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ABSTRACT 

Let f be an endomorphism of an irreducible sofic system S, where S has entropy 
Iog)t. The degree of f is the number d such that f is d to 1 almost everywhere. 
Then d divides a power of the greatest common divisor of the nonleading 
coefficients of the minimal polynomial of )t. Also, f multiplies the natural 
measure on unstable sets of generic points by a positive unit of the ring 
generated by 1/A and the algebraic integers of Q[A]. Related results hold for 
bounded to one homomorphisms of sofic systems. 

§0. Introduction 

Suppose S is an irreducible sofic shift (in particular, S may be of finite type), 

and f is a factor map from S onto a subshift T of equal entropy. It is well known 

that there is a number d such that f is d to 1 almost everywhere (every 

bilaterally transitive point of T has exactly d preimages under/) ;  endorsing the 
terminology of [16], we call this number the degree of/. An old theorem of L. R. 

Welch (14.9 of [12]) shows that if f is an endomorphism of the full shift on n 

symbols, then the degree of f divides a power of n. Generalizing, we find that for 

any irreducible sofic shift, the entropy of the shift provides severe and comput- 

able constraints on the possible degrees of endomorphisms; other factor maps 

also have constrained degrees. 

Let S be irreducible sofic with entropy log A. Let U(A) be the set of positive 

integers which divide some power of the greatest common divisor of the 

nonleading coefficients of the minimal polynomial of ,L Then, given another sofic 
shift T of equal entropy, there is a finite set E of positive integers such that the 
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degree d of any factor map from S onto T factors as d = eu, where e ~ E and 

u ~ U(A). In particular, if f is an endomorphism, then d E U(A). In the 

category of finite type (or even almost of finite type) subshifts, the set E may be 

chosen for S independent of T. 

The proofs of these results involve two steps. Certain closed open sets are 

shown by way of magic words to have preimages under f which split into d 

pieces of equal measure (with respect to the measure of maximal entropy). This 

splitting then forces lid to lie in a Z[1/A ]-module naturally associated with the 
ranges of the maximal measures on closed open sets, and thereby provides 

algebraic constraints. 
Similar arguments show an endomorphism f of S multiplies a natural or-finite 

measure on the unstable set of a typical point by a constant R (f) depending only 

on f. This refines a result of Cuntz and Krieger. Similarly one obtains L (f) via 

stable sets. The maps f ~ L(f)  and f ~ T(f) are homomorphisms from the 

endomorphism semigroup of S into the positive units of the ring generated by 

1/)t and the algebraic integers of Q[)t]. The algebraic constaint on the range 

follows from showing L( f )R( f )deg( f )=  1. 
Welch's proof involved certain integers which counted maximal numbers of 

right/left compatible extensions for a block code defining an endomorphism f of 

a full shift (see section 14 of [12]). These integers depended not only on f but also 

on the particular block code used to define f. Milnor [16] pointed out that the 

numbers could be normalized to depend only on f, and in proving a result from 

[4] related the normalized numbers to the multiplication of induced measures on 
stable/unstable sets by an automorphism of the shift. This connection of Welch's 

numbers to measures suggested to me the basic idea of this paper, using extremal 
arguments with a measure to constrain degrees. 

I especially thank Wolfgang Krieger and Brian Marcus for helpful discussions. 

§1. Background, notation and Markov magic words 

I will assume a little familiarity with subshifts of finite type and symbolic 

dynamics. Basic definitions and facts adequate for this paper are listed in [3], 

section 1. For a thorough introduction, consult [1], section 3; [9], chapters 7, 17 

and 25; [6]; [13]; and [18]. A soJic shift is a subshift which is a factor of a subshift 

of finite type. Sofic references are included in the bibliography. 

I will use the same symbol for the domain of a subshift and the shift map on 

that domain. For a sofic shift T, several conditions ar equivalent ([7] and [11]): 

some point has a dense forward orbit; the periodic points are dense and T has a 
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dense orbit: there exists a unique measure of maximal entropy which is nonzero 

on nonempty open sets; for any T-words U and W, there is some word V such 

that UVW is a T-word; T is a factor of an irreducible subshift of finite type; T is 

a factor of an irreducible subshift of finite type by a one-block bounded-to-one 

map which is one to one almost everywhere. Such shifts I will call irreducible sofic 
shifts. 

If UVW is an allowed word for a subshift S, where U, V and W have lengths 

u, v and w, let 

UV~W ={x E S:x_u+~".xv+w_l+i = UVW}, e.g. V °={x  E S :xo . . .xv- i  = V}. 

