
EXPANSIVE INVERTIBLE ONESIDED CELLULAR AUTOMATA
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Abstract. We study expansive invertible onesided cellular automata (i.e., expansive au-

tomorphisms of onesided full shifts) and find severe dynamical and arithmetic constraints

which provide partial answers to questions raised by M. Nasu [N2]. We employ the im-

ages and bilateral dimension groups, measure multipliers, and constructive combinatorial

characterizations for two classes of cellular automata.

1. Introduction

Let A be a set of cardinality N , let N denote the nonnegative integers, and denote an element

of AN as x = x0x1x2 . . . . An invertible onesided cellular automaton (c.a.) is a bijection

F : AN → AN given by some local rule f : Ar → A — for all n, (Fx)n = f(xn . . . xn+r−1).

The onesided full shift on N symbols, SN , is the local homeomorphism AN → AN defined by

setting (SNx)i = xi+1 for all i. F and SN commute; in the language of symbolic dynamics, F

is an automorphism of SN .

We prove that if F is assumed to be a shift of finite type (which we show follows from

weaker assumptions), then F must be shift equivalent to some twosided full shift on J symbols,

where the same primes divide J and N , and the maps F and SN have a common measure of

maximal entropy. These results are proved in Section 4 by studying the relationship between

the images dimension group of SN (introduced in [BFF]) and the bilateral dimension group of

F (introduced in [Kr1]), which are reviewed in Section 3.

In Section 6 we prove that if F is assumed to be a shift of finite type and N is a power

of a prime p, then the number J above satisfies J ≥ p2. The proof uses “measure multipli-

ers”(reviewed in Section 5), developed in [B] to generalize Welch’s theory [H] of compatible

extension numbers to shifts of finite type.

In Section 7, we make three conjectures about the possible dynamics of an expansive auto-

morphism of SN . Two of these were originally introduced by M. Nasu in the form of questions,

to which our results give partial answers.

In Section 8 we give a constructive combinatorial characterization of the invertible onesided

cellular automata F such that the shortest local rules for F and F−1 have radius 1. (Any

invertible onesided c.a. is in an obvious way topologically conjugate to such an F .) In Section

9 we use this characterization to develop a constructive combinatorial characterization of a

certain class of expansive c.a., and for this class we verify all our conjectures.
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In our situation, F is expansive and S = SN is positively expansive (corresponding to F

and not S being invertible). For the case that F and S are both positively expansive, see [N2],

[N3], [Ku], [BM] and [BFF]. For the case that F and S are both expansive, see [N2] and [BL].

This last case is much less rigid and at present much more mysterious than the others (see

Remark 4.7).

The first-named author thanks the Departamento de Ingenieŕıa Matemática of the Universi-

dad de Chile for financial support and warm hospitality in his December 1998 visit to Santiago,

which made this collaboration possible.

2. Symbolic background

In this section we recall some elementary facts about symbolic dynamics. For a thorough

introduction to the symbolic dynamics, see [K2] or [LM].

For a positive integer J , let J be a set of cardinality J ; our default choice will be {0, 1, . . . , J−

1}. Let ΣJ denote the space
∏
n∈Z J . We view a point x in ΣJ as a doubly infinite sequence

of symbols from J , so x = . . . x−1x0x1 . . . . The space ΣJ is compact metrizable; one metric

compatible with the topology is dist(x, y) = 1/(|n|+1), where |n| is the minimum nonnegative

integer such that xn 6= yn. The shift map σ : ΣJ → ΣJ is the homeomorphism defined by

the rule (σx)i = xi+1. The topological dynamical system (ΣJ , σ) is called the full shift on J

symbols (J is the symbol set). If Σ is a nonempty compact subset of ΣJ and the restriction

of σ to Σ is a homeomorphism, then (Σ, σ|Σ) is a subshift. (We may also refer to either Σ or

σ|Σ as a subshift, also we may suppress restrictions from the notation.) Equivalently, there is

some countable set W of finite words such that Σ equals the subset of ΣJ in which no element

of W occurs. A subshift (Σ, σ) is a shift of finite type (SFT) if it is possible to choose a finite

set to be a defining set W of excluded words.

A homomorphism ϕ of subshifts is a continuous map between their domains which commutes

with the shifts. A homomorphism is N -to-1 if every point in the range space has exactly N

preimages. The map is constant-to-1 if it is N -to-1 for some integer N . An endomorphism is

a homomorphism from a subshift to itself. (Thus a one-dimensional cellular automaton map is

the same thing as an endomorphism of some full shift on J symbols.)

Two continuous maps F and G are topologically conjugate, or isomorphic, if there exists a

homeomorphism h such that Fh = hG. In this case the map h is a topological conjugacy. A

topological conjugacy or isomorphism of subshifts is a bijective homomorphism between them.

Now suppose that X and Y are subshifts, m and a are nonnegative integers (standing

for memory and anticipation), Φ is a function from the set of X-words of length m + a + 1

into the symbol set for Y , and ϕ is a homomorphism from X to Y defined by the local rule

ϕ(x)i = Φ(xi−m . . . xi+a). The homomorphism ϕ is called a block code (a k-block code if

k = m + a + 1). The “Curtis-Hedlund-Lyndon Theorem”is that every homomorphism of

subshifts is a block code.
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If A is an m × m matrix with nonnegative integral entries, let Graph(A) be a directed

graph with vertex set {1, . . . ,m} and with A(i, j) edges from i to j. Let EA be the edge set

of Graph(A). Let ΣA be the subset of (EA)
Z obtained from doubly infinite walks through

Graph(A); that is, a bisequence x on symbol set EA is in ΣA if and only if for every i in Z, the

terminal vertex of the edge xi equals the initial vertex of the edge xi+1. Let σA = σ|ΣA
. The

SFT (ΣA, σA) (or ΣA or σA) is called an edge shift. The edge shift σ[J] is a full shift σJ . Any

SFT is topologically conjugate to some edge SFT.

