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Abstract. Adapting techniques of Misiurewicz, for 1 ≤ r < ∞ we give an

explicit construction of Cr maps with positive residual entropy. We also es-
tablish the behavior of symbolic extension entropy with respect to joinings,

fiber products, products, powers and flows.

1. Introduction

Let (X,T ) denote a system, i.e. a selfhomeomorphism T of a compact metric
space X. We let K(T ) denote the space of T -invariant Borel probabilities on X.
Now suppose (Y, S) is a symbolic system, i.e. S is the shift map on a closed shift-
invariant set Y of doubly infinite sequences on some finite alphabet. If ϕ : Y → X
is a continuous surjection such that ϕS = Tϕ, then we write ϕ : (Y, S) → (X,T )
and we say that ϕ is a symbolic extension of (X,T ). The extension entropy function
of ϕ is the function hϕ

ext on K(T ) defined by the rule

hϕ
ext : µ 7→ max{hν(S) : ν ∈ K(S), ϕν = µ} .

The symbolic extension entropy function hT
sex is the infimum of the extension en-

tropy functions hϕ
ext, taken over all symbolic extensions ϕ [1]. (If there is no symbolic

extension, then we set hT
sex ≡ ∞. Also, we use “sex entropy” as an abbreviation

for “symbolic extension entropy”.) The function hT
sex is a very fine reflection of the

way that complexity emerges in (X,T ) along refining scales, and leads to the study
of entropy structure, a master invariant for entropy theory [5].

A related invariant is hsex(T ), the topological sex entropy of T . This is the infi-
mum of the topological entropies of (Y, S), taken again over all symbolic extensions
ϕ : (Y, S) → (X,T ). If T is C∞, then hsex(T ) = htop(T ) [2, Theorem 7.8]. If
T is only C1, then hsex(T ) can be infinite (i.e., there is no symbolic extension)
[6]. For 1 < r < ∞, it is not known whether there exists a Cr system (X,T )
with hsex(T ) = ∞. In [6], it is shown that within certain families of Cr systems
(1 < r < ∞), hsex(T ) > htop(T ) is a generic property. Understanding the impact
of intermediate smoothness seems to us the most pressing open problem for the
theory of sex entropy.

In this paper, we reexamine the earliest construction of Cr systems with no
measure of maximal entropy, due to Misiurewicz [10]. In Section 4, we show for
these that the sex entropy function equals the upper semicontinuous envelope of the
entropy function; consequently, htop = hsex. Then, elaborating the construction of
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[10] with techniques from [4, 9], in Section 5 we construct Cr systems (1 ≤ r <∞)
with htop < hsex. Although [6] provides a large collection of Cr systems with
htop < hsex, we think it is still of interest to see explicit examples which do not rely
on generic existence arguments or invoke infinitely nested geometric structures.

For the analysis of these systems, we require some basic tools of the sex entropy
theory. For the Misiurewicz construction, we make use of the characterization of
sex entropy by superenvelopes (a functional analytic structure reviewed in Section
2). For the new Cr construction, we establish general inequalities for sex entropy
in fiber products, whose proof uses the transfinite sequence characterization of sex
entropy (also reviewed in Section 2).

In addition to considering fiber products, in Section 3 we establish the behavior
of sex entropy with respect to joinings, products, powers and flows. We thank
Joe Auslander and Sheldon Newhouse for turning our attention to these functorial
issues.

The results in Sections 4 and 5 were largely obtained at the Max Planck In-
stitute in Bonn during the 2004 Activity on Algebraic and Topological Dynamics,
supported by the European Science Foundation. We thank MPI for a wonderful
working environment and the very stimulating Activity.

2. Preliminaries on sex entropy and superenvelopes

Let (X,T ) be a system.
We use hT , or just h, to denote the entropy map on K(T ); so, hT (µ) = hµ(T ),

the measure theoretic entropy of T with respect to µ. The topological residual
entropy of T is hres(T ) = hsex(T ) − htop(T ). The residual entropy function of
T is the function hT

res on K(T ) defined by hT
res = hT

sex − hT . Residual entropy
and symbolic extension entropy are essentially alternate notations, each with its
advantages. In the sequel, for typographical reasons we will alternatively use the
notation hsex(T, µ) in place of hT

sex(µ), and similarly hext(µ, ϕ) in place of hϕ
ext(µ).

We will make use of the Sex Entropy Variational Principle [1, Theorem 8.1]:

hsex(T ) = sup{hsex(T, µ) : µ ∈ K(T )} .(2.1)

This supremum is in fact a maximum, because the function hT
sex is upper semicon-

tinuous [1, Theorem 8.1]. The maximum is achieved on the closure of the ergodic
measures [1, Theorem 8.3]; however, the supremum over ergodic measures may be
strictly smaller [1, Theorem 8.5].

Entropy structures. 2.2. An entropy structure for (X,T ) is an allowed nondecreasing
sequence of functions hn on K(T ) which converges pointwise to hT . There is a large
collection of sequences which are allowed to serve as an entropy structure, and the
class of such sequences is a master invariant for entropy. See [5] for the development
of this theory and its justification. We give two examples of such structures.

