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Abstract. Together with [BH], this paper gives an alternate development of

the Huang classification of shifts of finite type up to flow equivalence, and

provides additional functorial information, used to analyze the action of the

mapping class group of the mapping torus of a shift of finite type on the

“isotopy futures” group, which is introduced here. For a shift of finite type

σA, this group is isomorphic to the Bowen-Franks group cok(I−A). The action
on the isotopy futures group of a subshift is the flow equivalence analogue of
the dimension group representation.
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1. Introduction

Shifts of finite type (SFTs) are the fundamental building blocks of symbolic
dynamics, with applications to hyperbolic dynamics, ergodic theory, topological
dynamics, matrix theory and other areas [Bow, DGS, Ki, LM, Rob, S]. Any SFT is
conjugate to an SFT σA defined by a matrix A with nonnegative integer entries. A
fundamental question about SFTs, when are they flow equivalent, is important also
for the study of certain C∗-algebras [C, CK, H2, H3, R]. This question was solved in
the irreducible case by Franks [F], extending earlier work of Parry and Sullivan [PS]
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and Bowen and Franks [BowF], and then in the general case by Huang [H4, H5],
following earlier work on more tractable special cases [H1, H3]. Huang [H4, H5]
developed complete algebraic invariants (defined in terms of the given matrix A)
for flow equivalence of SFTs.

This paper has three main features.

(1) Taken together with [BH], the paper gives a self-contained alternate devel-
opment of the Huang classification of SFTs up to flow equivalence. This
development separates algebraic and positivity issues, and provides addi-
tional functorial information.

(2) We introduce the isotopy futures group FS of the mapping torus YS of a
subshift S, and when S is an SFT σA we construct an isomorphism of FS
and the Bowen-Franks group cok(I − A), and analyze the induced action
of the mapping class group of YS on FS .

(3) We integrate the study of flow equivalence of SFTs into the “positive K-
theory” framework for classification problems in symbolic dynamics.

We now discuss these features in more detail.
1. To study reducible SFTs, we work with certain infinite block triangular inte-

gral matrices with block rows and columns indexed by a finite poset P: if i ± j in
P, then the ij block of the matrix must be zero. The elements of P, and their or-
dering, correspond to the irreducible components of the SFT, and their asymptotic
transitions; the isomorphism class of the poset P is an invariant of flow equivalence.
We say two such matrices B,B′ are SLP(Z) equivalent if there are matrices U, V
satisfying the same zero-subblock conditions, and with all diagonal blocks having
determinant 1, such that UBV = B′. After fixing a choice of P, and allowing a
permutation of P, we show that A,A′ define flow equivalent SFTs if and only if the
matrices I−A and I−A′ are SLP(Z) equivalent by an equivalence which is “positive
on cycle components”(a technical condition which may be removed after reduction
to a standard form, see Theorem 3.4). The key to this result is the Factorization
Theorem 3.3, which gives necessary and sufficient conditions for an SLP(Z) equiva-
lence to be a composition of “positive” elementary equivalences (which induce flow
equivalences). Complete algebraic invariants for SLP(Z) equivalence are contained
in the joint work [BH] with Danrun Huang. (The proofs in the current paper are
very different from those of Huang [H4, H5], but the algebraic sequel [BH] depends
completely on the ideas introduced by Huang in [H4, H5].)

In Huang’s development, the proofs involve creating positive matrix models real-
izing given isomorphisms of an associated “K-web” of exact sequences of associated
groups; the difficult positivity and algebraic issues are intertwined. By interpos-
ing the SLP(Z) equivalence relation between the SFTs and the complicated K-web
algebraic invariants, we separate the positivity issues (which we address in this pa-
per) from purely algebraic issues (which are addressed in [BH]). This clarifies the
meaning of the invariants and the structure of the problem. It also facilitates the
application of algebraic results.

2. The analysis of the induced action on cok(I − A) uses the Factorization
Theorem 3.3 together with purely algebraic results from [BH] on SLP(Z) equiva-
lence. There is a plausible program (7.15) for extending these ideas to obtain more
information.

It seems to be nontrivial to construct a functor which attaches isomorphisms of
Bowen-Franks groups to isotopy classes of flow equivalences of SFTs. (For example,
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we do not know if it is possible to construct a homomorphism from Ȟ1(YσA
) onto

the Bowen-Franks group cok(I − A) such that the natural action of the mapping
class group on Ȟ1(YσA

) induces an automorphism of cok(I − A); and we suspect
there is no such homomorphism.) An alternate approach using work of Badoian is
discussed at the end of Section 7. Another possible approach would be to extend
ideas of Bowen and Franks, who computed cok(I−A) as a relative homology group
in the context of basic sets of Smale flows ([BowF, F]).