Let XA be the space of onesided sequences obtained by erasing negative coordinates in ΣA:

that is, if a point x is in ΣA, then the onesided sequence x0x1x2 . . . is in XA, and XA contains

only such points. The shift map rule (σx)i = xi+1 defines a surjective local homeomorphism

SA : XA → XA. The system (XA, SA) is a onesided shift of finite type. We will write a

onesided full shift on N symbols as (X[N ] = XN , SN ), where XN = AN for some alphabet A

with N symbols. If X is a nonempty compact subset of XN and the restriction of SN to XN

is an endomorphism then (X,SN ) is a onesided subshift. Every homomorphism of onesided

subshifts is given by a r + 1–block code or local rule with memory m = 0.

Williams [W] explained how to associate to a onesided SFT SA an essentially canonical

matrix, the “total amalgamation”of A. Correspondingly, onesided SFTs are much more rigid

than twosided SFTs ([W], [BFK], [N2], [BFF]). One striking result in this direction is due

to Nasu: if F is a totally transitive (every power of F has a dense orbit) automorphism of a

onesided SFT S, then S must be topologically conjugate to a onesided full shift ([N2], Thm.

3.12). [This is essentially because F induces a map on the vertices of the total amalgamation

(by Lemma 3.10 of [N1], or (2.23) and (2.25) of [BFK]), so some power of F fixes those vertices.]

This result of Nasu justifies a focus on the dynamics of automorphisms of SN vs. other onesided

SFTs.

An SFT is called irreducible if it has a dense forward orbit, and it is mixing if whenever

words U and W occur in points of the SFT, for all but finitely many positive n there is a word

V of length n such that UVW occurs. A nonnegative matrix A is irreducible if for every i, j

there exists n > 0 such that An(i, j) > 0, and it is primitive if n can be chosen independent

of (i, j). An irreducible matrix A defines an edge shift which is an irreducible SFT, and a

primitive matrix A defines an edge shift which is a mixing SFT.

The (topological) entropy h(σ) of a subshift (X,σ) (twosided or onesided) is the growth

rate of its words, that is, lim(1/n)log#{x1x2 . . . xn : x ∈ X}. For an SFT σA, the entropy is

log(λA), where λA is the spectral radius of A. An irreducible SFT σA has a unique measure µ

of maximal entropy; that is, µ is a σA-invariant Borel measure, its measure theoretic entropy

equals h(σA), and there is no other such measure.

Twosided SFTs σA, σB are shift equivalent if their defining matrices satisfy certain equations

which are equivalent to the following condition: for all sufficiently large k, (σA)
k and (σB)

k

are topologically conjugate. An SFT σA is shift equivalent to a full shift on J symbols iff for
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some k the characteristic polynomial of A equals xk(x − J). It is still unknown whether such

SFTs must be conjugate to full shifts (contrast [KR]).

A continuous map ϕ from a compact metric space X to itself is positively expansive if there

exists ε > 0 such that whenever x and x′ are distinct points in X, there is a nonnegative integer

k such that dist(ϕk(x), ϕk(x′)) > ε. This property does not depend on the choice of metric

compatible with the topology. Now if ϕ is an endomorphism of a twosided subshift Σ and

k ∈ Z+, then let x̂(k) denote the sequence of words ([ϕi(x)−k . . . ϕ
i(x)k]: i = 0, 1, 2 . . . ). It is

easy to check that ϕ is positively expansive iff there exists k ∈ Z+ such that the map x 7→ x̂(k)

is injective iff ϕ is conjugate to a onesided subshift.

Similarly, a homeomorphism F from a compact metric space to itself is expansive if there is

some ε > 0 such that for all distinct x, x′, there is an integer k such that dist(F k(x), F k(x′)) > ε.

Expansiveness is an important ([Hi], [AH]) and multifaceted ([BL], Sec. 5) dynamical property.

If F is an automorphism of a onesided subshift X and k ∈ N, let x̃(k) denote the sequence of

words ([F i(x)0 . . . F
i(x)k] : i ∈ Z). Then F is expansive iff there exists k ∈ N such that the

map ηk : x 7→ x̃(k) is injective iff F is conjugate to a twosided subshift. If F is expansive with

local rule f : x0 . . . xr 7→ (Fx)0, r > 0, then the map ηr−1 must be injective. (If ηr−1 collapses

x and y, and W =W0 . . .Wj , then one easily checks that ηr+j collapses Wx and Wy.)

3. Two dimension groups

In this section we review the information we will need on two dimension groups arising in

symbolic dynamics.

Let S be a local homeomorphism of a compact zero dimensional metrizable space X. Let

CO(X) be the collection of clopen subsets of X. Let ZCO(X) denote the free abelian group

with generators CO(X). Let H(S) be the subgroup of ZCO(X) generated by the following

relations:

(i) ΣCi ∼ C if C is the disjoint union of the clopen sets Ci.

(ii) C ∼ D if C and D are clopen sets and there exists n > 0 such that ϕn|C and ϕn|D are

injective and ϕnC = ϕnD.

The images group Im(S) defined in [BFF] is the quotient ZCO(X)/H(S). To an n × n

integral matrix A, associate the direct limit group

G(A) = lim
−→
A

Zn .

The group G(A) can be presented concretely as a subgroup of a finite dimensional vector space

(see pp. 14-15 of [BMT] and Sec. 7.5 of [LM]). For a onesided SFT SA, we have Im(SA) ∼= G(A)

([BFF], Thm. 4.5). For S = SN , let µ be the uniform measure (the measure of maximal

entropy), i.e. if x[0, k] denotes {y ∈ XN : yi = xi, 0 ≤ i ≤ k}, then µ(x[0, k]) = N−(k+1). Then

there is an isomorphism Im(SN )→ Z[1/N ] given by [ΣniCi] 7→ Σniµ(Ci).
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Next, let F : X → X be a subshift. We will similarly define the bilateral dimension group

Bilat(F ) as a quotient of ZCO(X). Let K(F ) be the subgroup of ZCO(X) generated by the

following relations

(i) ΣCi ∼ C if C is the disjoint union of the clopen sets Ci.