A partition of X is essential if it is a finite partition and the boundary of every
set in the partition has measure zero for every measure in K(T ). A sequence (Pn)
of partitions is refining if, for each n, Pn+1 is a refinement of Pn, and the largest
diameter of an element of Pn converges to zero as n goes to infinity. Now, suppose
(Pn) is a refining sequence of essential partitions of X. (Such a sequence exists for
many but not for all systems [1, Theorem 7.6]). Define hn(µ) = hµ(T,Pn). The
sequence H = (hn) is then an entropy structure for (X,T ).
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Another entropy structure is provided by functions defined with respect to fami-
lies of continuous functions, as follows. Let f : X → [0, 1] be a continuous function.
The sets {〈x, t〉 : t ≤ f(x)} and {〈x, t〉 : t > f(x)} form a two-element parti-
tion Af of X × [0, 1]. If F is a finite family of functions f as above, then we let
AF =

∨
f∈F Af . (Note that AF ′∪F ′′ = AF ′ ∨ AF ′′ .) For µ ∈ K(T ) we define its

entropy with respect to F by hµ(T,F) = hµ×λ(T × Id,AF ) in the product system
on X × [0, 1], where Id is the identity map on [0, 1] and λ denotes the Lebesgue
measure there. If now (Fn) is a sequence of finite families of continuous functions
arranged so that the partitions AFn refine in the product space, and we denote
hn(µ) = hµ(T,Fn), then H = (hn) is an entropy structure for (X,T ).

The above examples of entropy structures have additional affinity and semiconti-
nuity properties: for each n ≥ 1 the function hn is affine and the difference function
hn−hn−1 (we set h0 ≡ 0) is upper semicontinuous. These properties are not strictly
required in the general definition of an entropy structure in [5] but their presence
allows us to simplify the forthcoming exposition on further properties.

The key results [1, Theorems 5.5 and 8.1] in the entropy theory of symbolic
extensions assert that the extension entropy functions of symbolic extensions are
exactly the so called affine superenvelopes of the entropy structure H, and that the
sex entropy function coincides with the minimal superenvelope of H:

hsex ≡ EH.
The definition and basic properties of superenvelopes are provided after the discus-
sion of simplices.

Simplices. 2.3. We recall a few basic facts concerning simplices, harmonic and
supharmonic functions and u.s.c. envelopes. The reader may consult [1] and the
references therein for a more complete exposition on these subjects.

Consider a compact metrizable set K endowed with a continuous affine structure
which makes it convex. For every Borel probability measure µ on K there exists a
unique x ∈ K such that

f(x) =
∫
f(y) dµ(y)

for every continuous affine real-valued function f on K. We then say that x is
the barycenter (or expected value) of µ. A function f on a convex K is harmonic
(supharmonic) if ∫

fdµ = (≤)f(x),

for every µ as above and its barycenter x. Every affine (concave) u.s.c. function
is harmonic (supharmonic). (The entropy function h on the simplex of invariant
measures is harmonic, without generally being u.s.c.; see [4, Theorem 13.3].) For
a real-valued function f on K we let f̃ denote the u.s.c. envelope of f , i.e. the
pointwise infimum of all continuous functions g ≥ f . The function f̃ is u.s.c., hence
attains its supremum on every compact set. Notice that if f is affine then f̃ is
concave and thus supharmonic.

The set K is called a Choquet simplex or just simplex if for every point x ∈ K
there is a unique Borel probability measure µx supported by the set exK of the
extreme points of K, with barycenter at x.

A simplex K is Bauer if its extreme set exK is compact. In this case the
restriction map f 7→ f ′ = f |exK defines a bijection between all u.s.c. affine functions
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on K and all u.s.c. functions on exK. The inverse map is provided by the integral
extension g 7→ I(g)

I(g)(x) =
∫
g(y) dµx(y) .

If K is a general simplex, we will at times refer to the Bauer simplex M of all Borel
probability measures supported by the closure exK of the extreme set of K. The
barycenter map provides a continuous and affine surjection π : M → K which is
usually not injective except when K is itself a Bauer simplex (then M and K are
identical). If now f is a function on M then the push-down f [K] is defined on K
at each point x as sup{f(z) : z ∈ π−1(x)}. It is not hard to see that in such a
situation, if f is u.s.c., so is f [K].

We exercise the above notions and facts in proving a simple lemma (which has
direct applications to entropy).

Lemma 2.4. Let h be a harmonic function on a simplex K. Then

h̃ = (I(h̃′))[K],

where h′ denotes the restriction of h to exK, I(g) denotes the integral extension of
a function g defined on exK onto the Bauer simplex M of all probability measures
supported by exK, and f [K] is the push-down onto K via the barycenter map of a
function f defined on M .

