaces fromA[. The first space
(P (A), σ(A)) will use thepath space constructionwhich generalizes the well known edge path con-
struction explained in [LM]. This will be useful in showing how certain elementary row and column
operations on the matrixI − A give rise to topological conjugacies of shift spaces. The second
space(X(A), σ(A)) will come from a zero-one matrixA# of finite size. One of its uses is to show
(P (A), σ(A)) is actually a shift of finite type.

The Path Space Construction

Consider the setP of all sequencesE = {En} = {(rn, tn)}, −∞ < n < ∞ , satisfying the
conditions

(1) Eachrn is a route ofA[, and the end vertex ofrn is the start vertex ofrn+1.

(2) Eachtn is an integer andtn+1 = tn + |rn|, where|rn| is zero ifrn is a constant
term route and is the number of arcs inrn if rn is a power term route.

The intuitive idea is thatE is an infinite trip throughA[ where at timetn the voyager is at the
starting vertex of the routern and is about to traversern. Let Ω denote the (infinite) alphabet
consisting of all pairs(r, t) wherer is a route ofA[ and t is an integer. We giveΩ the discrete
topology and endowP with the topology it inherits as a subset of the infinite productΩZ . We say
E = {(rn, tn)} is equivalentto E′ = {(r′n, t′n)} and writeE ∼ E′ provided there is some integer
m so thatrn+m = r′n andtn+m = t′n for all n. Use the quotient topology to define

(2.2) P (A) = P modulo ∼ .

We remark thatP (A) is compact. To see this, let L be the length of the longest route inA[. Let PL

denote the compact subspace ofP consisting of thoseE satisfying0 ≤ t0 ≤ L. Then the quotient
map fromPL to P (A) is still onto, because the NZC implies that anyE must have0 ≤ tn ≤ L for
somen. Next define a shift mapσ : P → P by the equation

(2.3) σ(E)n = (rn, tn − 1) .
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This respects the equivalence relation∼ and induces a continuous shift map

(2.4) σ(A) : P (A) → P (A) .

The #-Construction

We will now construct a zero-one matrixA# with finite support from the graphA[, and by
definition, we will let

(2.5) (X(A), σ(A)) = {XA# , σA#}

where the bracket notation on the right denotes the standard “vertex shift” construction as explained
in [LM,W5] and in the Appendix.

Special CaseA(0) = 0

This is just the edge path construction for the graphA[. Namely, the set of statesS# is the set of
arcs between primary and/or secondary vertices inA[, andA#(α, β) = 1 iff the end vertex ofα is
the start vertex ofβ.

General Case

The first step is to define the setS# of states ofA#. The states will be quintuples

(2.6) α = (i, α′, j, α′′, k)

where

(1) Each ofi, j, andk is a primary vertex.
(2) If i 6= j, thenα′ is a connected path of constant term routes fromi to j

andα′′ is a subarc of a power term route fromj to k.
(3) If i = j, then there are no paths of constant term routes fromi to j because

of NZC. So we letα′ be the symbolφ, and we requireα′′ to be a subarc of
a power term route fromj to k.

When i = j , the stateα is really just the triple(j, α′′, k). So, for example, ifAjk = t, thenα
is identified with the power term arc fromj to k. But we also writeα as a quintuple as in (2.6) to
preserve uniformity of notation. There are no states consisting only of a constant term path from one
vertex to another.

The next step is to define the transition function

(2.7) A# : S# × S# → {0, 1} .

Let α = (i, α′, j, α′′, k) andβ = (p, β′, q, β′′, r). Then

A#(α, β) = 1 when the conditions in Case 1
or Case 2 below hold

A#(α, β) = 0 otherwise .
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Case 1. We havei = p, j = q, k = r, andα′ = β′. Bothα′′ andβ′′ are subarcs on the same power
term route fromj to k and the ending vertex ofα′′ is the starting vertex ofβ′′.

Case 2. The subarcα′′ is the last one along a power term route fromj to k and therefore the ending
vertex ofα′′ is k. We requirek = p, and we require that the subarcβ′′ is the first one along a power
term route fromq to r. In particular, the beginning vertex ofβ′′ is q.

The final step is to makeA# into ann# × n# matrix wheren# is the number of states. We do
this by

(2.8) choosing an ordering of the setS# .

Two different choices of orderings ofS# will produce matricesA#
1 andA#

2 related by the equation

(2.9) A#
2 = Q−1A#

1 Q

whereQ is a permutation matrix.Q induces a conjugacy from(XA#
1
, σA#

1
) to (XA#

2
, σA#

2
) .

Comment NZC implies that the number of paths consisting only of constant term routes is finite.
ThereforeS# is a finite set, and{XA# , σA#} will be a shift of finite type.

In the case where the constant term matrixA(0) = 0, there are no constant term routes and the
matrix A# is the same as the one constructed in [KRW]. IfA is a matrix overZ+, then{tA}[ is
the graph associated to the matrixA and{tA}# is precisely the zero-one matrix describing the edge
path presentation matrixA

′
of the shift of finite type associated toA. In particular, we have

(2.10) (X(tA), σ(tA)) = {XA′ , σA′} .

See [LM] and the Appendix.

Example 2.11Consider the matrix

A =
(

t 1
t 0

)
.

The graphA[ is

1
$$ %%

2ee

There are three states:

α1 = 1
$$

α2 = 1 // 2 // 1

α3 = 2 // 1

The matrixA# is
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 1 1 0
1 1 0
1 1 0


Hence

(X(A), σ(A)) = {XA# , σA#} = the full Bernoulli 2-shift.

As discussed in the Appendix, we don’t require each row and each column of a matrixM to have a
nonzero entry in forming{XM , σM}.

Example 2.12Consider the matrix

A =
(

t t
1 0

)
The graphA[ is

1
$$ %%

2ee

There are four states:

α1 = 1
$$

α2 = 1 // 2

α3 = 2 // 1 dd

α4 = 2 // 1 // 2

The matrixA# is 
1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


which is just the matrix for the edge path presentation, as discussed in [LM], of the shift of finite
type associated to the graph

1
$$ %%

2ee dd

Hence, we again have

(X(A), σ(A)) = {XA# , σA#} = the full Bernoulli 2-shift.

Equivalency of the Path Construction and the#-Constuction

Theorem 2.13. There is a topological conjugacyΦ : (P (A), σ(A)) → (X(A), σ(A)).
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Proof. Here is howΦ and its inverseΨ : (X(A), σ(A)) → (P (A), σ(A)) are constructed.