(ii) x[i, j] ∼ y[i, j] if for all sequences w = . . . wi−2wi−1 and z = zi+1zj+2 . . . , the point

wxi...xjz is in X if and only if the point wyi...yjz is in X.

Then Bilat(F ) is the quotient group ZCO(X)/K(F ). This is one of the dimension groups

introduced to symbolic dynamics by Krieger [Kr1]. The definition of Bilat(F ) in ([Kr1], Section

2) appeals to a larger theory; we have given an equivalent but more direct definition suitable

to our needs. Following Krieger (personal communication), we use the adjective “bilateral”to

distinguish this dimension group from the past and future dimension groups of [Kr1], which

involve onesided splittings.

The groups Im(S) and Bilat(F ) carry order structures which make them dimension groups.

We will not need to consider these order structures in the current paper.

If F is SFT and S is a local homeomorphism such that SF = FS, then there is an induced

homomorphism S∗ : Bilat(F )→ Bilat(F ), given by [ΣniCi] 7→ [ΣniS(Ci)] when the restriction

of S to each Ci is injective. If F is an SFT σA, with A n× n, then from Prop. 3.1 of [Kr1] we

have

(3.1) Bilat(F ) ∼= G(A⊗At) .

Here the tensor product A⊗At is an n2×n2 matrix with (A⊗At)([i, j], [i′, j′]) = A(i, i′)At(j, j′).

When σA is shift equivalent to a full shift σJ , this means

(3.2) Bilat(F ) ∼= Z[1/J ] .

Let G be a torsion free abelian group. We will say G has finite rank if it is isomorphic

to a subgroup of Qk for some k < ∞. In this case, the rank of G is the minimal such k. If

α : H → G is a group homomorphism, where H has rank k and G has rank `, then (after

identifying G and H with subgroups of Qk and Q`) it is easily checked that the map α is the

restriction of a unique rational vector space homeomorphism α̃ : Qk → Q`. Consequently, we

have the following well known

Fact 3.1. Suppose H and G are countable torsion free abelian groups of equal finite rank

and α : H → G is a surjective group homomorphism. Then α is injective, and therefore an

isomorphism.

For any subshift (Σ, σ), let W(σ) denote the set of words {xi...xj : x ∈ Σ}. Define an

equivalence relation ≈ on W(σ) by setting V ≈ V ′ iff for all words U and W ,

UVW ∈ W(σ) ⇔ UV ′W ∈ W(σ) .

A subshift is sofic iff the set of ≈ equivalence classes is finite. It is easy to see that for F sofic,

the rank of Bilat(F ) is finite.
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Proposition 3.2. Suppose σ is sofic and rank Bilat(σ) = 1. Then σ is SFT and σ is shift

equivalent to some full shift.

Proof. If σ is isomorphic to an SFT σA, then by equation (3.1) the matrix A has just one

nonzero eigenvalue, and therefore σA is shift equivalent to a full shift.

To deduce that σ must be SFT we will sketch an argument which requires some familiarity

with sofic systems. There is an SFT σB which is a topologically canonical “follower set cover”of

the sofic shift σ, and here G(B) is isomorphic to the future dimension group of σ ([Kr2], Thm.

3.5). It is easy to check that the future dimension group of σ must have rank 1 if Bilat(σ) has

rank 1. This forces the SFT σB to be irreducible. However, for a nonSFT sofic shift, this SFT

σB must be reducible, because a nonSFT sofic shift has “non-F -finitary”points ([Kr2], Prop.

4.3). ¤

Open Problem 3.3. Suppose σ is a subshift and Bilat(σ) has finite rank. Must σ be sofic?

Open Problem 3.4. Suppose σ is a subshift and the rank of Bilat(σ) is 1. Must σ be SFT?

Of course an answer yes to the former problem implies an answer yes to the latter.

4. Full shifts and primes

Throughout this section, let S = SN denote the onesided full shift on N symbols with

domain X = XN =
∞∏
i=0

{0, 1, ..., N −1}, and let F be an expansive automorphism of S. We will

use some dimension group techniques to prove that if F is SFT, then F is shift equivalent to

some twosided full shift on J symbols, σJ , where N and J are divisible by the same primes.

Let [i0i1 . . . ir]S denote {x ∈ X : xj = ij , 0 ≤ j ≤ r}. Any clopen set in X is a finite

union of sets of this form. Let S∗ denote the homomorphism Bilat(F )→ Bilat(F ) induced by

[C]→ [SC], when S|C is injective, as described in the previous section.

Proposition 4.1.

(i) The homomorphism S∗ : Bilat(F )→ Bilat(F ) is surjective.

(ii) If S∗ is injective then Bilat(F ) ∼= Z[1/N ].

(iii) If Bilat(F ) has finite rank (in particular, if F is SFT or sofic), then S∗ is an isomor-

phism.

Proof. (i) Every clopen set is a disjoint union of sets of the form C = [i0 . . . ir]S , so every

element of Bilat(F ) has the form [ΣnCC]. Surjectivity of S∗ then follows from the

observation

S∗ : [[0i0 . . . ir]S ] 7→ [[i0 . . . ir]S ] .