Proof. Let x ∈ K. One of the measures supported by exK with barycenter at x
is µx, so the right hand term evaluated at x is not smaller than I(h̃′)(µx), which
is not smaller than I(h′)(µx), which equals

∫
h dµx. Because h is harmonic, this is

h(x). So the right hand side function is not smaller than h and since it is u.s.c. it is
not smaller than h̃. Conversely, the right hand side evaluated at x equals I(h̃′)(µ)
for some µ supported by exK with barycenter at x. The last equals

∫
h̃′ dµ. Notice

that the meaning of “˜” is different on the two sides of the displayed formula. On
the right hand side one has to consider majorizing continuous functions defined only
on exK. Thus, at each point of exK, h̃′ is not larger than h̃ (which is evaluated in
the wider context of K). Thus the last integral does not exceed

∫
h̃ dµ, which, by

the supharmonic property of h̃ does not exceed h̃(x). �

U.s.c.d.-sequences. 2.5. Let K be a compact metric set. A nondecreasing sequence
H = (hn)n≥0 of nonnegative functions defined onK will be called a u.s.c.d.-sequence
if h0 ≡ 0 and the differences hn − hn−1 are upper semicontinuous (u.s.c.), for all
n ≥ 1. We will use h to denote the pointwise limit of hn, allowing ∞ in the range
of h. (For example, the entropy structures described above are u.s.c.d.-sequences
defined on K(T ).)

Definition 2.6. By a superenvelope of a u.s.c.d.-sequence H we shall mean any real-
valued function E on K such that E ≥ h and E − hn is u.s.c. for every n ≥ 0. We
also allow the constant infinity function to be a superenvelope.

Notice that a real-valued superenvelope is itself u.s.c., hence bounded. Such
superenvelopes may but need not exist (for example they do not exist if h is un-
bounded). Let EH (or sometimes E(H)) denote the pointwise infimum of all su-
perenvelopes. It is immediate to see that EH is itself a superenvelope and we call
it the minimal superenvelope of H.
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We will be especially interested in u.s.c.d.a.-sequences: the u.s.c.d.-sequences
which consist exclusively of affine functions defined on a simplex. (Again, the two
examples of entropy structures mentioned above are sequences of this kind.) In
[1, Theorem 4.3] it is proved that for a u.s.c.d.a.-sequence H, EH is equal to the
pointwise infimum of all affine superenvelopes of H (by convention, the constant
infinity function is affine).

Now assume for a moment that K is a Bauer simplex. If H = (hn) is a u.s.c.d.a.-
sequence on K then H′ = (h′n) is clearly a u.s.c.d.-sequence defined on the compact
set exK. By invertibility of the restriction map it is now almost immediate to see
that the superenvelope E(H′) on exK is equal to the restriction (EH)′ of EH, in
other words,

EH = I(E(H′)),

and hence EH is necessarily an affine function.
Since the theory of superenvelopes does not work on a noncompact domain, the

above formula cannot be applied if the extreme set of K is not compact. However,
we can modify the above approach to understand how EH is determined by the
restriction of H to the closure of exK. As in lemma 2.4, let M be the Bauer simplex
consisting of all probability measures supported by exK. Every u.s.c.d.a.-sequence
H on K lifts (by composition with the barycenter map π) to a u.s.c.d.a.-sequence
H′′ on M . By what was said about Bauer simplices, the minimal superenvelope
E(H′′) equals I(E(H′′′)), where I denotes the integral extension to M and H′′′ is
the u.s.c.d.-sequence obtained as the restriction of H′′ to the extreme points of M .
But this H′′′ coincides with the restriction H′ of H to exK, so we can replace H′′′
by H′ and write

E(H′′) = I(E(H′)) .

Because the functions (h′′n) are constant on the preimages of points by π, it is
immediate to see that the function (E(H′′))[K] is a superenvelope ofH onK. Also, it
must be the minimal one since if there were a smaller one, its lift toM would become
a superenvelope of H′′ at some point strictly smaller than E(H′′), contradicting the
definition of E(H′′) as the pointwise infimum of all supervenvelopes. We have
proved the following:

Proposition 2.7. If H is a u.s.c.d.a.-sequence on a simplex K, then

EH = (I(E(H′)))[K],

where H′ denotes the restriction of H to exK, I(g) denotes the integral extension of
a function g defined on exK onto the Bauer simplex M of all probability measures
supported by exK, and f [K] is the push-down onto K via the barycenter map of a
function f defined on M .

Note, if H is u.s.c.d.a. on a simplex which is not Bauer, then EH is a concave
function, without necessarily being affine.

The transfinite sequence. 2.8. We recall the (transfinite) inductive characterization
of EH. Given a u.s.c.d.-sequence H = (hn) converging to h on a compact set K,
define τn = h− hn. Set u0 ≡ 0. Given an ordinal α � 0, define

uα+1 = lim
n→∞

˜uα + τn
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and for a limit ordinal α define

uα = s̃up
γ≺α

uγ ,(2.9)

Then uα ≤ uβ if α ≺ β. In fact, uα = uα+1 ⇐⇒ uα = EH− h; and there will be
a countable ordinal α such that uα = uα+1 [1, Theorem 3.3].

Throughout the rest of this noteH will represent an entropy structure of a system
(X,T ). The collection of all superenvelopes, EH and the transfinite sequence uα

do not depend on the choice of a particular entropy structure [5, Theorem 2.3.2].
At times we will write uT

α to denote the elements of the transfinite sequence for a
system (X,T ).