We will be concerned only with subshifts S with a unique measure of maximal 

entropy, denoted tts. If S is a subshift of finite type on symbols {1 . . . . .  n} defined 

by an irreducible zero-one matrix A, let A be the spectral radius of A. The 

entropy h(S) of S is log )t. The number A is a simple root of the characteristic 

polynomial, in particular ;t is an algebraic integer. Choose positive left and right 

eigenvectors l and r for A, and let r / b e  their inner product. Then tts is defined 

by requiring 

(1.1) /Zs (W °) = (A-kl(i)r(j))/~ 

for any S-word W of length k + 1 with initial symbol i and terminal symbol j. 

Notice that by multiplying l and r by a suitable number, we may require the 

entires of l and r (and therefore r/) to lie in Z IA]. 

Any factor map which maps an irreducible sofic shift S onto an irreducible 

sofic shift T of equal entropy takes /.ts to /zr. For such a map there exists an 

integer N such that no point in T has more than N preimages in S. To compute 

/tT for an irreducible sofic shift T, let f be a 1-block factor map from a 1-step 

subshift of finite type of equal entropy onto T. Now for each T-word W, 

I.tr(W °) = ttsf ~(W °) will be a sum of boundedly many terms of the form (1.1). 

The covering map f above may be chosen so that in addition every bilaterally 

transitive point in T has a unique preimage in S (f is 1-1 a.e.). Then it is well 

known (e.g., see the proof of 3.33 in [1]) that there exists a T-word W (a magic 
word for f)  such that for some integer / ,  if x and y are points in f-l(W°) then 

x~ = yl. One can check that such a word W satisfies the following definition. 

(1.2) DEFINITION. Let W be an allowed word in an irreducible sofic shift T of 

entropy log A. Then W is a Markov word for T if the following hold: 

(1) if A W  and WB are T-words, then AWB is a T-word; 

(2) for any T-words AWC and BWC, the conditional probabilities 

 T[W°CIAW °] and t . t r [ w ° c l B w  °] are equal; 
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(3) if AWUWB is a T-word and WU has length k, then I~r(A°WUWB)= 
h -ktzr (A o WB). 

Note that any word containing a Markov word is a Markov word. 

Above,  the shift T is almost of finite type (AFT) if by passing to a higher block 

presentation of T we may also require that the map f be left and right resolving 

(see [151 and [5]). In this case, 

(1.3) the fraction of words of length k with a unique preimage word under f 

goes to 1 exponentially as k goes to infinity. 

The rest of this section is devoted to the main technical tool for the sequel, 

"Markov magic words." This is a refinement of standard arguments for 

bounded-to-one maps from irreducible subshifts of finite type to the case where 

the domain is sofic. The underlying ideas go back at least to [12] (sections 10 and 

11), via [11 (section 3) and [8] (section 3). 

Let f be some fixed factor map from an irreducible sofic shift S onto a subshift 

T of equal entropy. The coding length of f is the minimal positive integer k such 

that for some integer i, ffX)o is a function only of x~ • • • xi+k-1. Consider the set 

of T-words W for which the following hold: 

(i) W is a Markov word for T, 

(ii) there exist integers j and k, such that k - j + 1 => coding length of f, and 

for each x in f-I(W°), xj " ' x k  is Markov for $. 

To see that °ff2 is nonempty, pick a point y bilaterally transitive for T, with 

preimages x'  . . . .  , x". Each of these preimages is bilaterally transitive for S (see 

the proof of 6.9 in [6]). Pick a Markov word U for S and a Markov word V for T. 

Now pick a positive integer N greater than the coding length of f such that U 
occurs in each of the m words (xi)_N .. .(x~)N and V occurs in y - N ' ' ' y N .  

Finally a routine compactness argument shows that for some positive L, if 

OCZ)-tN+L) "'" ~Z)~N+L)= y-~N+c)" • " y(~+L) 

then 
z-N • "zr~ = (x~)-N ' ' '  (x')N for some i. 

Thus the word Y-¢N+L~" "" yeN+L) is in °W. 

Choose a word W for which the number of possible words xj . . . xk  in (ii) 

above is minimal. Call such a word a Markov magic word for f. Let 

(W°)I , . . . ,  (W°)~ denote the partition of ]'-~(W °) by the words in coordinates j 

through k given by (ii). Now suppose WVW is a T-word, and let L be the length 

of VW. Given i, the minimality of d guarantees that for some ], 

(w°), n [ - ' (w°vw)  n o. 
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Similarly, for some j 

s-~(w°), n f - ' ( w ° v w )  n (w° ) , /  0 .  