(ii) Suppose S∗ is injective. Then any two S-cylinders of equal length define equivalent

elements of Bilat(F ) (that is, [[i0 . . . ir−1]S ] =
[
[i′0 . . . i

′
r−1]S

]
), because

(S∗)
r [[i0 . . . ir−1]S ] = [X] = (S∗)

r
[
[i′0 . . . i

′
r−1]S

]
.
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For every positive integer r, X is the disjoint union of N r S-cylinders of length r. Now

there is a unique homomorphism τ : Bilat(F )→ Q such that τ([X]) = 1; this injective

map τ sends each [[x0 . . . xr−1]] to N
−r. The image of this map is Z[1/N ].

(iii) If Bilat(F ) has finite rank, then by the Fact 3.1, the surjection S∗ must be an isomor-

phism.

¤

Corollary 4.2. If F is sofic (in particular, if F is SFT ), then F is an SFT which is shift

equivalent to some two-sided full shift σJ .

Proof. If F is sofic, then Bilat(F ) has finite rank. Then by Proposition 4.1, the rank of Bilat(F )

is 1. It follows from Proposition 3.2 that F is an SFT shift equivalent to a full shift. ¤

Remark 4.3. Let J be the integer such that F is shift equivalent to σJ . Then SN may be

viewed as an N -to-1 endomorphism of some power of σJ , and it follows from Welch’s theorem

([H], Theorem 14.9) or its generalizations ([B], [T1], [T2]) that every prime dividingN must also

divide J . But to show the same primes divide N and J requires more, since (for example) the

rule (ϕx)n = 3xn + xn+1 (mod 6) defines a 2-to-1 but not positively expansive endomorphism

ϕ of σ6.

Proposition 4.4.

(i) The identity map on clopen subsets of X induces a group epimorphism Bilat(F ) →

Im(S).

(ii) This epimorphism is an isomorphism if the rank of Bilat(F ) is finite.

Proof. Recall from Section 3 the definitions

Bilat(F ) = ZCO(X)/K(F )

Im(S) = ZCO(X)/H(S)

To prove (i), we will prove that H(S) contains K(F ). Suppose not. Then there is a formal

sum ΣniCi in ZCO(X) which lies in K(F ) but not in H(S). Using the subdivision relation

common to both K(F ) and H(S), after passing to a different sum we may assume each Ci

is an S-cylinder of the same length, r. Now Σni 6= 0 because ΣniCi /∈ H(S). But then

(S∗)
r : [ΣniCi] 7→ Σni[X] 6= 0. This contradicts ΣniCi ∈ K(F ), and finishes the proof of (i).

If the rank of Bilat(F ) is finite, then by Proposition 4.1 this rank is 1, and the surjective

homomorphism of rank 1 groups Bilat(F )³ Im(S) must be an isomorphism. ¤

Theorem 4.5. If F is sofic, then F is SFT and F is shift equivalent to some σJ , a full shift

on J symbols, where J and N are divisible by the same primes.

Proof. After Corollary 4.2, it remains to show that J and N are divisible by the same primes.

However, Bilat(F ) ∼= Z
[
1
J

]
and Im(S) ∼= Z

[
1
N

]
. Now the result follows from Proposition

4.4. ¤
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Theorem 4.6. Suppose F is SFT . Then F and S have the same measure of maximal entropy.

Proof. In this case we have Bilat(F ) ∼= Im(S) as quotients of ZCO(X), and Im(S) ∼= Z
[
1
N

]
.

There is a unique homomorphism τ from this group into R which sends [X] to 1. Let µS and

µF denote the measures of maximal entropy for S and F . For [C] in Im(S), it is known that

τ : [C] 7→ µS(C) ([BFF], Sec. 9). Likewise for [C] in Bilat(F ), since F is irreducible SFT,

τ : [C] 7→ µF (C) ([Kr1], Theorem 3.2). Therefore µS = µF . ¤

Remark 4.7. A similar dimension group proof scheme was used ([BFF], Theorem 9.1) to

show that commuting onesided mixing SFT’s have the same measure of maximal entropy. In

contrast, Nasu ([N2], Sec. 10) has given an example of commuting twosided mixing SFTs σA

and σB such that Q(λA) 6= Q(λB). This implies that the measures of maximal entropy for σA

and σB do not assume the same set of values on clopen sets, and therefore are not equal. For

this example, in addition G(A) and G(B) do not even have the same rank.

5. Multipliers

In this section we give background for the “multipliers”we use for the entropy constraints of

the next section.

Let A be an irreducible nonnegative integral matrix with spectral radius λ > 1. Let σA :

ΣA → ΣA be the associated edge SFT. Let u and v be positive vectors such that uA = λu,Av =

λv and uv = 1. For a symbol (edge) e, we let u(e) denote ui where i is the initial vertex of e,

and similarly v(e) = vj where j is the terminal vertex of e.

Let x[a, b] = {y ∈ ΣA : yi = xi, a ≤ i ≤ b}. Then the measure µ of maximal entropy for the

edge SFT σA is determined by

µ(x[a, b]) = u(xa)λ
−(b−a+1)v(xb).

For x = . . . x−1x0x1 . . . in ΣA, let π−(x) = . . . x−2x−1 and let π+(x) = x0x1 . . . . Let [e]

denote {x ∈ ΣA : x0 = e}. Let [e]+ = π+[e] and [e]− = π−[e]. Then [e] = [e]− × [e]+.

On [e]− determine a Borel measure µe− by setting

µe−(x[−n,−1]) = u(x−n)λ
−n

and on [e]+ determine a Borel measure µe+ by

µe+(x[0, n]) = λ−(n+1)v(xn).

Define the measure µe as the restriction of µ to [e]. (Abusing notation: µ =
∑
e

µe). For any

Borel set C in XA, define

µ−(C) =
∑

e

µe−(C ∩ [e])

µ+(C) =
∑

e

µe+(C ∩ [e]).



EXPANSIVE INVERTIBLE ONESIDED CELLULAR AUTOMATA 9

Then for any Borel set C,

µ−(σAC) =
1

λ
µ−(C)

µ+(σAC) = λµ+(C).