Definition ofΦ: Let E = {(rh, th)} represent an infinite path inP (A) where−∞ < h < ∞. We
want to find an infinite allowable sequenceΦ(E) = {Φ(E)n} of states inS#. The NZC condition
(2.1) implies we can write the set of integers as the union of intervals[tp, tp+1, . . . , tp+q+1] where
tp−1 < tp = . . . = tp+q < tp+q+1 and the intervals overlap only at their endpoints. Leti be
the start vertex ofrp, j be the start vertex ofrp+q, andk be the final vertex ofrp+q. If q = 0,
let α′ = φ. If q > 0, let α′ be the path of constant term routes leading fromi to j which is
the concatenation ofrp, . . . , rp+q−1. The power term routerp+q is the concatenation of subarcs
α′′1 , . . . , α′′` wheretp+q+1 = tp+q +`. Then we letΦ(E)n = (i, α′, j, α′′s , k) wheres = n+1−tp+q

for tp+q ≤ n < tp+q+1.

Definition of Ψ: Let x = {xp} be in X(A) wherexp = (ip, α′p, jp, α
′′
p , kp). We want to get

Ψ(x) = {(rn, tn)} in P (A). The constant term pathsα′p and the power term routesα′′p fit together
compatibly to produce a sequence of primary vertices{vn} and a sequence of routes{rn} wherern

goes fromvn to vn+1. To establish the indexing of these routes which concatenate together, it suf-
fices to specifiy thatr0 is the power term route containing the arcα′′0 . To get the required sequence
of times{tn}, first let t0 = −(k − 1) = 1 − k whereα′′0 is thek-th arc alongr0 going fromv0 to
v1. Then we recursively definetn for n 6= 0 by the conditiontn+1 = tn + |rn|.

Verification thatΦ andΨ commute withσ(A) and that they are continuous inverses of each other
is straightforward.

�

For future reference, we now generalize Nasu’s definition [N,W4] of simple automorphisms of
a shift of finite type. His work has played an important role. Anelementary simple automor-
phismof (X(A), σ(A)) is one coming from an automorphism of the graphA[ which fixes the
primary vertices. Asimple automorphismof (X(A), σ(A)) is one of the formαΘα−1 where
α : (X(A), σ(A)) → (X(B), σ(B)) is a topological conjugacy andΘ is an elementary simple
automorphism of(X(B), σ(B)). Composition is read from left to right.

Definition 2.14. Simp(σ(A)) is the subgroup ofAut(σ(A)) generated by simple automorphisms.

We briefly discuss in (4.20) below why this yields the same group as Nasu’s original definition.

3. POSITIVE ROW AND COLUMN OPERATIONS

In this section we discuss how positive row and column operations on matrices give rise to conju-
gacies between shifts of finite type defined by matrices satisfying NZC. In this section, as elsewhere
in this paper, composition is read from left to right. Also, we use the terms conjugacy and topologi-
cal conjugacy interchangeably.

Let A = {Aij} be a nonnegative polynomial matrix with finite support satisfying NZC (2.1). Fix
an entryAkl of A wherek 6= l, and letb denote a polynomial inZ[t]. Let Tkl(b) denote the matrix
which has the entryb in thekth row andlth column and zeros elsewhere. LetI denote the infinite
identity matrix. Define

(3.1) Ekl(b) = I + Tkl(b)
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Ekl(b) will be called apositive shearif b lies in Z+[t]. Define a new matrix of finite supportB by
one of the equations

(3.2)
I −B = Ekl(b)(I −A)
I −B = (I −A)Ekl(b)

We will say thatEij(b) goes fromI −A to I −B .

If a(t) =
∑

r art
r andb(t) =

∑
r brt

r are polynomials, we definea ≤ b iff ar ≤ br for each
r. We also defineZO[t] to be the set ofzero-one polynomials: those polynomialsa(t) =

∑
r art

r

such that each coefficientar is equal to zero or one.

Positive Shear Lemma 3.3.Assume0 ≤ b ≤ Akl. ThenB is nonnegative and satisfiesNZC.
Corresponding to the first and second equations in (3.2) respectively there are conjugacies

Lkl(b) : (P (A), σ(A)) → (P (B), σ(B))

Rkl(b) : (P (A), σ(A)) → (P (B), σ(B))

The conjugaciesLkl(b) andRkl(b) are uniquely determined up to composition on the left by elements
in Simp(σ(A)) and composition on the right by elements inSimp(σ(B)). If A and B have all
entries inZO[t], then the conjugaciesLkl(b) andRkl(b) are uniquely determined.

Proof. For simplicity, letb = tp be a single route from the primary vertexk to the primary vertexl
of lengthp ≥ 0. The matrixB (i.e., the graphB[) is obtained from the matrixA by first deleting
the routeb betweenk and l and then inserting a router′ of length |r′| = p + |r| from k to q for
each router starting atl and ending atq. Every infinite trip throughA corresponds uniquely to a
concatenation of routes inB and this determinesL. More precisely, letE = {(rn, tn)} be inP (A).
Consider a part ofE like

. . . , (rn, tn), (rn+1, tn+1), (rn+2, tn+2), . . .

wherern = b andrn+1 = r as above. Delete(rn+1, tn+1) and replace(rn, tn) with (r′, tn). Note
thattn+2 = tn + |r′|. The result is just a subsequenceE′ of E where some of the items have been
changed. Now renumber this subsequence in an increasing fashion so that it becomes a sequence
E′ = {E′

n} wheren runs throughall the integers. The equivalence class modulo∼ of E′ does not
depend on this renumbering, so the ruleE → E′ induces a mapL : P (A) → P (B). This mapL is
bijective;L andL−1 are continuous; andLσ = σL.

In the case thatb is a sum of termstp, to defineL we make the replacements above separately for
each summandtp of b. There is no contradiction of definitions becausek 6= l. The only freedom in
the construction involves the choice of particular corresponding routes, in the case that an entry of
A or B has the form

∑
r art

r with somear > 1. Permutations of such routes are given by simple
automorphisms.

�

We now discuss a generalization of the Positive Shear Lemma. IfP = {Pij} andQ = {Qij} are
nonnegative polynomial matrices, we sayP ≤ Q providedPij ≤ Qij for each pair of indices(i, j).

AssumeX is the conjugate of an upper triangular matrix by a permutation. Define an invertible
matrix

(3.4) E(X) = I + X .
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Let A be a nonnegative polynomial matrix satisfying NZC as in (2.1). Define a new matrixB by
one of the equations

(3.5)
I −B = E(X)(I −A)
I −B = (I −A)E(X)

Generalized Positive Shear Lemma 3.6.Assume0 ≤ X ≤ A andX2 = 0. ThenB is nonnegative
and satisfiesNZC . Corresponding to the first and second equations in (3.5) respectively there are
conjugacies

L(X) : (P (A), σ(A)) → (P (B), σ(B))
R(X) : (P (A), σ(A)) → (P (B), σ(B)) .