Asymptotic h-expansiveness. 2.10. An extension ϕ : (Y, S) → (X,T ) is a principal
extension if hS(ν) = hT (ϕν) for every ν in K(S). In the theory of symbolic exten-
sion entropy, there is a naturally distinguished class of systems, characterized by
various equivalent conditions, such as the following ([1, Theorem 8.6], [5, Theorem
9.0.2]):

• (X,T ) is asymptotically h-expansive [4, 10, 11]
• (X,T ) has a symbolic extension which is a principal extension
• hT

sex = hT

• An/every entropy structure H on (X,T ) converges uniformly to hT

• uT
α ≡ 0 for every ordinal α.

Buzzi, following work of Yomdin, showed that every C∞ system is asymptotically
h-expansive [3].

3. Joinings, products, powers and flows

In this section, we will show that symbolic extension entropy satisfies the rela-
tions one would hope for with respect to joinings, powers, products (to some extent
also fiber products) and flows.

Consider two systems (X ′, T ′) and (X ′′, T ′′) having a common factor (Z,U). Let
ϕ′ : X ′ → Z and ϕ′′ : X ′′ → Z be the corresponding factor maps. The fiber product
(X,T ) of (X ′, T ′) and (X ′′, T ′′) over (Z,U) is defined as the set

X = {〈x′, x′′〉 ∈ X ′ ×X ′′ : ϕ′(x′) = ϕ′′(x′′)}
with the product action T (〈x′, x′′〉) = 〈T ′(x′), T ′′(x′′)〉. The direct product of two
systems can be regarded as their fiber product over the trivial (one-point) factor.

Theorem 3.1 (Fiber Products). Let (X,T ) be the fiber product of (X ′, T ′) and
(X ′′, T ′′) over their common factor (Z,U). Then

(1) hT
sex(µ) ≤ hT ′

sex(µ
′) + hT ′′

sex(µ
′′)− hU (ξ),

where µ is an invariant measure supported on the fiber product X, while µ′, µ′′ and
ξ are its projections onto X ′, X ′′ and Z, respectively.

Now assume also that (X ′′, T ′′) is asymptotically h-expansive and that µ is the
relatively independent joining of µ′ and µ′′ over ξ. Then

(2) hT
sex(µ) ≥ hT ′

sex(µ
′) + hT ′′

sex(µ
′′)− hU

sex(ξ).

In 3.1(2), hT ′′

sex(µ
′′) can be replaced simply by hT ′′

(µ′′), because T ′′ is asymp-
totically h-expansive. The inequality 3.1(2) can fail if T ′′ is not asymptotically
h-expansive. An appropriate example (3.6), in which additionally hU ≡ 0 (hence
also hU

sex ≡ 0), is provided after the proof below of Theorem 3.1.
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Theorem 3.2 (Joinings and Products). Suppose (X,T ) is the product of finitely
or countably many systems (Xk, Tk) such that

∑
k hsex(Tk) < ∞, and µ ∈ K(T ).

Let µk in K(Tk) be the coordinate projection of µ. Then the following hold.
(1) hsex(T, µ) ≤

∑
k hsex(Tk, µk).

(2) If µ is the product measure Πkµk, then hsex(T, µ) =
∑

k hsex(Tk, µk).
(3) hsex(T ) =

∑
k hsex(Tk).

Theorem 3.3 (Powers). Suppose 0 6= n ∈ Z. Then for any system (X,T ) the
following hold.

(1) The restriction of hsex(Tn, ·) to K(T ) equals |n|hsex(T, ·).
(2) hsex(Tn) = |n|hsex(T ) .

By a flow we mean a continuous R action on a compact metric space. Given a
flow T , we let T t denote the homeomorphism which is the time t map of the flow.

Theorem 3.4 (Flows). Suppose T is a flow on X, and let a and b be distinct
nonzero real numbers. Then the following hold.

(1) If µ ∈ K(T a) ∩K(T b), then hsex(T a, µ) = |a/b|hsex(T b, µ).
(2) hsex(T a) = |a/b|hsex(T b).

Remark 3.5. It is easy to see that all the conclusions of Theorems 3.3 and 3.4,
and also (2) and (3) of Theorem3.2, remain valid if hT

sex is replaced with hT
res and

hsex(T ) is replaced with hres(T ).

Proof of Theorem 3.1. If (Y ′, S′) and (Y ′′, S′′) are symbolic extensions of (X ′, T ′)
and (X ′′, T ′′), respectively, then the fiber product (Y, S) of (Y ′, S′) and (Y ′′, S′′)
over (Z,U) provides an obvious symbolic extension of (X,T ). The entropy of an
invariant measure ν on Y equals at most h(ν′) + h(ν′′) − h(ξ), where ν′, ν′′ and ξ
are the projections of ν respectively onto Y ′, Y ′′ and Z. This easily implies (1).