We will call (µ−, µ+) a conditional decomposition of µ. (The conditional decomposition is a

simplified version of ideas from the ergodic theory of smooth hyperbolic systems [Ma], [S]. The

measures µe− and µe+ can be viewed as conditional measures obtained from µe, related closely

to the conditional measures on stable and unstable sets discussed in Sec. 3 of [B].)

We made a concrete choice of (µ−, µ+) with respect to a particular Markov partition {[e]}

and choice of associated eigenvectors u, v. We could have obtained another conditional de-

composition of µ with another Markov partition. We could also have obtained a conditional

decomposition above using the vertex sets {x ∈ XA : the initial vertex of x0 is i} in place of

the edge sets [e]. In any of these cases, for the resulting conditional decomposition (µ̃−, µ̃+) of

µ, one can see from Prop. 3.2 of [B] that there will be a constant c > 0 such that

µ̃− = cµ−, µ̃+ = (
1

c
)µ+.

For the special case that σA = σJ , a full shift on J symbols, we have an especially simple choice

of (µ−, µ+):

µ−(x[−n,−1]) = J−n

µ+(x[0, n]) = J−(n+1).

We can now summarize the background we need.

Theorem 5.1. Suppose σA is an irreducible SFT, A has spectral radius λ > 1, and ϕ is an N -

to-1 local homeomorphism commuting with σA. Let (µ−, µ+) be a conditional decomposition

of the measure of maximal entropy µ of σA. Let C be any nonempty clopen set such that the

restriction of ϕ to C is injective.

(i) The ratios `ϕ = µ−(ϕC)
µ−(C)

, rϕ = µ+(ϕC)
µ+(C)

do not depend on C or the particular choice of

conditional decomposition.

(ii) `ϕrϕ = N .

(iii) µ(ϕC) = Nµ(C).

(iv) The numbers `ϕ and rϕ are units in the ring Oλ[
1
λ
]. (If λ is an integer J , then this

means the numbers `ϕ and rϕ are products of integral powers of primes dividing J .)

(v) If ψ is also a local homeomorphism commuting with σA, then `ϕψ = `ϕ`ψ and rϕψ =

rϕrψ.

(vi) Suppose V is homeomorphism such that V ϕV −1 = ϕ̃ and V σAV
−1 = σ

Ã
, so `ϕ̃ and

rϕ̃ may be computed w.r.t. σ
Ã
. Then `ϕ = `ϕ̃ and rϕ = rϕ̃.

Remark 5.2. If σA is an irreducible SFT and ϕ is a continuous map such that ϕσA = σAϕ,

then ϕ is open iff ϕ is constant to 1 iff ϕ is a local homeomorphism (this is contained in Nasu’s

Theorem 6.5 in [N1]).
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Examples 5.3. Let σA = σJ , the full shift on J symbols. If N is a positive integer dividing

a power of J , and `, r are units on Z[ 1
J
] such that `r = N , then there exists an N -to-1

endomorphism ϕ of σJ with `ϕ = `, rϕ = r (this can be proved by the method of Proposition

7.4). Here are a few examples.

(1) ϕ = σ. Then `ϕ = 1
J
, rϕ = J,N = 1.

(2) (ϕx)n = xn−1 + xn+2 (mod J). Then `ϕ = J, rϕ = J2, N = J3.

(3) (ϕx)n = xn+1 + xn+3 (mod J). Then `ϕ = 1
J
, rϕ = J3, N = J2.

(4) J = 6 and (ϕx)n = 3xn + xn+1 (mod 6). Then `ϕ = 1
3 , rϕ = 6, N = 2.

Remark 5.4. For σA a full shift, everything in Theorem (5.1) is a translation of (some of)

Welch’s results as reported by Hedlund (Sections 14-15 of [H]). Those results have combinatorial

statements which do not generalize to arbitrary irreducible SFT’s. The generalizations, using

measures, are in Sec. 3 of [B]. The results in [B] like Welch’s are more general than the

consequences collected in Theorem 5.1, but proofs for Theorem 5.1 can be obtained from the

results of [B]. Caveat: our numbers `ϕ, rϕ are the reciprocals of the numbers L(ϕ), R(ϕ) used

in [B].

Remark 5.5. In the next section we only need consider endomorphisms ϕ of σA in the case

that σA is shift equivalent to some full shift. This means that for large enough k, (σA)
k is

conjugate to a full shift. The multipliers `ϕ, rϕ obtained by considering ϕ an endomorphism of

σA are the same as those obtained by considering ϕ as an endomorphism of (σA)
k, so here one

may recover the full shift description of the multipliers by passing to a power of σA.

6. Entropy and primes

Below, S is the full onesided shift on N symbols and F is an automorphism of S such

that F is conjugate to an irreducible SFT σA; that is, there is a homeomorphism U such that

UFU−1 = σA. Then USU−1 = ϕ is an N -to-1, positively expansive local homeomorphism

commuting with σA. We regard (σA, ϕ) as simply another presentation of (F, S). By Theorem

5.1(vi), the numbers `ϕ, rϕ do not depend on the choice of σA and U , so we may define

`S = `ϕ, rS = rϕ.

Theorem 6.1. Let F be an automorphism of S, the onesided full shift on N symbols with

N > 1. Suppose F is conjugate to some SFT σA. Then `S > 1 and rS > 1. If N is a power of

a prime p, then so are `S and rS.