In particular, the set 

{ x j  . . . x k + ~  : x ~ f - l ( w ° v w ) }  

contains at least d words. Moreover,  for x in (W°)i Nf - I (W°VW)  (or in 

S L(W°), N f - I(W°VW)) only one word may occur as Xj'''Xk÷L. Otherwise, at 

least d + l  words could occur as x i . . .xk÷L in f ~(W°VW); the Markov 

condition on the words x~ ' "xk  would let us find at least d + n words which 

could occur as xj - . .  Xk÷,L for X in f-~(W°(VW)n); then f would take infinitely 

many points of S into the periodic orbit (VW) ~, a contradiction. 

These arguments have several easy and useful consequences, summarized in 

the proposition below. If A W B  is a T-word, then (AW°B)~ is used to represent 

the set f ~(AW°B) n (W°),. A point x is left transitive if {T"x : n < 0} is dense. A 

point x is bilaterally transitive if it is left and right transitive. 

(1.4) PROPOSITION. Let f be a facwr map from an irreducible sofic shift S onto 
an irreducible sofic shift T. Let W be a Markov magic word for f; such words exist. 
Let the d sets ( W ° ) , . . . , ( W ° ) d  give the induced partition of f-~(W°). 

Then the following hold. 
(1) If y is a point in T in which W occurs infinitely often to the left and to the 

right of the zero coordinate, then y has exactly d preimages in S. 
(2) Every bilaterally transitive point of T has d preimages. 
(3) If W V W  is a T-word and V W  has length L, then for each i in {1, . . . ,  d} 

there exist unique j and k with (W ° VW)~ n S-L (wO)j ~ 0 and (W ° VW)k n 

s-L (w°), ~ 0.  
(4) If V W X  is a T-word, then (VW°X) ,~  fJ, 1 <= i ~ d. 
(5) Any T-word containing W is a Markov magic word for f. 
(6) If  V W X W Y  is a T-word, where W X  has length L and 

then 

( w ° x w ) ,  n s-L (w°),~ 0 ,  

~ ( v w ° x w Y ) , _  ~ ( v w ° r ) ,  
~ ( v w ° x w Y )  - ~ .  ( v w  ° v), 

PROOF. 

make explicit. By (1.2.3) 

l<=i<=d. • 

The arguments should be clear, except perhaps for (6), which we now 

~T ( v w ° x w Y )  -- A -L ( v w  o y), 
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so it is enough to show 

~s (VW°XWY) ,  = A -L~s (VW" Y),. 

Let j • • • k be those S-coordinates chosen so that for any x in f-~(W°), the word 

x i . . . x k  is Markov and the number of such words is minimal. Let I~" be the 

S-word such that for any x in (W°)~, 

Xj " ' ' X k  : I~.  

Let X be the S-word such that for any x in (W°XW)~, 

xi "'" Xk+L = WXW. 

Then for any S-words A and /3, because W is Markov, 

(A I~/JXWB ) 71 ( V W ° X W Y ) , /  

if and only if 

) n ( v w ° Y )  / ca. 

So, if {AWJB} is a collection of disjoint sets with union (VW°Y)~, then 

{A W~XWB } is a collection of disjoint sets with union (VW°XWY). Therefore it 

is enough to show 

I~s (-A W'XWB ) = A - L  (_~ IV'B). 

Because X W  has length L, this follows from (1.2.3). • 

In the sequel, the particular words and coordinates defining the (W°)~ from a 

given W are tacitly fixed with W and generally suppressed from the notation. 

(1.5) REMARK. If S in (1.4) is a subshift of finite type, then the arguments 

adapt to show that every point in T has at least d preimages. This may fail when 

S is sofic. 

For example, let T be the two-shift on symbols 0 and 1. Define f from T to T 

by f(x)~ = x, + x,+, (mod 2). Define g from T to a sofic S by collapsing only the 

two fixed points of T. Now define h from S to T by [ = hg. Then h has degree 

two, but one of the fixed points of T has a unique preimage under h. • 

§2. Constraints on the degrees of factor maps from an irreducible sofic shift 

The following lemma is the heart of the paper. It tells us that if a map has 

degree d, then the inverse image of a typical clopen set is the disjoint union of d 

clopen sets of equal measure. 
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(2.1) SPLITTING LEMMA. Suppose S and T are irreducible sofic shifts of equal 
entropy, f factors S onto T, and W is a Markov magic word for f. 