The proof of (2) will be based on the transfinite characterization of hsex, hence
we need to study relations among the entropy structures in X ′, X ′′, X and Z. Let
(Fn), (F ′n) and (F ′′n) be sequences of finite families of continuous functions on Z, X ′

and X ′′, respectively, whose associated sequences of partitions are refining in the
corresponding product spaces with [0, 1]. The lifts of these families to extending
spaces will be denoted by the same letters. With this convention, the sequences of
families (F ′n ∪ Fn), (F ′′n ∪ Fn) and (F ′n ∪ F ′′n ∪ Fn) also refine in X ′, X ′′ and X,
respectively. So, the sequences of entropy functions with respect to these families
are entropy structures on the corresponding systems. We have

hT
n (µ) = hµ(F ′n ∪ F ′′n ∪ Fn) = hµ(F ′n ∪ F ′′n |Fn) + hξ(Fn)

≤ hµ′(F ′n|Fn) + hµ′′(F ′′n |Fn) + hξ(Fn) + hξ(Fn)− hξ(Fn)

= hµ′(F ′n ∪ Fn) + hµ′′(F ′′n ∪ Fn)− hξ(Fn)

= hT ′

n (µ′) + hT ′′

n (µ′′)− hU
n (ξ) .

(This holds whenever µ projects to µ′ and µ′′, not only for their relative independent
product; asymptotic h-expansiveness has not been used yet, either.) If now µ is
the relatively independent joining, then hT (µ) = hT ′

(µ′) + hT ′′
(µ′′)− hU (ξ), hence

τT
n (µ) ≥ τT ′

n (µ′) + τT ′′

n (µ′′)− τU
n (ξ).

We will now apply transfinite induction to prove uT
α(µ) ≥ uT ′

α (µ′)−uU
α (ξ) for all

ordinals α. Clearly it is true for α = 0. Suppose it holds for some ordinal α ≥ 0.
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Then(
uT

α(µ) + τT
n (µ)

)∼ ≥ (
uT ′

α (µ′) + τT ′

n (µ′) + τT ′′

n (µ′′)− uU
α (ξ)− τU

n (ξ)
)∼

≥
(
uT ′

α (µ′) + τT ′

n (µ′) + τT ′′

n (µ′′)
)∼

−
(
uU

α (ξ) + τU
n (ξ)

)∼
.

It is now that we invoke asymptotic h-expansiveness of (X ′′, S′′). It implies that the
τT ′′

n converge uniformly to zero, and therefore can be omitted in the limit. Taking
limits as n goes to infinity we get uT

α+1(µ) ≥ uT ′

α+1(µ
′) − uU

α+1(ξ). The inductive
step for limit ordinals is even easier and we skip it. This concludes the induction.

Now, choosing α sufficiently large, we have

hT
sex(µ) = uT

α(µ) + hT (µ) ≥ uT ′

α (µ′)− uU
α (ξ) + hT ′

(µ′) + hT ′′
(µ′′)− hU (ξ)

= hT ′

sex(µ
′) + hT ′′

(µ′′)− hU
sex(ξ) .

�

Example 3.6. Let Z consist of two sequences (an) and (bn) converging to a common
limit c. Let U be the identity map on Z. Let (X ′, T ′) be an extension of (Z,U)
obtained as the union of {b1, b2, . . . , c} and a sequence of invariant sets An each
carrying a unique measure µ′n, of entropy 1. We arrange that the An shrink in
diameter to zero and converge to c as n grows. The factor map from X ′ onto Z is
defined to be the identity on {b1, b2, . . . , c} and it sends each An to an. The system
(X ′′, T ′′) and its factor map onto Z are defined analogously, with the roles of an’s
and bn’s exchanged. The fiber product has one measure µ′n × δan

above each an

and one measure δbn
× µ′′n above each bn. These converge to δc × δc = δ〈c,c〉. As in

[5, Example 8.3.1], the sex entropy function at δc equals 1 in both X ′, X ′′ and also
the sex entropy of δ〈c,c〉 is 1 in X. Clearly, hU

sex(δc) = 0, hence the inequality (2) of
Theorem 3.1 fails for µ = δ〈c,c〉.

Proof of Theorem 3.2(1). We may suppose (X,T ) =
∏∞

k=1(Xk, Tk). Take ε > 0.
For each k, choose a symbolic extension ϕk : (Yk, Sk) → (Xk, Tk) such that

hext(µk, ϕk) < hsex(Tk, µk) + ε2−k .

Choose M such that
∑∞

k=M+1 hsex(Tk) < ε, and choose symbolic extensions ϕ′k :
(Y ′k, S

′
k) → (Xk, Tk) such that htop(S′k) < hsex(Tk) + ε2−k. Consider the extension

ψM =
( ∏M

k=1 ϕk

)
×

( ∏∞
k=M+1 ϕ

′
k

)
. Let (WM , RM ) denote the domain of ψM .