If A,X and B have all entries inZO[t], then the conjugaciesL(X) and R(X) are uniquely de-
termined. For the category of matrices overZ+[t], L(X) and R(X) are well defined up to mul-
tiplication on the left by elements inSimp(σ(A)) and multiplication on the right by elements in
Simp(σ(B)).

Proof. The proof is a straightforward generalization of the proof for the Positive Shear Lemma. The
idea is that the conditionX2 = 0 allows the construction in (3.3) to be done at various places inA
simultanously in view of the following lemma. �

Lemma 3.7. Let X be a nonnegative polynomial matrix satisfying the conditionX2 = 0. Then
there are disjoint sets of indicesI andJ such thatXij = 0 unlessi is in I andj is in J .

Proof. Let I be the set of those indicesi such thatXij 6= 0 for somej. Let J be the set of those
indicesj such thatXij 6= 0 for somei. Nonnegativity withX2 = 0 impliesI ∩ J = 0. �

4. CONJUGACIES

The purpose of this section is to show that all conjugacies between shifts of finite type are gener-
ated by the positive row and column type conjugaciesLkl(b) andRkl(b) of (3.3). Polynomial matri-
cesA, B, etc. will have finite support. For each such matrixM satisfying NZC, we fix a topological
conjugacyΦM : (P (A), σ(A)) → (X(A), σ(A)). To any conjugacyL from (P (A), σ(A)) to
(P (B), σ(B)), we associate a conjugacyL = (ΦA)−1LΦB from (X(A), σ(A)) to (X(B), σ(B)).

Theorem 4.1. Let A and B be nonnegative polynomial matrices satisfyingNZC. Any conjugacy
∆ : (X(A), σ(A)) → (X(B), σ(B)) can be written as a composition

∆ =
n∏

i=1

Ckili(bi)εi

whereA0 = A, An = B, andCkili(bi) is a positive row or column conjugacyLkl(b) or Rkl(b) as
in (3.3) which goes fromI −Ai−1 to I −Ai if εi = 1 and fromI −Ai to I −Ai−1 if εi = −1.

This will be a consequence of the next two results. The first is a special case of (4.1).

Proposition 4.2. LetA andB be zero-one matrices. Any conjugacy
∆ : (X(tA), σ(tA)) → (X(tB), σ(tB)) can be written as a composition

∆ =
n∏

i=1

Ckili(t)
εi

whereA0 = tA, An = tB, andCkili(t) is a positive row or column conjugacy as in (3.3) which
goes fromI − Ai−1 to I − Ai if εi = 1 and fromI − Ai to I − Ai−1 if εi = −1. Moreover, each
Ai = tDi whereDi is a zero-one matrix.
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Proposition 4.3. Let A be a nonnegative polynomial matrix satisfyingNZC. There is a path of
positive row and column operations overZ+[t] connectingI −A andI − tA#.

We first show how (4.1) follows from (4.2) and (4.3). Later we will prove (4.2) and (4.3).

Proof of (4.1). By Proposition 4.3 and the Positive Shear Lemma 3.3, there are conjugacies

ρA : (X(A), σ(A)) → (X(tA#), σ(tA#)) ,

ρB : (X(B), σ(B)) → (X(tB#), σ(tB#))

which are compositions of positive row and column conjugacies. Reading composition from left to
right, we define a conjugacy

γ = (ρA)−1∆ρB : (X(tA#), σ(tA#)) → (X(tB#), σ(tB#)) .

By Proposition 4.2,γ is a composition of positive row and column conjugacies, and therefore so is
ρAγ(ρB)−1 = ρA[(ρA)−1∆ρB ](ρB)−1 = ∆ .

�

Given an infinite, finitely supported matrixM , we define itssupport to be the largest integer
s = supp(M) such thatMsk 6= 0 or Mks 6= 0 for some integerk. (If M is the zero matrix, we
definesupp(M) = 1.) Now supposeA,B,R, S are infinite finitely supported matrices overZ+

such that

(4.4) A = RS andB = SR .

Pick an integern greater than or equal tosupp(A), supp(B), supp(R), andsupp(S). Let I
denote then × n identity matrix. The following set of equations will be our key to transferring
strong shift equivalence results into the polynomial setting.

Polynomial Strong Shift Equivalence Equations (PSSE)

(4.5)

(
I − tRS 0
−tS I

) (
I 0
tS I

)
=

(
I − tRS 0

0 I

)

(4.6)

(
I R
0 I

) (
I −R
−tS I

)
=

(
I − tRS 0
−tS I

)

(4.7)

(
I −R
−tS I

) (
I R
0 I

)
=

(
I 0
−tS I − tSR

)

(4.8)

(
I 0
tS I

) (
I 0
−tS I − tSR

)
=

(
I 0
0 I − tSR

)

For each matrixM in the PSSE, there is a2× 2 block structure, which we will use below to define
associated conjugacies. For exampleR21(tS) will denote a conjugacy associated by Lemma 3.6 to
the equation (4.5). Recall, we read composition from left to right.
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Lemma 4.9. Let A,R, S, B be matrices overZ+ satisfying (4.4) withn chosen as above for the
PSSE. Then there is a conjugacy of path space shifts

f(R,S) : P

(
tA 0
0 0

)
→ P

(
0 0
0 tB

)
defined as a composition of maps from the PSSE equations (4.5),(4.6),(4.7),(4.8) as follows:

f(R,S) = R21(tS)−1L12(R)−1R12(R)L12(tS) = L12(R)−1R12(R) .

The conjugacyf(R,S) is uniquely determined modulo composition with simple automorphisms,
and it is uniquely determined ifA,R, S andB are zero-one matrices.

Proof. The proof is a straightforward computation. The second equality displayed holds because
R21(tS) andR12(R) are identity maps, which is possible because from the path space construction
we have equalities of shifts of finite type

P

(
tRS 0
0 0

)
= P

(
tRS 0
tS 0

)
and P

(
0 0
tS tSR

)
= P

(
0 0
0 tSR

)
�

Given the lemma we have the following definition.

Definition 4.10. GivenA,R, S, B as in Lemma 4.9, lete(R,S) denote the conjugacy of path space
shiftsP (A) → P (B) defined asf(R,S)f(I,B)−1.

Next we specify a definite choice ofΦtM whenM is zero-one, in which caseX(A) = X(tM)# =
XM ′ . (The truth of Propositions 4.1 and 4.2 does not depend on the particular choice.)

Definition 4.11 (Definition of ΦtM ). If M is a zero-one matrix andx ∈ P (tM), let {(rk, tk)} be
a sequence representingx such thatt0 = 0; thenΦtM (x) is the pointx in XM ′ such thatxk is the
unique edge from the initial vertex ofrk to the terminal vertex ofrk.

We can now turn to the proof of Proposition 4.2.