Then for any T-word VWX,  

1 
IZs (VW°X) ,  = -~ tx7: (VW°X) ,  1 <= i <= d. 

PROOF. For 1 =<i= < d, define the ratio sets 

f ~s ( VW°X) '  " } 
~'  = [ I.tT ( V W ° X )  V W X  is a T-word . 

In ~i,  we allow V and X to be empty, e.g. V W X  = W is a T-word. Each ~ is 

finite, so M~ = max ~ is defined. 

We observe a crucial extension property: if V W X  and AWB are T-words, 

then for any given i, j we may find words U, Y such that U V W X Y  is a T-word 

and 

tZs ( U V W ° X Y ) i  _ I~s ( A W°B ), 
I.tr ( U V W ° X Y )  - tzr (A W°B ) " 

To show this, choose S-words AW~B and VWjX  such that f ( A W ° B ) C  A W ° B  
and f(VT~/'°X)C VW°X.  For clarity, require that each (barred) S-word have at 

least the length of the corresponding (unbarred) T-word. 

Now by irreducibility find S-words C" and / )  such that 
( A W ~ B ) C ( V W i X ) D ( A W ~ B )  is an S-word. Let C and D be the T-words such 

that 

f ( A W ? C V W j X D  W~B ) c A W ° C V W X D  WB. 

Let U = A WC, Y = DWB.  Then 

l.Ls ( U V W ° X Y ) i  = I.~s ( A W C V W °  X D  WB )i 
I .LT(UVW°XY) I.vr(A W C V W ° X D W B )  

_ IXs (A W ° C V W X D W B ) i  
- ~ T ( A W o C V W X D W B )  

__ tZs ( A  W ° B  )i 
- I.tT (A W°B)  

by (1.4.3) 

by (1.4.6). 

In particular, the extension property shows M~ is independent of i, say M, = M. 

Now suppose V W X  is a T-word such that 

tZs ( VW° X ), = 
(*) I~r ( V W ° X )  M, 
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and consider the symbols a such that VWXa is a T-word. Then 

Mit~ (VW°X)  = It~ (VW°X),  = Y~ It~ (VW°X,~), 
ot  

<_ Y~ MItT (VW°X,~) = MItT (VW°X). 
a 

Therefore its (VW°Xa)~ = MItT (VW°Xa)  for each a. Inducting this argument 
on both sides of V W X  gives a stability property: if U V W X Y  is a T-word and (*) 
holds for VWX, then 

Its ( UVW°XY) i  
Itr ( U V W ° X Y )  = M. 

Using the stability and extension properties, we easily find a T-word V W X  such 

that Its (VW°X), = Mit t  (VW°X),  1 <= i < d. Since ItT (VW°X)  = 
Itsf ~(VW°X) = EI t s (VW°X) ,  this forces M = 1/d. Thus ~, = {l/d} for each i, 
otherwise for some T-word U W Y  we would find 

ItT(uwov) = ~ Its(UW°V) , 

< ~ (1 )  I tT(UW°Y)= I tr(UW°Y),  

a contradiction. • 

(2.2) THEOREM. Let S and T be irreducible sofic shifts of entropy log h. Then 

there exists a finite set E of positive integers such that for any factor map of S onto 
T, we have deg f = eu, where e E E and u is a positive integer which is a unit in the 
ring Z[1/)t]. 

PROOF. Suppose f factors S onto T and deg f = d. Let W be a Markov magic 
word for T, with I t r (W °) = aA-", a E Q()t). Choose/3 in Z[A] such that for any 
closed open set C of S, /3itsC E Z[1/)t]. By the splitting lemma, 

/3 ( - ~ ) ~  Z[1/)t ], or d~Y-E Z[1/)t ]. 

Pick a rational integer m such that 

( ~ d )  ~ ztx]  c ZI1/A], 

so that 
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Let E be the set of positive integers dividing m. Write d = eu, where e = 

gcd(m, d) E E. Let l = m/e. Then 

l le m E z [ 1 / h ] ,  
u ue d 

with l and u relatively prime. If p is a prime dividing u, then 

and therefore 1/p E Z[1/h ]. It follows by multiplying that 1/u E Z[1/A ]. • 

The rational integral units of Z[1/h ] are readily computed from the following 

proposition. 