Proof. Let XN =
∏
n≥0

{0, 1, ..., N − 1}, so F and S act on XN . Let [i0...ir]S denote {x ∈

XN : xj = ij , 0 ≤ j ≤ r}. Then [i0 . . . ir]S 7→ [0i0 . . . ir]S induces a map γ0 on clopen sets,

γ0C = (S−1C) ∩ [0]S . Now view γ0 in the (σA, ϕ) presentation and consider C any nonempty

clopen set. For k > 0, the restriction of ϕk to γk0C is injective, and ϕk(γk0C) = C. Because the
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diameter of γk0C goes to zero as k goes to ∞, for large k we must have

µ+(γ
k
0C)

µ+(C)
< 1,

and therefore

(rϕ)
k =

µ+(ϕ
k(γk0C))

µ+(γk0C)
=

µ+(C)

µ+(γk0C)
> 1,

so rϕ > 1. Similarly `ϕ > 1. For N a power of a prime p, Theorem 5.1(iv) now implies that `ϕ

and rϕ must be positive integers divisible by p. ¤

Corollary 6.2. Suppose S is the onesided full shift on N symbols, such that N is a power of

a prime p and S has some automorphism F which is conjugate to a sofic shift.

Then p2 divides N .

Proof. By Corollary 4.2, F must be conjugate to an SFT σA such that σA is shift equivalent

to a full shift on J symbols, where J is also a power of p. By Theorem 6.1, the numbers `S , rS

must be positive powers of p. By Theorem 5.1(iii), N = `SrS , so p
2 divides N . ¤

So for example, no automorphism of the onesided full shift on 5 symbols can be conjugate

to an SFT (or sofic shift).

7. Conjectures

We will make three conjectures. Let SN be the onesided full shift on N symbols.

Conjecture 7.1. Suppose F is an expansive automorphism of SN . Then F is SFT.

Conjecture 7.2. Suppose F is an automorphism of SN and F is conjugate to an SFT. Then

F is conjugate to a full shift.

Conjecture 7.3. Suppose there exists an automorphism F of SN = S, such that F is

conjugate to an SFT and p is a prime dividing N . Then p divides both lS and rS , and in

particular p2 divides N .

The conjectures 7.1, 7.2 are possibilities introduced by Nasu as questions (Question 3.a(2),

p. 46, and Question 3.b, p.50, in [N2]). Independently, Nasu [N2] and Shereshevsky and

Afraimovich [SA] proved Conjecture 7.2 in the case that (F, S) is conjugate to a pair (σJ , φ)

such that φ is given by a local rule xi . . . xj 7→ (φx)0 such that i, j are positive integers and the

local rule is bipermutive. Our Theorems 4.5 and 6.1 support 7.1 and 7.2. From Theorem 9.2 it

follows that all the conjectures hold for the class of expansive automata we consider in Section

9 (those satisfying r(F ) = r(F−1) = r̃(F ) = 1). The rigid combinatorics underlying Theorem

9.2 suggest rigid combinatorics in general, as in the algebraic expansive situation considered

by Kitchens [K1]. Therefore we elevate Nasu’s questions to conjectures, and add the third

conjecture.

The conjectures together with our results imply the following: if F is an expansive homeo-

morphism of SN , then F is conjugate to a full shift σJ , such that
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(i) J and N are divisible by the same primes, and

(ii) if p is a prime dividing N , then p2 divides N .

Proposition 7.4. Suppose J and N satisfy the conditions (i) and (ii) above. Then there is

an automorphism F of SN such that F is conjugate to σJ .

Proof. First suppose N = pk and J = p`, with ` ≥ 1 and k ≥ 2. Define an N -to-1 endomor-

phism ϕ of σp by the rule (ϕx)n = x−1 + xk−1 (mod p). Then ϕ is conjugate to SN and it

commutes with (σp)
` which is isomorphic to σJ .

Next suppose N = p
k(1)
1 ...p

k(t)
t , with each k(i) ≥ 2, and J = p

`(1)
1 ...p

`(t)
t with each `(i) ≥ 1.

Let N(i) = p
k(i)
i and J(i) = p

`(i)
i . Construct Fi as in the preceding paragraph, with Fi an

automorphism of SN(i) and Fi conjugate to σJ(i). Now F =
t∏
i=1

Fi is an automorphism of

S =
t∏
i=1

SN(i). Here S is conjugate to SN , and F is conjugate to σJ . ¤

8. Construction of one–sided invertible cellular automata

Let F : AN → AN be a onesided invertible cellular automaton. Let r(F ) denote the radius

of the shortest local rule defining F : that is, r(F ) is the minimal nonnegative integer r such

that for all x, the symbol (Fx)0 is determined by x0 . . . xr; analogously we define r(F−1). In

this section we give a constructive combinatorial characterization of the invertible F such that

r(F ) = r(F−1) = 1. We remark, it is possible to have r(F−1) larger than r(F ).

For any positive integer k, by grouping symbols into k-blocks we can view F as a map

F (k) : (Ak)N → (Ak)N; and if 0 < r(F ) ≤ k, then r(F k) = 1. So any onesided invertible c.a. is

topologically conjugate to a c.a. F such that r(F ) = r(F−1) = 1.

Let A∗ be the set of words appearing in AN. We say that a word w′ ∈ A∗ is an F -

successor of w ∈ A∗, and we use the shorthand w
F
−→ w′, if there are x, x′ ∈ AN such

that F (wx) = w′x′. From F we define an equivalence relation on the alphabet A: a ∼F

b if and only if ∃ n ∈ N, ∃ a0, a1, ..., an ∈ A,∃ b0, ..., bn−1 ∈ A, such that a0 = a, an = b,

ai
F
−→ bi and ai+1

F
−→ bi, for i ∈ {0, ..., n − 1}. For a ∈ A, we denote by cF (a) its equivalence

class with respect to ∼F . This gives a partition of A into equivalence classes, PF = {cF (a) : a ∈

A}. Given F with r(F ) = 1, define πF : A → A by πF (a) = F (aa).

With r(F ) = 1, the map F is left permutive if for all α and b in A, there is a unique a

in A such that F (ab) = α. In this case we let πF,b denote the permutation a 7→ F (ab). For

simplicity we will abbreviate πF,b as πb when the context is clear.