Proof of (4.2). The basic idea of the proof is simple: we’ve known since Williams [Wi] that any
conjugacy of shifts of finite type defined by zero-one matrices arises from some strong shift equiv-
alence using zero-one matrices, and the PSSE lets us transport this result to the polynomial matrix
setting. The complication is now only in precisely tracking definitions.

By definition a conjugacy∆ from (X(tA), σ(tA)) to (X(tB), σ(tB)) is a conjugacy from
(X{tA}# , σ{tA}#) to (X{tB}# , σ{tB}#). From (A.14) we know that∆ is the subdivision of a con-
jugacy from(XA, σA) to (XB , σB). This means that

(4.12) ∆ =
∏

i

c(R
′

i, S
′

i)
εi

where(R
′

i, S
′

i) is the subdivision of a strong shift equivalence(Ri, Si) in the category of zero-one
matrices.

Now e(R,S) = (ΦtA)−1e(R,S)ΦtB , and it suffices to provec(R
′
, S

′
) = e(R,S) when the

elementary strong shift equivalence(R,S) : A → B of (4.4) is a strong shift equivalence in the
category of zero-one matrices.
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We computeL12(R) : z 7→ x andR12(R) : z 7→ w where

z ∈ P

(
0 R
tS 0

)
,

x ∈ P (tA) = P

(
tA 0
0 0

)
= P

(
tA 0
tS 0

)
, and

w ∈ P

(
0 0
tS tB

)
= P (tC) , where C =

(
0 0
0 B

)
.

Consider the diagram

(4.13) ki

ri

��

ait // ki+1

ri+1

��

ai+1t // ki+2

li

sit

>>}}}}}}}}}}}}}}}}}
cit

// li+1

si+1t

=={{{{{{{{{{{{{{{{{

Hereri is one of theRkili constant term arcs fromki to li andsit is one of theSliki+1 power term
arcs of length one fromli to ki+1. We use the notation

z = {. . . , r−1, ts−1, |r0, ts0, . . .}
when the equivalence classz contains a sequence{. . . , (r−1, t−2), (ts−1, t−1), (r0, t0), (ts0, t1) . . .}
with t0 = 0 (i.e., the vertical bar specifies that the router0 “begins at time 0”). We have1 ≤ ki ≤ n
andn + 1 ≤ li ≤ 2n. Because the matricesRS andSR are zero-one,z determines uniquely the ad-
ditional routes/edges ofP (A) andP (C), denotedait andcit. Examination ofL12(R) andR12(R)
shows that

x = {. . . , a−1t, |a0t, . . .} and w = {. . . , c−1t, |c0t, . . .} .

and thereforew = f(R,S)(x). Let y = e(R,S)(x), i.e.,f(I,B)(y) = (w). Theny is equal tow
except for a permutation of indices: i.e.,li = pi + n. Examination of the proof of the construction
of c(R

′
, S

′
) in [W4,Section 2] now shows thatc(R

′
, S

′
) = e(R,S) as required. �

Proof of (4.3). First supposeA(0) is nonzero. Then there exists some entryAkl(t) such that

• Akl(0) 6= 0 and
• row l of A(0) is zero.

Let α = Akl(0) and setE = Ekl(α). Define a matrixA′ by E(I−A) = I−A′; this gives a positive
row operation takingI − A to I − A′, and the number of nonzero entries inA′(0) is one less than
in A(0). After applying a finite sequence of such moves to remove all nonzero constant terms ofA,
we arrive at a matrixC(t) such thatC(0) = 0.

We next produce a zero-one matrixD and a path of positive row and column operations from
I − tD to I − C. Supposetn ≤ Cpq with n > 1; for concreteness, letn = 3 (which is essentially
the general case). In the graphC[, there is a corresponding route

p //�������� //�������� // q

t3

Let r, s be distinct indices for whichC has zero rows and zero columns. We will produce a path
of positive row and column operations toC from a matrixC ′′ whose graph(C ′′)[ agrees with the
graphC[ except that the route above is replaced by the path



POSITIVE ALGEBRAIC K-THEORY AND SHIFTS OF FINITE TYPE 13

p
t

// r
t

// s
t

// q

Claim 4.14. There is a matrixC ′′ as described above and a path of positive row and column oper-
ations overZ+[t] from I − C ′′ to I − C.

Proof of (4.14).There are two cases depending on whetherp 6= q or p = q.

Case 1:p 6= q . Write the vertices ofC ′′ in the orderp, r, s, q followed by the other vertices. Then
I − C ′′ has the form

I − C ′′ =


1− a(t) −t 0 −b(t) ∗

0 1 −t 0 0
0 0 1 −t 0

−c(t) 0 0 1− d(t) ∗
∗ 0 0 ∗ ∗


where the last row and column indicate the remaining portion ofI −C ′′ (which agrees withI −C).
ThenI − C has the form

I − C =


1− a(t) 0 0 −b(t)− t3 ∗

0 1 0 0 0
0 0 1 0 0

−c(t) 0 0 1− d(t) ∗
∗ 0 0 ∗ ∗

 .

A sequence of positive row and column operations fromI − C ′′ to I − C is (from left to right)

Rsq(t) , Rrs(t) , Rrq(t2) , Lpr(t) , Lps(t2) .

Case 2:p = q . Write the vertices ofC in the orderp, r, s followed by the other vertices. We have
the forms

I − C ′′ =


1− a(t) −t 0 ∗

0 1 −t 0
−t 0 1 0
∗ 0 0 ∗

 , I − C =


1− a(t)− t3 0 0 ∗

0 1 0 0
0 0 1 0
∗ 0 0 ∗

 .

A sequence of positive row and column operations fromI − C ′ to I − C is (from left to right)

Rrs(t) , Lpr(t) , Lps(t2) , Rsp(t) .

This finishes the proof of the Claim 4.14. �

Iterating the move provided by the Claim, we produce the required path of positive row and
column operations fromI−C to I− tD with D a zero one matrix. BecauseA# andD are zero-one
matrices which define topologically conjugate shifts of finite type, it follows from Proposition 4.2
that there is a path of positive row and column operations between them. Concatenating paths gives
the required path fromI −A to I − tA#. �

Discussion of simple automorphisms 4.15.
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Here is an example illustrating why the definition of simple automorphisms in (2.14) yields the
same group as Nasu’s original definition in [N]. Consider a portion ofA[ which hasm power term
routes of length two going from the primary vertexp to the primary vertexq as in the following
diagram.

(4.16) p //�������� // q

mt2

Any permutationα of thesem routes determines a permutationβ of them routes of length one from
the primary vertexr to the primary vertexq in the diagram below.

(4.17) p
t

// r
mt

// q

Observe thatβ gives a simple automorphism in the sense of [N]. LetB[ be the graph obtained from
A[ by replacing (4.16) with (4.17). The conjugacy from(P (B), σ(B)) to (P (A), σ(A)) intertwin-
ing α andβ is Lpr(t) followed byRrq(mt). This procedure is calledzipping.