Given a measure ν on the product system (WM , RM ), let νk denote its coordinate
projection. If ψMν = µ, then

h(ν,RM ) ≤
M∑

k=1

h(νk, Sk) +
∞∑

k=M+1

h(νk, S
′
k)

< ε+
M∑

k=1

hsex(Tk, µk) +
∞∑

M+1

htop(S′k)

< 3ε+
M∑

k=1

hsex(Tk, µk) ≤ 3ε+
∞∑

k=1

hsex(Tk, µk) .
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Taking the supremum over ν, we could conclude that

hsex(T, µ) ≤
∞∑

k=1

hsex(Tk, µk)

except that the extension (WM , RM ) is generally not symbolic. However, as a finite
entropy product of subshifts, it is asymptotically h-expansive and thus [1, Theorem
8.6] has a principal symbolic extension π : (Y ′, S′) → (Y, S), with h(ν′, S′) = h(ν, S)
for every ν′ in K(S′) such that πν′ = ν. The symbolic extension ψMπ : (Y ′, S′) →
(X,T ) defines the same extension entropy function as does ψM . This completes
the proof of 3.2(1). �

Proof of Theorem 3.2(2). We must show hsex(T,Πkµk) ≥
∑

k hsex(Tk, µk). With-
out loss of generality, it suffices to show this when (X,T ) is the product of just two
systems. Let (X,T ) = (X ′, T ′)× (X ′′, T ′′) and µ = µ′ × µ′′.

As in the proof of the preceding theorem, let (F ′n) and (F ′′n) be sequences of
families of continuous functions giving rise to entropy structures on (X ′, T ′) and
(X ′′, T ′′), respectively. Then (F ′n ∪ F ′′n) (union of lifted families) gives rise to an
entropy structure in the product system (X,T ).

We have simply hT (µ) = hT ′
(µ′) + hT ′′

(µ′′) and hT
n (µ) = hT ′

n (µ′) + hT ′′

n (µ′′),
hence also τT

n (µ) = τT ′

n (µ′) + τT ′′

n (µ′′). We will complete the proof by showing,
using transfinite induction, that for every α

uT
α(µ) ≥ uT ′

α (µ′) + uT ′′

α (µ′′) .

This inequality is trivial for α = 0. Next we suppose it holds for some ordinal α.
Consider a given n in N. Pick sequences µ′k → µ′ and µ′′k → µ′′ such that

lim
k

(uT ′

α + τT ′

n )(µ′k) = ( ˜uT ′
α + τT ′

n )(µ′) ,

lim
k

(uT ′′

α + τT ′′

n )(µ′′k) = ( ˜uT ′′
α + τT ′′

n )(µ′′) .

Then

( ˜uT
α + τT

n )(µ) ≥ lim sup
k

(uT
α + τT

n )(µ′k × µ′′k)

≥ lim sup
k

(
uT ′

α (µ′k) + uT ′′

α (µ′′k) + τT ′

n (µ′k) + τT ′′

n (µ′′k)
)

= ( ˜uT ′
α + τT ′

n )(µ′) + ( ˜uT ′′
α + τT ′′

n )(µ′′) .

Because uα+1 = limn( ˜uα + τn) by definition, we conclude that

uT
α+1(µ) ≥ uT ′

α+1(µ
′) + uT ′′

α+1(µ
′′) .

If α is a limit ordinal such that uT
γ (µ) ≥ uT ′

γ (µ′)+uT ′′

γ (µ′′) when γ ≺ α, then the
desired inequality follows directly from the definition (2.9) of uT

α . This completes
the transfinite induction, and the proof. �
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Proof of Theorem 3.2(3). We have

hsex(T ) = sup{hsex(T, µ) : µ ∈ K(T )}

=
∑

k

sup{hsex(Tk, µk) : µk ∈ K(Tk)}

=
∑

k

hsex(Tk) .

The first and last equalities hold by the Sex Entropy Variational Principle 2.1. The
middle equality follows from 3.2(1) and 3.2(2). �

Proof of Theorem 3.3(1). Suppose µ ∈ K(T ). Because T and T−1 define the same
sex entropy function, we may assume n > 0.

Now suppose ϕ : (Y, S) → (X,T ) is a symbolic extension. Let ϕ(n) denote the
symbolic extension (Y, Sn) → (X,Tn) defined by the same map X → Y . Suppose
ν ∈ K(S) and ϕν = µ. Then ν ∈ K(Sn) and hν(Sn) = nhν(S). Therefore
nhext(µ, ϕ) ≤ hext(µ, ϕ(n)). It follows that nhsex(T, µ) ≤ hsex(Tn, µ).

Conversely, suppose ψ : (Y, S) → (X,Tn) is a symbolic extension. Define Y ′ =
Y × {0, 1, . . . , n − 1} and define S′ : Y ′ → Y ′ by the following rules: (y, i) 7→
(y, i+ 1) if 0 ≤ i < n− 1, and (y, i) 7→ (Sny, 0) otherwise. Define ψ′ : Y ′ → X by
(y, i) 7→ T iϕy. Then ψ′ : (Y ′, S′) → (X,T ) is a symbolic extension. Let ν′ be the
product of ν with equidistributed probability measure on {0, 1, . . . , n − 1}. Then
ν′ ∈ K(S′), ψ′ν′ = µ and nhν′(S′) = hν(S). Therefore hext(µ, ψ) ≤ nhext(µ, ψ′).
It follows that hsex(Tn, µ) ≤ nhsex(T, µ). This completes the proof of 3.3(1). �

Proof of Theorem 3.3(2). This follows from 3.3(1) and the Sex Entropy Variational
Principle [1, Theorem 8.1], or by reconsidering the constructions in the proof 3.3(1).