(2.3) PROPOSITION. Let A be an algebraic integer with minimal polynomial 

r(x) = x" + an_~x "-1 +." • + ao, and suppose d E Z. Then the following conditions 

are equivalent. 

(1) d is a unit in Z[1/A]. 

(2) If  p is a rational prime dividing d, then p divides a~, 0 <= i <= n - 1. 

(3) d divides some power of the greatest common divisor of {ai : 0 <-_ i <= n - 1}. 

PROOF. (2) ¢:> (3): This is clear. 

= - n  E i = 0  (ai/p)A i E Z[1/h ], for each prime divisor of (2) ~ (1): Here 1/p - h  ,-1 

d. Therefore 1/d E Z[1/h ]. 

(1) ~ (2): Suppose p is a prime divisor of d. Then 1/p = (d/p)(1/d)  E Z[1/h], 

so for some integers b~ and some positive m, l ip = ET'~o b~h -~. Let 

m 

q (x) = x m _ ~= pb,x m-, E Z[x ]. 

Since q (A)=  0, the polynomial r(x) divides q(x)  in Z[x], say q = rs. 

Now (2) follows from the argument of the Gauss Lemma. Choose the integers 

i and j minimal for the following property: the term in r of degree i and the term 

in s of degree j have coefficients nonzero mod p. Then the term in q of degree 

(i + j )  has coefficient nonzero mod p. Thus i + j  = m, and only the leading 

coefficients of r and s can be nonzero mod p. • 

(2.4) COROLLARY. Let S and T be irreducible sofic shifts of entropy log h. Let 

U(A) be the set of positive integers which divide some power of the greatest 

common divisor of the nonleading coefficients of the minimal polynomial of h. 

Then there is a finite set E of integers such that for any factor map f of S onto T, 
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we have deg f = eu, where e E E and u ~ U ( A ). If  f is an endomorphism, then 

deg f E U(A). 

PROOF. The existence of E is immediate from (2.2) and (2.3). If f is an 

endomorphism with d e g f - - e u ,  then fk is an endomorphism with deg(~ ~) = 

e ~u k. This forces some power of e, and therefore e itself, to lie in U(A). • 

In some cases the splitting lemma holds for all clopen sets. 

(2.5) THEOREM. Suppose S and Tare irreducible sofic shifts of equal entropy, T 

is almost finite type (AFT) and f has degree d. 
Then for any closed open set C in T, f 1 C is the disjoint union of d clopen sets of 

equal tzs measure. 

PROOF. It is enough to consider for C a given set of the form W °, where W is 

a T-word. Given n, consider the partition of W ° into sets VW°X, where V and 
X are words of length n, and let B, be the union of those VW°X for which 

V W X  is not a Markov magic word for f. Then/XT (B,) goes to zero exponentially 

as n goes to infinity. By (1.3), for large n we may find a clopen set D contained 

in W ° which is the disjoint union of d sets of equal /ZT measure, one of which is 

B,. Then f - lD  splits as required. By (2.1), f - l (W ° - D)  splits. So, f-a( W O) splits. 

(2.6) COROLLARY. Let S be an irreducible sofic shift of entropy log )t. Suppose 

r~ E Q (X ) and for every closed open set C in S, tzsC E (1/r/)Z[1/)t ]. (For example, 

if S is finite type with lxs defined from (1.1) with I and r over Z[1/A ], then r~ = Ir 
will do.) 

Then for any factor map f of degree d from S onto an AFT shift of equal entorpy, 
r/ / d E Z[1/A ]. The set of such d is finite modulo multiplication by positive integers 
which are units in Z[1/A]. 

PROOF. By (2.5), 1/d ~ (1/r/)Z[1/A]. The last claim follows the argument in 

(2.2). • 

(2.7) REMARK. In particular, in the category of shifts of finite type, the set E 

of (2.4) may be chosen independent of T. 

(2.8) EXAMPLES. If in (2.6) S is the two-shift, we may set r / =  1; thus d must 

be a power of 2. (This may also be deduced from theorem 4.3 of [15] and 

theorem 14.9 of [12].) If in (2.6) S is the golden mean shift, defined by the matrix 

(o ~), we may set r / =  )t 2 + 1, with minimal polynomial x 2 - 5x + 5. Here Z[ l /a  ] = 

Z[)t ], and d must be 1. • 
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I do not know if the AFT condition in (2.5), (2.6) or (2.7) may be dropped. The 
remaining examples of this section address sharpness questions raised by (2.3). 