5. ZETA FUNCTIONS AND DIMENSION MODULES

This section generalizes the material in [KRW] on zeta functions and dimension modules to shifts
of finite type built from nonnegative polynomial matricesA with finite support satisfying NZC.

The Zeta Function

We define the zeta function of(X(A), σ(A)) to be

(5.1) ζA(t) = ζA#(t) .

By Proposition 4.3 and the formulas in (3.2), we know that

(5.2) det(I − tA#) = det(I −A) .

Consequently

(5.3) det(tI −A#) = tvdet(I −A(t−1))

where the matrixA# is v × v and whereA(t−1) is obtained fromA by substitutingt−1 for t. The
Bowen-Lanford formula [Sm] for the zeta function yields

(5.4) ζA(t) =
1

det(I −A)

and we also have

(5.5) Entropy of(X(A), σ(A)) = log(λA)

whereλA is the largest root oftvdet(I −A(t−1)).

The Dimension Module

We will present the dimension module(G(A), G+(A), s(A)) of (X(A), σ(A)) as an ordered
Z[t, t−1] module, and then show in (5.16) that this matches the usual definition of the dimension
triple of {XA# , σA#}. Letn denote a positive integer. LetFn be the standard free, leftZ[t]-module
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of rank n. Let F∞ denote the free, leftZ[t]-module which is the direct sum of countably many
copies ofZ[t]. Elements ofFn andF∞ will be written as row vectors. Define

(5.6) G(A) = Coker(I −A) = F∞/Image(I −A) .

Let n ≥ supp(A). The inclusionFn ⊂ F∞ induces an isomorphism

(5.7) Fn/Image(I(n, n)−A(n, n)) = F∞/Image(I −A)

where, as in the Appendix,I(n, n) andA(n, n) are the finiten×n-matrices obtained by considering
just the firstn rows and columns ofI andA. Therefore,G(A) is a finitely generatedZ[t]-module.

The action oft onG(A) is invertible. To see this, pickn large enough that (by the NZC condition)
the matrixAn has no constant term, and setC = (1/t)An; then for every[v] in Coker(I − A) we
have

[v]− (t[v])C = [v(I − tC)] = [v(I −An)] = [v(I −A)(I + A + · · ·+ An−1)] = [0]

soC gives the required inverse. Consequently, we may (and from here do) regardG(A) as aZ[t, t−1]
module. Then we define

(5.8) s(A) = the endomorphism of theZ[t, t−1]-moduleG(A)
coming from multiplication byt−1.

Let F∞
+ denote the subset ofF∞ consisting of elements that have all coordinates nonnegative.

Define

(5.9) G+(A) = Image ofF∞
+ in G(A) .

Let X be a polynomial matrix of finite support and assume there is a permutation matrixP such
thatPXP−1 is upper triangular with diagonal entries equal to zero. The matrixI + X is invertible
overZ[t]. Let A be a polynomial matrix of finite support. As in (3.5), define the matrixB by one of
the equations

(5.10)
I −B = (I + X)(I −A)
I −B = (I −A)(I + X)

Corresponding to the first and second equations respectively, we have two commutative diagrams
of exact sequences of leftZ[t, t−1]-modules which induce isomorphisms ofZ[t, t−1] modules. The
first diagram is

(5.11) 0 // F∞
I−A

// F∞
πA

// G(A) // 0

0 // F∞
I−B

//

I+X

OO

F∞
πB

//

I

OO

G(B) //

I

OO

0

In this case,G(A) = G(B) and the induced isomorphism ofZ[t, t−1] modules is the identity. The
second diagram is

(5.12) 0 // F∞
I−A

//

I

��

F∞
πA

//

I+X

��

G(A) //

g(X)

��

0

0 // F∞
I−B

// F∞
πB

// G(B) // 0

which yields the isomorphism ofZ[t, t−1] modules

(5.13) g(X) : G(A) → G(B)
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Proposition 5.14. AssumeA is a nonnegative polynomial matrix satisfyingNZC. If 0 ≤ X ≤ A
andX2 = 0, then

g(X) : (G(A), G+(A), s(A)) → (G(B), G+(B), s(B))

is an isomorphism of dimension modules.

Proof. SinceX ≥ 0 we know thatI + X takesF∞
+ into F∞

+ . Therefore,g(X) takesG+(A) into
G+(B). It is injective, becauseg(X) is an isomorphism. It remains to verify thatg(X) takesG+(A)
ontoG+(B). The conditionX2 = 0 yields the matrix equation

I = (A−X)(I + X) + (I −A)(I + X) = (A−X)(I + X) + (I −B) .

So moduloImage(I −B) we see that any elementw of G+(B) is of the form

w = v(I + X)

wherev = w(A−X) lies inF∞
+ becauseA−X ≥ 0.

�

Remark 5.15. We defined the dimension module ofA as the orderedZ[t, t−1] modulecoker(I−A)
from the action ofI − A on F∞, whereF = Z[t]. Using insteadF = Z[t, t−1] would produce an
isomorphic module, with isomorphism induced by the inclusionZ[t] ↪→ Z[t, t−1].

If M is ann × n matrix overZ+, let (GM , G+
M , sM ) denote the usual dimension group triple

defined by direct limits. Recall, as a setGM = {[(v, k)] : v ∈ Zn, k ∈ N}, with [(v, i)] = [(w, j)]
iff vAj+k = wAi+k for somek > 0; G+

M = {[v] ∈ GM : v ≥ 0}; andsM : [v] 7→ [vM ].

Proposition 5.16. AssumeA is a nonnegative polynomial matrix satisfyingNZC. There is an iso-
morphism of triples

(G(A), G+(A), s(A)) = (GA# , G+
A# , sA#) .

Proof. As in [KRW] or [LM], the rule [tkv] 7→ [(v, k)] defines an isomorphism

(G(tA#), G+(tA#), s(tA#)) → (GA# , G+
A# , sA#) .

The result now follows from (5.14) and (4.3). �

An irreducible componentof a directed graphG is a subgraphH such that any two verticesi and
j in H may be joined by a directed path fromi to j using edges inH and, moreover,H is contained
in no larger subgraph with this property.

Corollary 5.17. LetA andB be nonnegative polynomial matrices satisfyingNZC. Then the follow-
ing conditions are equivalent:

(G): There is an isomorphism between theZ[t, t−1]-modulesG(A) andG(B).
(E): There is a sequence of row and column operations overZ[t] connectingI−A andI−B.