Lemma 8.1. Suppose F is a onesided invertible c.a. such that r(F ) = r(F−1) = 1. Then the

following hold.

(1) F is left permutive and πF is a permutation.

(2) If cF (a) = cF (b), then πa = πb.

(3) πb(cF (a)) = πF (cF (a)), for all a, b.



EXPANSIVE INVERTIBLE ONESIDED CELLULAR AUTOMATA 13

Proof. (1) F is left permutive because F is surjective. The map πF describes the map on fixed

points of the shift, so the invertibility of F implies πF is a permutation.

(2) It suffices to show F (ca) = F (cb) under the assumption a
F
−→ α and b

F
−→ α, where

α is some element of A. Let x, x′, y, y′ ∈ AN such that F (ax) = αy and F (bx′) = αy′.

Since r(F ) = r(F−1) = 1 and F (cax) = βαy, we deduce that F−1(βα) = c. Therefore,

F−1(βαy′) = cbx′ and F (cb) = β, which proves the lemma.

(3) Put α = F (ab). Since F is invertible there is a unique a′ ∈ A such that πF (a
′) = α.

Then α is a common successor of a and a′, which implies that a ∼F a′. This fact proves that

α ∈ {πF (a
′) : a′ ∈ cF (a)}. ¤

Theorem 8.2. Let P be a partition of A into equivalence classes, with c(a) denoting the class

containing a. Let F : AN → AN be a cellular automaton with r(F ) = 1 satisfying the following

conditions:

(1) F is left permutive and πF is a permutation.

(2) If c(b′) = c(b), then πb = πb′ .

(3) πb(c(a)) = πF (c(a)), for all a, b.

Then F is an invertible cellular automaton with r(F−1) = 1.

Conversely, if F is a onesided invertible cellular automaton with r(F ) = r(F−1) = 1, then

the properties (1)-(3) hold for the partition PF .

Proof. Let a0, a1 ∈ A. Using the assumption that πF is a permutation, we let b be the symbol

such that πF (b) = a1. Using the left permutivity, we let a be the unique symbol such that

F (ab) = a0.

Now if b′ is any symbol in A such that b′
F
−→ a1, then by property (3) we have that a1 is in

πF (b
′). Then πF (c(b)) and πF (c(b

′)) have nonempty intersection. Since πF is a permutation,

it follows that c(b′) = c(b). Then by property (2), F (ab) = F (ab′) = a0. Because F is left

permutive, it follows that a is the unique element in A such that a
F
−→ a0a1. This exhibits the

local rule F−1(a0a1) = a.

The converse claim is the preceding lemma. ¤

In the preceding theorem, the partition PF refines P. This refinement can be proper (con-

sider the identity map). The construction is practical. To construct, freely pick any partition

of A to be P, and freely pick any permutation of A to be πF . Then for each class c(a) = [a],

freely pick as πa = π[a] any permutation p satisfying (i) p(b) = b if b ∈ [a] and (ii) for each

class [a′], p : [a′] 7→ π[a′].

The following proposition relates the partitions PF and PF−1 .

Proposition 8.3. Let F : AN → AN be an invertible cellular automaton with r(F ) = r(F−1) =

1. Then for all a, b in A,

a ∼F b ⇐⇒ πF (a) ∼F−1 πF (b) .
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In particular cF−1(πF (a)) = πF (cF (a)), and the rule cF (a) 7→ cF−1(πF (a)) induces a bijection

PF → PF−1 .

Proof. Let a, b ∈ A such that a ∼F b. By definition, there are b0, ..., bN ∈ A and c0, ..., cN−1 ∈

A verifying: a = b0, b = bN and for i ∈ {0, ..., N − 1} bi
F
−→ ci, bi+1

F
−→ ci. On the other

hand, since for α, β ∈ A, α
F
−→ β if and only if β

F−1

−→ α, we can deduce that πF (b0)
F−1

−→ b0,

c0
F−1

−→ b0, c0
F−1

−→ b1, c1
F−1

−→ b1, ......, cN−1
F−1

−→ bN−1, cN−1
F−1

−→ bN , πF (bN )
F−1

−→ bN . This

fact implies that πF (b0) = πF (a) ∼F−1 πF (bN ) = πF (b). Using the same arguments with

respect to F−1 we conclude that a ∼F b if and only if πF (a) ∼F−1 πF (b).

The concluding sentence of the proposition follows directly. ¤

9. A class of expansive examples

In this section, F will denote an invertible onesided cellular automaton, F : AN → AN, such

that r(F ) = r(F−1) = 1. We write a point of AN as x = x0x1 . . . . We let x̃i = (F ix)0,

x̃ = (x̃i)i∈Z, and X̃ = {x̃ : x ∈ AN}. Here the map F is expansive if and only if the map x 7→ x̃

is injective, and if the map is injective then it defines a topological conjugacy from (AN, F ) to

the subshift (X̃, σ). In this case the onesided shift on AN can be presented by some block code

of radius r̃ = r̃(F ), so x̃−r̃ . . . x̃r̃ determines x1.

We will give a constructive combinatorial characterization of those F for which r̃(F ) = 1,

and we will describe their dynamics. (For an interesting example in this class giving an idealized

physical model, see [C]).

Theorem 9.1. Let F : AN → AN be an invertible cellular automaton with r(F ) = r(F−1) = 1.

The cellular automaton F is expansive with r̃(F ) = 1 if and only if

(1) ∀ a, b ∈ A, |cF (a) ∩ cF−1(b)| ≤ 1, and

(2) ∀ a, b, b′ ∈ A, (F (ab) = F (ab′) ⇒ b ∼F b
′) .