(2.9) EXAMPLE. There is a noninvertible endomorphism of a mixing subshift 
of finite type S, where S has entropy log a and a is an algebraic unit. 

PROOF. Let S be the set of all bisequences on symbols {0, 1,2} in which 2 is 
always preceded by 0. Then S is given by the matrix 

( i  1 i )  11 

with characteristic polynomial x ( x  2 -  2 x -  1). Define the endomorphism f by 

fix), = x, + x,+~ (mod 2) if {x,, x,+,} C {0, 1}, 

= x~ otherwise. 

Clearly f is well defined. Since jr(x), (/x),+l and xi+~ determine xi, jr is bounded- 
to-one. A point x has two preimages if and only if there is an integer n such that 
x~ ~ 2 when i ~ n. • 

(2.10) EXAMPLE. A mixing subshift of finite type S may admit a degree two 
endomorphism, even though the entropy of S is loga where a/2 is not an 
algebraic integer. 

PROOF. Define S from the matrix g ,~), so a has minimal polynomial 
x 2-  2x - 2  and a/2 has minimal polynomial x 2 - x -  ½. The state symbols of S 
are the edges of the graph 

Co, C~ 

where the given symbols name the edges. An edge e may precede an edge f in S 
iff the terminal vertex of e is the initial vertex of jr. Define the endomorphism jr 
by 

0 x), = a  

f i x ) ,  = 

if xi = a 

if xixi+lxi+2 = djae~ or xixi+l = djek, 

where {d, e} C {b, c} and j + k is interpreted mod 2. 
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The trick above works as well for a defining matrix (o ~) with (reducible) 

characteristic polynomial x 2 - 2x - 8 = (x - 4)(x + 2). The trick also works for 

other prime degrees p, but always it forces the characteristic polynomial of the 

defining matrix to be a monomial mod p. Must this always hold? Does the zeta 

function of an irreducible subshift of finite type (sofic shift?) constrain the 

degrees of endomorphisms? 

§3. Endomorphisms multiply the natural measure on unstable sets 

Much of this section is implicit in the literature (but deserves an explicit 

exposition). More detailed acknowledgements, especially to work of Cuntz and 

Krieger, are deferred to (3.7) below. 

Suppose S is a subshift. Given x E S ,  n E Z ,  let x(_=,, l = { y U S : y ~ = x ~ ,  

i<=n}. Let WU(x) = [..J °~zX¢ .. . .  j, the unstable set of x. Make WU(x) 

a ~r-compact space by taking as a basis for the topology the collection 

{y~_o.j : y ~ W"(x),  n ~ Z}. 

Let A be a k × k irreducible zero-one matrix with spectral radius A and 

positive left and right eigenvectors l and r for A. Suppose S is the irreducible 

subshift of finite type on symbols {1 . . . .  , k} defined by A. Then on each W " ( x )  

there is a o--finite Borel measure ~" determined by 

(3.1) /z~y(_~,,j = A-"r(y,); y E W"(x) ,  n E Z. 

Notice the family of measures {/z x} will vary in (3.1) by a universal scalar 

multiple as the choice of the eigenvector r varies. 

(3.2) PROPOSITION. Let S be an irreducible subshift of finite type with entropy 
log A. Then there exists a collection {/z x } of Borel measures on the unstable sets 

W " ( x )  of S satisfying the following properties for every x, y in S and n in Z: 
(1) /z~x¢ . . . .  I is finite and nonzero; 
(2) ~zXx< .. . .  l=~-'~zsx(Sx)~_~°_,j;  

(3) there exists a positive integer N such that if X o " ' x N  = y o ' " y N  then 

p. ~x(-®,N] =/.~ YYt-~,NI. 
I f  { ~  } is another such collection satisfying these properties, then there is a scalar M 
such that My  ~ = Ix x, for all x in S. 

REMARk. The properties (1) and (2) determine/.~ ~ up to a scalar on any given 

W" (x). The Markov property (3) relates the various ~ .  

PROOF. Any irreducible subshift of finite type is topologically conjugate to 

one defined by an irreducible zero-one matrix. Then the collection of measures 

given by (3.1) transports to S and satisfies the required properties. 
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Suppose {ixx} and {v ~ } are two such collections on S, with N as in (3) for both. 

By (2), the sets of ratios 

/zxx~-~'"l • x E S, n E Z and /zx l  ~.01. x ~ S 
( /2  x( ~..l ( v  x(-=,Ol 

are equal. By (1) and (3), there is a positive finite maximum M to this set. Let 

z(-~,o] be a set on which this maximum is achieved. 