If, in addition, the graphsA[ andB[ each have one just one irreducible component, and this com-
ponent is primitive, then both(G) and (E) are equivalent to

(G+): There is an isomorphism between the dimension module triples(G(A), G+(A), s(A))
and(G(B), G+(B), s(B)).
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Proof. That condition (E) implies (G) comes from (5.13). We now show that (G) implies (E). From
(5.16) we know that (G) implies there is an isomorphism(GA# , sA#) ' (GB# , sB#). The proof of
Krieger’s result [LM,7.5.8] shows thatA# andB# are shift equivalent overZ. Effros and Williams
showed this impliesA# andB# are strong shift equivalent overZ. See [W3]. The PSSE show that
I − tA# andI − tB# are connected by row and column operations overZ[t]. Therefore, so are
I −A andI −B by (4.3).

Clearly (G+) implies (G). We want to show (G) implies (G+) under the assumption thatA[ and
B[ each have just one irreducible component, which is primitive. This property is respected by
positive elmentary row and column operations, so by Prop. 4.3 it is inherited by the graphs(A#)[

and(B#)[. From (5.16) we know that there are isomorphisms of dimension module triples

(G(M), G+(M), s(M)) ' (GM# , G+
M# , sM#) ' (GM#

nd
, G+

M#
nd

, sM#
nd

)

for M = A andM = B where, as in the Appendix,M#
nd is a nondegenerate zero-one matrix

connected toM# by a path of strong shift equivalences inRS(ZO). SinceA(0) = B(0) = 0,
the graphsA# andB# come fromA[ andB[ by considering all vertices to be primary. Therefore
the graphsA#

nd andB#
nd are primitive. For primitive matricesP andQ, it is well known [LM] that

isomorphism of(GP , sP ) and(GQ, sQ) implies isomorphism of(GP , G+
P , sP ) and(GQ, G+

Q, sQ).
�

6. CLASSIFICATION

This section summarizes the discussion of conjugacy and eventual conjugacy [LM] in terms of
row and column operations on polynomial matrices of finite support.

Theorem 6.1. Let A and B be nonnegative polynomial matrices satisfyingNZC. There is a con-
jugacy between(X(A), σ(A)) and (X(B), σ(B)) iff there is a path of positive row and column
operations overZ+[t] connectingI −A andI −B.

Theorem 6.2. LetA andB be nonnegative polynomial matrices satisfyingNZC. Assume the graphs
A[ andB[ each have just one irreducible component, which is primitive. There is an eventual con-
jugacy between(X(A), σ(A)) and(X(B), σ(B)) iff there is a path of row and column operations
overZ[t] connectingI −A andI −B.

Examples 6.3.Here are examples of (6.1) for the matrices

A =
(

t 1
t 0

)
, B =

(
t t
1 0

)
, C =

(
2t 0
0 0

)
, D =

(
t t
t t

)
.

All these give the shifts conjugate to(X2, σ2) which comes from the matrixC. The matrixI −C is
obtained fromI −A by first multiplying on the left byE12(1) and then on the right byE21(t). The
matrix I −C is obtained fromI −B by first multiplying on the left byE12(t) and then on the right
by E21(1). The matrixI −D is obtained fromI −A by multiplying on the right byE12(1).

Remark 6.4. If we presented shifts of finite type only by matrices overtZ+[t] (as in [KRW]), then
it would be impossible to produce a path of elementary positive equivalences fromI − C to I −D,
with C,D as in (6.3) above. This motivates the presentation of shifts of finite type by matrices over
Z+[t] satisfying NZC.

Let A andB be nonnegative integral matrices of finite support. Recall from [LM] the following
well known facts:(XA, σA) and(XB , σB) are conjugate iffA andB are strong shift equivalent over
Z+; (XA, σA) and(XB , σB) are eventually conjugate iff the matricesA andB are shift equivalent
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overZ+; primitive matricesA andB are shift equivalent overZ+ iff they are strong shift equivalent
overZ. Parallel to (6.1) and (6.2) we have the following results.

Theorem 6.5. Let A and B be nonnegative integral matrices. ThenA and B are strong shift
equivalent overZ+ iff there is a path of positive row and column operations overZ+[t] connecting
I − tA andI − tB.

Theorem 6.6. AssumeA andB are integral matrices. ThenA andB are strong shift equivalent
overZ iff there is a path of row and column operations overZ[t] connectingI − tA andI − tB.

Proof of (6.1). This is really just a combination of the results (3.3) and (4.1). �

Proof of (6.2). If there is a path of row and column operations overZ[t] connectingI − A and
I − B, then the dimension modulesG(A) andG(B) are isomorphic. Acccording to (5.16) and
(5.17) this implies there is an isomorphism between the dimension module triples(GA# , G+

A# , sA#)
and (GB# , G+

B# , sB#). Therefore, we have an eventual conjugacy between(X(A), σ(A)) and
(X(B), σ(B)). Conversely, if(X(A), σ(A)) and (X(B), σ(B)) are eventually conjugate, then
there is an isomorphism of dimension module triples(GA# , G+

A# , sA#) and (GB# , G+
B# , sB#).

Using (5.16) and (5.17) , we conclude there is a sequence of row and column operations overZ[t]
connectingI −A andI −B. �

Proof of (6.5). This is a special case of (6.1), because{tA}# = A
′

and because there is the subdi-
vision strong shift equivalence(RA, SA) : A → A

′
as in (2.1) of [W4]. See the Appendix. �

Proof of (6.6). This just like the proof in (5.17). IfI− tA andI− tB are connected by row and col-
umn operations, then(G(tA), s(tA)) = (GA, sA) and(G(tB), s(tB)) = (GB , sB) are isomorphic.
Conversely if the dimension groups are isomorphic,A andB are strong shift equivalent overZ. The
PSSE show thatI − tA andI − tB are connected by row and column operations overZ[t]. �

7. THE INTEGRAL GROUPRING SETTING

Much of the material in the previous sections can be developed whenZ+ is replaced byZ+[G]
whereG is a group. For simplicity we just state theZ+[G] version of the main algebraic classifi-
cation theorem. This has various applications and interpretations depending on the choice ofG; for
example, classifying freeG actions on shifts of finite type whenG is finite or classifying Markov
chains whenG is free abelian. See [B2, BS, MT, P].

Let Λ = Z[G]. Let µ =
∑

µgg andν =
∑

νgg. Defineµ ≤ ν iff µg ≤ νg for all g. Define
Λ+ = Z+[G] to be thoseµ =

∑
µgg whereµ ≥ 0, i.e., µg ≥ 0 for all g. Let A = {Aij} be

a matrix of finite support with entriesAij in Λ+[t]. AssumeA satisfies theno Z-cycles condition
(NZC). This means that

(7.1) The matrix|A| obtained by lettingt = 0 and eachg = 1 has no cycles.