�

Proof of Theorem 3.4(1). Without loss of generality, we assume 0 < a < b = 1. By
Theorem 3.3, we may also assume that a is irrational.

Let ([0, 1), Ra) denote the rotation of the circle x 7→ x+a mod 1. (Here, [0, 1) is
our additive notation for the circle.) For a definite notation, we spell out a standard
construction of a symbolic extension ϕa : (Wa, Sa) → ([0, 1), Ra). Choose any x
in [0, 1) whose Ra-orbit avoids 0. Define a doubly infinite sequence x̃ by setting
x̃[k] = 1 if 1 − a < (Ra)kx < 1, and setting x̃[k] = 0 otherwise. Then Wa is the
orbit closure under the shift of x̃, and the extension ϕa is uniquely determined by
requiring ϕ(x̃) = x.

Now suppose ϕ : (Y, S) → (X,T 1) is a symbolic extension. Define a skew
product S′ : Wa × Y → Wa × Y by the rule (x, y) 7→ (Sax, S

x[0]y). Define the
map ϕ′ : Wa × Y → X by (x, y) 7→ T t(ϕy), where t = ϕa(x). The map ϕ′

intertwines S′ and T a, giving a symbolic extension ϕ′ : (Wa × Y, S′) → (X,T a).
If ν′ ∈ K(S′) and ν is its image under the coordinate projection (y, x) 7→ y, then
ν ∈ K(S) and hν′(S′) = ahν(S). Considering the case ϕν = µ, we conclude that
hsex(T a, µ) ≤ ahsex(T 1, µ).

Now choose n in N such that na > 1. The previous argument shows that

hsex(T 1, µ) ≤ 1
na
hsex(Tna, µ) .

By Theorem 3.3(3) we have hsex(Tna, µ) = nhsex(T a, µ). Therefore hsex(T 1, µ) ≤
1
ahsex(T a, µ). Thus hsex(T a, µ) = ahsex(T 1, µ). �
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Proof of Theorem 3.4(2). Given a symbolic extension ϕ : (Y, S) → (X,T 1) and
0 < a < 1, construct the symbolic extension ϕ′ : (Y ×Wa, S

′) → (X,T a) as for part
(1). Then htop(S′) = ahtop(S), so hsex(T a) ≤ ahsex(T 1). The reverse inequality is
established as in the proof for part (1). �

4. The Example of Misiurewicz

M. Misiurewicz gave the first construction of Cr (1 ≤ r < ∞) systems with
no measure of maximal entropy (hence not asymptotically h-expansive). In this
section, we will show for his construction that the sex entropy function is sim-
ply the upper semicontinuous envelope of the entropy function. In particular, the
topological residual entropy is still zero.

Fix the positive integer r. The Misiurewicz example (which gives a family of
examples due to some freedom in the construction) is constructed in [10, Theorem
1] on the product V × S1, where V is a certain C∞ manifold, with D the time-
one map of a certain vector field. (V × S1 is our notation for the space denoted
M̃ × S1 = M in [10, p.907], and D is our notation for ϕ(1) there.) The sets
Vy = V ×{y} are D-invariant and we will call them fibers. There is a distinguished
element of S1, which we denote as 0, because it is 0 in the local chart in [10].
For any closed interval J not containing 0, the restriction of D to V × J is C∞,
and therefore asymptotically h-expansive. Let Dy denote the restriction of D to
Vy. Every Dy is C∞; htop(D0) = 0; and lim supy→0 htop(Dy) ≥ 1/(r + 1). The

maximum of h̃D is achieved on the fiber V0.

Example 4.1. Given a positive integer r, let D be the Cr Misiurewicz map described
above. Then hD

sex = h̃D. In particular, the topological residual entropy of D is zero.

Proof. Let H = (hn) be a u.s.c.d.a.-sequence which is an entropy structure for D,
with limit h = hD. In order to prove that hD

sex = h̃ it suffices to prove E(H′) = h̃′

for the restrictions H′ = (h′n) and h′ of H and h, respectively, to exK(D). (This
reduction follows from Lemma 2.4 and Proposition 2.7, because h is harmonic and
hD

sex = EH.) It suffices to show that each function h̃′ − h′n is u.s.c. on exK(D).
Clearly, every ergodic measure is supported by one fiber. Moreover (and this is

a key observation) the same holds for measures in the closure of ergodic measures –
every such measure is supported by a single fiber. Thus we have a natural map P :
exK(D) → S1 which is almost obviously a continuous surjection. Every measure
µ ∈ exK(D) projecting by P to a nonzero y ∈ S1 has a closed neighborhood
(preimage by P of a closed arc J not containing zero) on which H′ converges
uniformly; hence, in a neighborhood of such a µ, E(H′) = h = h′. Because E(H′)
is u.s.c., it follows that in a neighborhood of such a µ we have h̃′ = h′, so h̃′−hn =
E(H′)− h′n, which is u.s.c.