A simple extremal argument (of the sort used in the stability step of (2.1)) 

shows that if xc ~,o] = z~-~,o] and n > 0, then IxXx~ . . . .  ] = MvXx~ . . . .  ~. By irreducibil- 

ity, for any word W of length N, we may find x in S and m > 0  such that 

x¢-=o] = z¢-=,oj and x,, " "  xm+N 1 = W, so IxXx¢ . . . .  N-l] = MuXx¢ . . . . .  N-I]. Now (2) 

and (3) show that IX" = Mv x, for all x in S. • 

(3.3) REMARK. In (3.2), for a given x the measure of maximal entropy Ixs 

determines (induces) IX x up to a scalar multiple by way of conditional measures. 

For each n, there is a scalar ~, such that if y E x~_~,], m E Z, then 

The scalars y, are determined by the nesting of the sets x( . . . .  1 once Ix Xx~_~o 1 is 

set. 

Also, it is easy to show that it is now necessary to assume a priori that the 

scalar A in (2) is given by the entropy. • 

(3.4) PROPOSITION. Let S be an irreducible sofic shift with entropy log It. Let 

be a set o[ lefl transitive points o[ S. Then there exists a collection {ix~} of measures 

on { W"(x  ) : x E 5e} satisfying the following properties for every x, y in 5 e and n in 
Z: 

(1) Ix~x~_~.l is finite and nonzero ; 
(2) Ix~x( . . . .  ] = /~-I~[,/,SX(Sx)(-~,tl_I] ; 

(3) for each x there exists N > 0  such that if x - N " ' x o  = Y - N ' " y o ,  then 

IX ~x(-~,Ol = IX YY(-~,Ol ; 

(4) the set {ix "x(_~.o~: x E b °} is finite. 

I f  {u ~ } is another such collection, then there is a positive number M such that 
Mu x = Ix ~, for all x E 6e. 

ProoF. Consider any 1-block, 1-1. a.e. map f from a 1-step irreducible SFT 

onto S. Let {IX~} be a collection for S as in (3.2). Then for each x in b °, there 

exists £ in g such that f - ~ W " ( x ) =  W"(2) .  

Define IX~ = IX; of-~. Now (1), (2) and (4) are immediate, and (3) follows for a 
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given x in b ° by choosing N so that xt_N.0 t is a magic word for f. The uniqueness 

argument mimics (3.2). • 

Analogous measures, {u ~} say, may be defined on the stable sets 

In place of (3.1), we set 

(3.5) 

where l is a positive 

right-transitive points. 

w" (x) = U xlo,  . 
n 

u'xt.~ ~ = A"I(x.), 

left eigenvector for )t. In the sofic case, we consider 

(3.6) THEOREM. Suppose S and T are irreducible sofic shifts of equal entropy 

and f factors S onto T. Choose families {/x~} and {/z~} for left transitive x as in 

(3.4). Given f ( x )  = y, with y (and thus x)  left transitive, z E W" (y) and n E Z, 

define the ratio 

R(x ,  y , z , n ) =  ~ s ( f  ~(z t ~,,I)D W " ( x ) )  

Then R (x, y, z, n) is the same number R for any x, y, z, n ; so, f .  tz x = R g  y for all 

such x and y. I f  S = T, require {/z~}={#~}; then R is a number R ( f )  which 

depends only on f, and is invariant under recodings. 

PROOF. The set of such R (x, y, z, n) is finite, say with maximum M. Choose 

and 9 so that R (£, Y, Y, 0) = M. Pick N so that 9[-N.o] = W a Markov magic word 

for f, and I so that £ E SN(W"), .  Then R(x,  y, y, n)  = R(£,  Y, 9,0) = M whenever 
Yr, N+~,,j = W and x E S-"(W°)~ ; this holds for infinitely many negative num- 
bers n for x and y left transitive. But if R(x, y, y, n ) =  M, then the simple 
extremal argument of (2.1) shows R (x, y, z, m) = M whenever zt . . . .  ]C y~ .. . .  ]. If 

{/z~}={/z~}, then in the ratios the arbitrary scaling factors cancel, and the 
invariance follows from (3.4). • 

(3.7) ACKNOWLEDGEMENTS. The measures /zx and their essential uniqueness 

on an unstable set are well known for subshifts of finite type. Proposition (3.2) 

can be developed from the hyperbolic differential viewpoint along the lines of 

[2]. A direct demonstration of (3.2) may be recovered from the proof of (3.3) in 

[8]. This proof of Cuntz and Krieger also proves a slightly weaker version of 

(3.6): there is a number /~  such that /~/x~= Erx-y/./z~, for each left transitive y. 