The first step is to define the weighted graphA[ . Consider the matrix entryAij . This is a sum of
terms of the formgtp whereg is a group element inG andp ≥ 0. If p = 0, place a dotted arc from
the primary vertexi to the primary vertexj and give it the weightg. If p ≥ 1, place a solid route
from i to j consisting ofp subarcs. Give the first arc the weightg and give the remaining arcs the
weighte, the identity element in the groupG. To obtain the matrixA# with entries inΛ+, we let
the setS# of states be quintuples

α = (i, α′, j, α′′, k)
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as before in (2.6) , but now in addition the consecutive arcsα
′

1, . . . , α
′

r in α′ and the arcα′′ in A[

have weights. Choose an ordering ofS#. Let β = (p, β′, q, β′′, r) be another state. We then define

A# : S# × S# → G

as follows:

Case 1A. We havei = p, j = q, k = r, andα′ = β′. The arcα′′ is the first one along the power
term route fromj to k andβ′′ is the second arc fromj to k.

A#(α, β) = {
∏
s

weight(α
′

s)}weight(α′′)

Case 1B. We havei = p, j = q, k = r, andα′ = β′. The arcα′′ is at least the second arc along the
power term route fromj to k andβ′′ is the arc fromj to k which followsα′′ .

A#(α, β) = e

Case 2A. The subarcα′′ is the only arc along a power term route fromj to k and has ending vertex
k. We requirek = p, and we require that the subarcβ′′ be the first one along a power term route
from q to r. In particular, the beginning vertex ofβ′′ is q.

A#(α, β) = {
∏
s

weight(α
′

s)}weight(α′′)

Case 2B. The arcα′′ is the last one along a power term route fromj to k which has length at least
two, and the ending vertex ofα′′ is k. We requirek = p, and we require that the subarcβ′′ be the
first one along a power term route fromq to r. In particular, the beginning vertex ofβ′′ is q.

A#(α, β) = e

Case 3. OtherwiseA#(α, β) = 0.

Algebraic Classification Theorem 7.2.AssumeA andB are matrices overΛ+[t] with finite support
which satisfyNZC. ThenI −A andI −B can be connected by positive row and column operations
overΛ+[t] iff A# andB# are strong shift equivalent overΛ+.

The proof that SSE impliesI − A and I − B can be connected by positive row and column
operations overΛ+[t] comes directly from the PSSE. The proof in the opposite direction comes by
showing that state splittings and mergings in the construction ofLkl(b) andRkl(b) give rise to cor-
responding strong shift equivalences overΛ+.

APPENDIX A. A PPENDIX

The purpose of this section is to clarify a certain nondegeneracy condition which has appeared
in earlier discussions of shifts of finite type and their automorphisms in the context of strong shift
equivalence theory. The main reason for this is that relaxing the nondegeneracy condition gives al-
gebraic flexibility which is necessary for relating strong shift equivalence theory to the positive row
and column operation approach to shifts of finite type and their automorphisms which is developed
in this paper.

Let P = (Pij) be a zero-one matrix offinite supportwhere the indicesi andj run through the
positive integers. This means thatPij 6= 0 for at most finitely many pairs of indices(i, j). The
supportof P is the least integern = supp(P ) such thatPij = 0 if i > n or j > n. If P = 0, we let
supp(P ) = 1. Any finite n × n matrix will be considered as an infinite matrix of support less than
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or equal ton by appending identically zero rows and columns to it. As in [LM], construct the shift
of finite type{XP , σP } from P as follows:

(A.1) XP =
{

bi-infinite sequencesx = {xk} where
P (xk, xk+1) = 1 for −∞ < k < ∞.

}
If i is a state ( i.e., a positive integer) such that theith row or theith column is zero, theni does not
appear as a symbolxk in anyx in XP . The shift mapσP : XP → XP is defined byσP (x) = y
whereyk = xk+1. XP has the product topology which makes it a Cantor set andσP is theshift
homeomorphism.{XP , σP } is thevertex shiftassociated toP . More generally, ifP is a matrix over
Z+, then there is theedge pathshift of finite type(XP , σP ) associated toP by the formula

(A.2) (XP , σP ) = {XP ′ , σP ′}

whereP
′
is the zero-one matrix of the edge path presentation of the directed graph arising fromP as

in [LM]. Namely, the states are the arcs in the directed graph associated toP , andP ′(α, β) = 1 iff
the end vertex ofα is the start vertex ofβ. Strictly speaking, an order of the arcs is chosen as well to
get the matrixP ′. If another order is chosen, corresponding newP ′ will be conjugate to the first one
by a permutation, and the resulting vertex shifts will be topologically conjugate. IfP is a zero-one
matrix, there is a topological conjugacy between{XP , σP } and{XP ′ , σP ′}. See the discussion of
subdivision below.

Let Q be a zero-one matrix of finite support. A strong shift equivalence(R,S) : P → Q in the
categoryZO of zero-one matrices with finite support is a zero-one matrixR of finite support and
zero-one matrixS of finite support satisfying the strong shift equivalence equations

(A.3) P = RS andQ = SR .

This data produces a conjugacy

(A.4) c(R,S) : {XP , σP } → {XQ, σQ}
in the following way . Letx = {xk} be inXP , and lety = {yk} in XQ be the image ofx under
c(R,S). We know that

1 = A(xk, xk+1) =
∑

p

R(xk, p)S(p, xk+1) .

Since the matricesA, R, andS are zero-one, there is exactly onep for whichR(xk, p)S(p, xk+1) =
1. We set

(A.5) yk = p .

A strong shift equivalence(R,S) : P → Q of matrices with finite support overZ+ is defined
similarly and induces a conjugacy

(A.6) c(R,S) : (XP , σP ) → (XQ, σQ)

which is well defined up to simple automorphisms. See [W4, Section 2].

Now as in [W2,W4] construct the spacesRS(ZO) andRS(Z+) of strong shift equivalences
for zero-one orZ+ matrices with finite support. We then have the following two versions of R.F.
Williams’ results in strong shift equivalence theory.

Theorem A.7. Up to topological conjugacy shifts of finite type are in one-to-one correspondence
with the path components ofπ0(RS(ZO)) ofRS(ZO). The inclusionRS(ZO) ⊂ RS(Z+) induces
a bijection of path componentsπ0(RS(ZO)) = π0(RS(Z+)).
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Theorem A.8. Let A and B be zero-one matrices. Any topological conjugacyα : {XA, σA} →
{XB , σB} can be written as a composition

α =
∏

i

c(Ri, Si)εi

corresponding to a path of strong shift equivalences connectingA andB in RS(ZO).