Finally, suppose P (µ) = 0. Then (h̃′ − h′n)(µ) equals h̃′(µ), and the restriction
of h̃′ to V0 is u.s.c. Thus it remains to verify u.s.c. behavior of h̃′ − h′n along a
sequence (µk) converging to µ when for every k, P (µk) 6= 0. With such a choice
of µk, we have (h̃′ − hn)(µk) = (h′ − hn)(µk) ≤ h′(µk), so the upper limit over
k of these values is not larger than h̃′(µ) which equals (h̃′ − h′n)(µ), and upper
semi-continuity holds. �
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5. Cr systems with positive residual entropy

We will modify the Misiurewicz example of the last section to construct Cr

(1 ≤ r < ∞) systems with positive topological residual entropy. We will also be
using ideas from [9] and [4, pp. 170-172].

As in the last section, 0 will denote the distinguished element of S1. We begin
with a lemma in which we produce a system with entropy function “complementary”
to that of the previous example.

Lemma 5.1. There is a compact manifold W and a C∞ diffeomorphism R : W ×
S1 →W × S1 with the following properties.

• Each set Wy := W × {y} is R-invariant.
• Let Ry : W →W be defined by Ry(w) = R(w, y).

Then Ry has zero entropy if y 6= 0.
• htop(R0) > 0.

Proof. We construct R by a slight elaboration of another Misiurewicz example [9].
Let R be a C∞ diffeomorphism of positive entropy on a compact manifold X. Let
W1 be the mapping torus of R (W1 is the quotient of X×R obtained by identifying
(x, s) and (R

n
x, s− n) when x ∈ X, n ∈ Z and s ∈ R). Let αt : W1 → W1 denote

the time t map of the suspension flow on W1 (induced by (x, s) 7→ (x, s + t) on
X×R). Let β be a C∞ orientation-preserving flow on S1, with time t map βt, such
that the flow (and therefore each βt with t 6= 0) has a unique fixed point, p. Let
f : S1 → [0, 1] be a surjection of class C∞ such that f = 0 in a neighborhood of
p. Let g : S1 → [0, 1] be a surjection of class C∞ such that g(0) = 0 and otherwise
g(z) > 0. Define W = (W1 × S1) and define R : W × S1 →W × S1 by the rule

R : (w1, z, y) 7→ (αf(z)(w1), βg(y)(z), y) .

If y 6= 0, then the nonwandering set of Ry is contained in W1 × {p}, on which Ry

acts by the identity, so for y 6= 0 we have htop(Ry) = 0. On the other hand, R0 :
(w1, z) 7→ (αf(z), z). Because f(z) = 1 for some z, htop(R0) ≥ htop(R) > 0. �

We are now in a position to explicitly produce a smooth system with positive
residual entropy.

Example 5.2. Let r be a positive integer. Let V , D, Vy, Dy and 0 be as in Section
4. Let W , R, Wy and Ry be as in Lemma 5.1. Let X = V ×W × S1, and set

T :
(
v, w, y

)
7→

(
Dy(v), Ry(w), y

)
.

Then (X,T ) is a Cr system with positive topological residual entropy.

Proof. Notice that (X,T ) is in fact the fiber product of (V ×S1, D) and (W×S1, R)
over (S1, Id) via the projections (v, y) 7→ y and (w, y) 7→ y. For each y, either Dy

or Vy has zero entropy; so, if µ in K(T ) projects to µ′ in K(D) and µ′′ in K(R),
then

hT (µ) ≤ hR(µ′) + hD(µ′′) ≤ max{htop(R),htop(D)}
and therefore htop(T ) = max{htop(R),htop(D)}. From Section 4, we know that
hD

sex = h̃D. Also, R is asymptotically h-expansive (because it is C∞), and hR
sex =

hR. Therefore, because the identity map on S1 has entropy zero, we may deduce
from the two inequalities of Theorem 3.1 that

hT
sex(µ) = h̃D(µ′) + hR(µ′′)
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whenever µ is the relatively independent joining of µ′ and µ′′. The supremum of h̃D

over V0 is htop(D), and the supremum of hR over W0 is htop(R). Thus, choosing
measures µ′ and µ′′ on those fibers realizing these suprema, and letting µ be their
relatively independent joining (i.e. µ′ × µ′′ extended trivially to X), we obtain

hsex(T ) ≥ hT
sex(µ) = htop(D) + htop(R) > htop(T ) .

�

Remark 5.3. The approach above of joining D and R is evident in a simple and
instructive example of Denker-Grillenberger-Sigmund [4, pp.170-172]. The DGS
example is of a zero-dimensional system for which there is a positive constant c
such that h ≡ c, but the system still is not asymptotically h-expansive. An analysis
of the DGS example as above shows that it has topological residual entropy equal to
c. (In fact, for the DGS example, the analysis can be simplified. In that example,
the set of invariant measures is a Bauer simplex, and to compute hsex one can
restrict the analysis to ergodic measures [1, Theorem 8.3].)
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