(So, for endomorphisms, /~ ( f ) =  (degf )R (f).) Their proof also invokes magic 

words, and uses an ergodic argument in place of an extremal argument. 
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(3.8) DEFINITION. Let L( f )  be the number obtained by proving the analogue 

of (3.6) on stable sets. Alternatively, L (f) is R (f) computed with respect to S- ' .  

(3.9) LEMMA. Suppose T is an irreducible sofic shift, and f is an endomorphism 

of T of degree d. Then dL ( f)R (f) = 1. 

PROOF. Let 4, be a 1-1 a.e., 1-block factor map of a 1-step irreducible 

subshift of finite type S onto T (if T is finite type, then 4' = id). Let l and r be 

positive left and right eigenvectors of an irreducible zero-one matrix defining S, 

with lr = 1; so, if U = Uo"" u, is an S-word, then tzsU ° = A-"l(uo)r(u,). Define 

{/~} and {u~} for S as in (3.1) and (3.5). Then define the corresponding measures 

for bilaterally transitive y in T by 

~= 4 ' , ~ ,  .~= 4 ' , ~ ;  x = 4'-'(y). 

Let W be a magic word for 4) which is a Markov magic word for f, with integers 

j < k such that there are d possible words VI , . . . ,  Va which may occur as 

xj • .. xk for x in f I(W°), and each of these words is a magic word for 4,. Choose 

V~, defining (W°)i. Now for some integer I and some symbol a, x E 4'-1(W°)~ 

implies x~ = a. Similarly choose J and /3 so that x E 4'-1(W°) implies xj =/3. 

Now choose n and collections of S-words M, ~,  ~ and ~ such that 

4' I(W°),={x~S:x_°...x, ,~¢,x,=oe, x , + , . . . x . ~ }  

and 

Then 

Now 

4 , - ' ( W  °) = { x  ~ S : x _ °  . . . x , _ ,  ~ ~¢, x~ = / 3 ,  x j+ ,  . . . x .  ~ ~ } .  

- = L ( f ) R  ( f ) .  

d L ( f ) R ( f )  = ~ ~tZT(WO)] = 1. 

The result above gives an alternate proof of (2.1), actually closer to the proof 

of Welch's result in [12]. But the basic idea of (2.1) seems more clear without 

R (f) and L (f). 
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(3.10) THEOREM. Let S be an irreducible soJic shift of entropy log)t. Let 
End(S) denote the semigroup of endomorphisms of S. Let 6~ denote the ring of 
algebraic integers of O()~), and 6~ [I/A] the ring generated by 6~ and 1/A. 

Then the maps R : f ~ R(f) and L : f - L(f) give homomorphims of End(S) 

into the positive units of ~ [1/,~ ]. 

PROOF. Clearly R(fg)= R(f)R(g).  Pick a family {/.t x} as in (3.4) for left 

transitive x, with/x Xx(_~ o I E G~ for all such x. Given f, fix k and [ = S-kf such that 

for all x, x( ~.ol determines (ix)( ~.ol. Then for all positive n, x(-=.o~ determines 

(f"x)(-~.ol. Pick a left transitive point y and a preimage x; let /zYy( ~.ol = c~. 

Computing R 0 ~") with respect to this pair, find aR ([") E ~ ,  n > 0. Therefore 

a [ R  0~)]" E 6~, n > 0, and so R (f) E 6~. Since R (f) = ,~ kR (f), R ([) E (7~ [1/A ]. 

Likewise, L is a homomorphism into CA [1/A ]. By (3.9), L ([) and R (f) must 

always be units of this ring. • 

(3.11) REMARKS. In particular, if in (3.10) A is an algebraic unit, then L(f) 
and R(f)  must be algebraic units. However, they need not lie in Z[1/A]. For 

example, let f be the golden mean shift, defined by the matrix (~ ~); let S = f3. 

Let a be the golden mean, so 

Then 

)t =o~ 3= = 2+  k/5. 

1 -  
R ( f ) =  a ' =  ~ Z[V'5] = Z[A] = Z[1/A]. 

2 

Theorem (3.10) constrains the range of R and L. Are there other constraints? 

1. 
Amer. 

2. 
3. 

(1983). 
4. 
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