We will give proofs for these theorems below. The point of these theorems is to eliminate the
following nondegeneracy condition which has often been tacitly and/or explicitly assumed in the
literature. LetX = {Xij} be a matrix with finite support. LetX(m,n) be the finitem × n matrix
obtained by considering the firstm rows and the firstn columns ofX. We sayX is anm×n matrix
provided

(A.9) Xij = 0 if i > m or j > n

and we say anm× n matrixX is nondegenerateprovided

(A.10) no row or column ofX(m,n) is entirely zero.

LetRSnd(ZO) andRSnd(Z+) denote the subspaces ofRS(ZO) andRS(Z+) formed by taking
vertices to be nondegeneratem ×m matricesP and edges(R,S) : P → Q between a nondegen-
eratem × m matrix P and a nondegeneraten × n matrix Q to be a nondegeneratem × n matrix
R and a nondegeneraten × m matrix S satisfying the strong shift equivalence equations (A.3).
The nondegeneracy condition we are referring to is that Theorem A.7 and Theorem A.8 are usually
stated withRSnd(ZO) andRSnd(Z+) instead ofRS(ZO) andRS(Z+). The technical reason for
this is the requirement that all atoms of a Markov partition are assumed to be nonempty sets. See
[W1,W2,W4,BW].

Proposition A.11. Let A 6= 0 be a zero-one orZ+ matrix of finite support. Then there is a path in
RS(ZO), respectivelyRS(Z+), fromA to some nondegenerate matrixAnd.

The proof of Proposition A.11 follows immediately from repeated application of Lemma A.12,
for which we need two definitions. IfP is anm×m matrix such thatP (m,m) is invertible, then we
let P−1 denote them×m matrix such thatP−1(m,m) = P (m,m)−1. If X is anm×m matrix,
then we sayX is trimmableprovided there is a row or column ofX(m,m) which is entirely zero.

Lemma A.12. AssumeX is a trimmablem × m zero-one orZ+ matrix which is not identically
zero. There is anm×m permutation matrixP and a two step path of strong shift equivalences

(P, P−1X) : X → P−1XP
(R,S) : P−1XP → Y

in RS(ZO) or RS(Z+) respectively whereY is ann× n matrix withn < m.

Proof of A.12.We give the proof for the case whenX(m,m) has a zero column. The argument
when it has a zero row is similar. LetP be anm × m matrix such thatP (m,m) is a permutation
matrix and the last column ofP−1XP is zero. Letn = m− 1 and write

P−1XP =
(

Y 0
U 0

)
whereY is an×n matrix andU is a1×n matrix. Define them×n matrixR and then×m matrix
S to be

R =
(

Y
U

)
S =

(
I 0

)



22 M. BOYLE AND J.B.WAGONER

whereI is then× n identity matrix. Then we have the strong shift equivalence equations

P−1XP = RS andY = SR .
�

Proof of (A.7). One result in R.F.Williams’ paper [Wi] as formulated in [W2] is that the isomor-
phism classes of shifts of finite type are in one-to-one correspondence with the path components of
π0(RSnd(ZO)). So the first step in proving (A.7) is to show that

π0(RSnd(ZO)) → π0(RS(ZO))

is a bijection. Proposition A.11 shows this map is onto. To show this is one-to-one, suppose there is
a pathΓ of strong shift equivalences inRS(ZO) connecting the nondegeneratem ×m matrix A to
the nondegeneraten× n matrixB. The construction (A.4) above yields a topological conjugacyα :
(XA, σA) → (XB , σB). Then Williams’ work as formulated in [W2] says thatα arises from a path
Γnd in RSnd(ZO) connectingA andB. To verify the last statement of (A.7), observe that the proof
in [W4] showingπ0(RSnd(ZO)) = π0(RSnd(Z+)) also showsπ0(RS(ZO)) = π0(RS(Z+)).

�

Proof of (A.8). Let α : {XA, σA} → {XB , σB} be an isomorphism whereA andB are zero-one
matrices with finite support. Use Proposition A.11 to find pathsΓA andΓB in RS(ZO) from A
andB to nondegenerate matricesAnd andBnd respectively. LetθA : {XA, σA} → {XAnd

, σAnd
}

denote the conjugacy which is the product of the conjugaciesc(R,S)±1 corresponding to the edges
in ΓA. Similarly, letθB : {XB , σB} → {XBnd

, σBnd
} denote the conjugacy which is the product of

the conjugaciesc(R,S)±1 corresponding to the edges inΓB . Then, reading composition from left
to right,

α = θA(θ−1
A αθB)θ−1

B .

By the version of (A.8) usingRSnd(ZO), we know that the isomorphism

θ−1
A αθB : {XAnd

, σAnd
} → {XBnd

, σBnd
}

is a product of conjugaciesc(R,S)±1 corresponding to the edges in a path fromAnd to Bnd in
RSnd(ZO). �

While the argument for (A.7) does produce some pathΓnd, connectingA andB in RSnd(ZO),
we have not shown thatΓ is homotopic keeping endpoints fixed to a path inRSnd(ZO). As ex-
plained in [W5] we know that

Aut(σA) = π1(RSnd(ZO), A)
Aut(σA)/Simp(σA) = π1(RSnd(Z+), A)

Question 1Are the natural homomorphisms

π1(RSnd(ZO), A) → π1(RS(ZO), A)
π1(RSnd(Z+), A) → π1(RS(Z+), A)

isomorphisms ?

Question 2 Are the inclusionsRSnd(ZO) ⊂ RS(ZO) and RSnd(Z+) ⊂ RS(Z+) homotopy
equivalences ?

We end this Appendix with a discussion of subdivision which is needed in this paper. LetA
be a zero-one matrix. There are two ways to associate a shift of finite type toA. The first is the
vertex shift{XA, σA} as given above. The second is the edge path construction{XA′ , σA′} as in
[LM,W4]. In (2.1) of [W4] there is the subdivision strong shift equivalence(RA, SA) : A → A

′
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which induces the subdivision conjugacysdA : {XA, σA} → {XA′ , σA′}. If (R,S) : A → B is
a strong shift equivalence of zero-one matrices, the diagram (2.1) of [W4] produces a commutative
diagram of conjugacies

(A.13) {XA, σA}
c(R,S)

//

sdA

��

{XB , σB}

sdB

��
{XA′ , σA′}

c(R
′
,S

′
)

// {XB′ , σB′}

The conjugacyc(R
′
, S

′
) is called thesubdivisionof c(R,S). In the category of zero-one matrices

there is no ambiguity inc(R
′
, S

′
) because there is only one choice to be made in (2.5) of [W4]. An

easy consequence of (A.13) is

Proposition A.14. Any conjugacyβ : {XA′ , σA′} → {XB′ , σB′} is the subdivision of the conju-
gacyα : {XA, σA} → {XB , σB} whereα = sdAβsd−1

B (reading composition from left to right).
This means that if we writeα =

∏
i c(Ri, Si)εi , thenβ =

∏
i c(R

′

i, S
′

i)
εi
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