In this case,

1*. ∀ a, b ∈ A, |cF (a) ∩ cF−1(b)| = 1,

2*. ∀ a, b, b′ ∈ A, (F−1(ab) = F−1(ab′) ⇒ b ∼F−1 b′), and

3*. |A| = J2 for some J in N such that |cF (a)| = J for all a in A.

Proof. First let us see that property (2) implies property (2*). Suppose F−1(ab) = F−1(ab′).

Then there exist symbols α, β, γ, β′, γ′ such that F (αβγ) = ab and F (αβ′γ′) = ab′. Now

property (2) implies β ∼F β
′. Also β

F
−→ b and β′

F
−→ b′, and therefore b ∼F−1 b′, proving (2*).

For the sufficient conditions let us assume F is an invertible cellular automaton with r(F ) =

r(F−1) = 1 satisfying properties (1) and (2) (and therefore also (2*)). To prove that F is

expansive it is enough to show x̃−1x̃0x̃1 determines x1. Suppose x ∈ A
N. From properties (2)

and (2*) we deduce there are unique classes cF ∈ PF and cF−1 ∈ PF−1 , depending on x̃−1x̃0x̃1,

such that x1 ∈ cF ∩ cF−1 . Therefore, by property (1), x1 is the unique element of cF ∩ cF−1 .

This procedure provides the required block map x̃−1x̃0x̃1 7→ x1.
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Now we turn to the necessary conditions. Suppose F is expansive with r̃(F ) = 1. Take

a∗ ∈ A such that |cF (a
∗)| = max{ |cF (a)| : a ∈ A }. It follows from Proposition 8.3 that

|cF (a
∗)| = max{ |cF−1(a)| : a ∈ A }. On the other hand, from Theorem 8.2 we have F (ba′) =

F (ba′′) for any b ∈ A and a′, a′′ ∈ cF (a
∗), and since r̃(F ) = 1, F−1(ba′) 6= F−1(ba′′). Therefore,

|cF−1(b)| ≥ |{ b′ ∈ A : b
F−1

→ b′}| ≥ |cF (a
∗)| = max{ |cF−1(a)| : a ∈ A }. We conclude there is a

positive integer J such that for any a in A, |cF (a)| = |cF−1(a)| = J .

To prove property (2) holds, suppose it does not. Then there are b, b′, a ∈ A such that

F (ab) = F (ab′) and cF (b) 6= cF (b
′). In this case, by using the same arguments as in the last

paragraph we deduce that |cF−1(a)| ≥ 2J . This is a contradiction. This verifies property (2),

and therefore also (2*).

Next note that for any x = x0x1 . . . , the triple (x0, cF (x1), cF−1(x1)) determines x̃−1x̃0x̃1,

which determines x1. Therefore cF (x1) ∩ cF−1(x1) = {x1}. This proves (1).

Now put m = |PF | = |PF−1 |. By property (1), every element of PF intersects J distinct

elements of PF−1 , so m ≥ J . On the other hand, from property (2) we deduce that for each

symbol a, there are at least J distinct symbols b such that a
F
−→ b; these F -successors of a must

lie in the same element of PF−1 , so m ≤ J . Therefore m = J . Because A is the disjoint union

of the J members of PF , and each member contains exactly J symbols, we have |A| = J 2, and

(3*) holds. Finally, by (1) each member of PF must intersect at least J members of PF−1 , so

each member of PF must intersect every member of PF−1 . This verifies (1*) and finishes the

proof. ¤

Theorem 9.2. Let F : AN → AN be an expansive invertible onesided cellular automaton such

that r(F ) = r(F−1) = r̃(F ) = 1. Then SF is topologically conjugate to a full shift on
√
|A|

symbols.

Proof. By Theorem 9.1(3*),
√
|A| is a positive integer J = |PF |. Let ΣJ denote the full shift

on J symbols, with alphabet PF . We already have (AN, F ) topologically conjugate to (X̃, σ),

so it suffices to define a shift commuting bijection c : X̃ → ΣJ . We define c(x̃) = cx̃ by setting

(cx̃)i = cF (x̃i). By Theorem 9.1(2) and Lemma 8.1(2), we have for all a, b in A that

(9.3) cF (a) = cF (b) ⇐⇒ πa,F = πb,F .

If a
F
−→ b, then πb,F−1 = (πa,F )

−1. It follows that if a
F
−→ b, then cF (a) determines cF−1(b),

and therefore the pair (cF (a), cF (b)) determines cF (b) ∩ cF−1(b) = {b}. It follows that for all

x̃, the word cF (x̃−1)cF (x̃0) determines x0. This proves that the map c is injective.

By induction we also observe that for all n > 0 and for all x̃,

(9.4) x̃0 and (cx̃)1 . . . (cx̃)n determine x̃0 . . . x̃n .

To prove that c is surjective, it suffices to prove the claim: for all n ≥ 0, there are Jn+1

distinct words (cx̃)0 . . . (cx̃)n. The claim is obvious for n = 0. Suppose n > 0 and the claim

holds for n − 1. Using the induction hypothesis, let E be a set of Jn points x such that the

restriction to E of the map x 7→ (cx̃)0 . . . (cx̃)n−1 is injective. Let E
′ = {ax : a ∈ A, x ∈ E}, so
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|E′| = Jn+1. Using 9.3 above, one can see that the restriction to E ′ of the map x 7→ x̃0 . . . x̃n

is injective. This shows there are Jn+1 distinct words x̃0 . . . x̃n.

On the other hand, by 9.4 the number of words x̃0 . . . x̃n is at most |{x̃0}||{(cx̃)1 . . . (cx̃)n}| ≤

(J)(Jn), and equality implies that for every a ∈ A and x ∈ AN there is some y such that ỹ0 = a

and (cỹ)i = (cx̃)i, 1 ≤ i ≤ n. Thus there are Jn+1 words (cx̃)0 . . . (cx̃)n. ¤
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