3. In the framework of positive K-theory (a term introduced by Wagoner),
some class of matrices A presents some category of dynamical system, and mul-
tiplication of I − A by elementary matrices satisfying some positivity condition
induces isomorphisms of the system presented by A. This framework was born in
[KRW2, KRW3], where matrices over tZ+[t] presented SFTs, and multiplication of
I − A by certain elementary matrices over Z[t] gave a completely new method of
constructing topological conjugacies, which allowed the solution of a difficult and
important open problem. This framework for SFT’s is developed or exploited fur-
ther in [BW, B1, KR1, W2]; in the last reference [W2], the K-theory connection
is more than a formal analogy and gives new counterexamples to Williams’ shift
equivalence conjecture. In [G], the matrix entries lie in a certain ring of formal
power series, and the elementary matrix multiplications induce good finitary iso-
morphisms of Markov chains. In this paper and in [Ba1], the matrices have integer
(or zero-one) entries, and the elementary multiplications induce flow equivalences.
There is a passage from the topological conjugacy case to the flow equivalence case
by “setting t equal to 1” (applying the coinvariants functor), as described in [B1].
The positive K-theory approach gives a unified and useful framework for classifica-
tion problems in symbolic dynamics, and we view this paper as a significant piece of
the theory for the case of flow equivalence of SFTs. It is possible that the methods
of this paper may be suggestive for the case of topological conjugacy of SFTs.

Some of our results on flow equivalence have alternate proofs based on the work
of Leslie Badoian [Ba1], who develops for irreducible SFTs a flow equivalence theory
analogous to the theory created by Wagoner for topological conjugacies of SFTs.
At the end of Section 7, we summarize the main results of [Ba1], and discuss those
alternate proofs.

Now some words on the structure of the paper. In Section 2 we give some
definitions and technical results necessary for the statement of the main results in
Section 3. The proof of the Factorization Theorem is carried out in Sections 4-5 and
the Appendix. Shifts of finite type and the relation of flow equivalence to the matrix
results are addressed in Section 6. The isotopy futures group and connections to
flow equivalence are studied in Section 7. For the simple general statement of our
Factorization Theorem for matrices, we need preliminary technical arguments to
reduce our matrices to a nondegenerate form. These preliminaries are complicated,
and we banish them to an appendix.

The basic approach of this paper, and the Factorization Theorem in the “no
cycle components”case under additional technical assumptions since removed, were
announced in [B1].

I thank Danrun Huang for many helpful comments, and for a very satisfying
collaboration in our sequel paper [BH]. Also, without his earlier work, this paper
would not exist.
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2. Definitions

2.1. Poset blocked matrices. For the rest of the paper, we let P = {1, ..., N}
denote a finite poset (partially ordered set). We describe the order with a relation
≺ satisfying the following conditions (in which < refers to the usual order on N)
for all i, j, k in P:

i ≺ j =⇒ i < j ,

i ≺ j ≺ k =⇒ i ≺ k

We write i ¹ j to mean that i ≺ j or i = j. We can visualize the poset as an acyclic
directed graph with vertex set {1, ..., N} and transitions i→ j iff i ≺ j.

We say that a matrix (or a block in a matrix) is square if its rows and columns
are indexed by the same set (which may be finite or countably infinite). Suppose
that n1, . . . , nN lie in the set {1, 2, . . . ,∞}. Let n = (n1, . . . , nN ). We say a square
matrix M is “n-blocked” if it splits into blocks Mij , 1 ≤ i, j ≤ N , where Mij denotes
the intersection of the ith block row and the jth block column, and has size ni×nj .
(We will also use the notation M{i, j} to denote Mij .) Given an n-blocked matrix
M , we let Ij denote the set of indices for rows/columns through the block Mjj .

Definition 2.1. MP(n,Z) is the set of n-blocked matrices with entries in Z
satisfying the following conditions:

(1) For 1 ≤ i ≤ N , the block Mii equals the identity matrix in all but finitely
many entries.

(2) For 1 ≤ i, j ≤ N and i 6= j, the block Mij is zero in all but finitely many
entries.

(3) If i 6¹ j, then the block Mij is zero.

The matrices in the semiring MP(n,Z) are block upper triangular and in addition
certain blocks above the diagonal must be zero. MP(n,Z) is closed under addition
and (because ≺ is transitive) under matrix multiplication.

A nonnegative matrix A is irreducible if it is square with all entries nonnegative,
and for every (i, j) there exists n > 0 such that An(i, j) > 0. (In particular, for
us a zero matrix is not irreducible.) A square matrix is essentially irreducible if it
has a unique principal submatrix which is irreducible and which is contained in no
larger irreducible principal submatrix.

Definition 2.2. M◦
P,+(n,Z) is the set of n-blocked nonnegative integral matrices

with only finitely many nonzero entries, satisfying the following conditions:

(1) Each diagonal block Mii is essentially irreducible.
(2) If i 6¹ j, then the block Mij is zero.
(3) If i ≺ j, then there is an index i′ occuring on a cycle of Mii and an index j′

occuring on a cycle of Mjj and a positive integer n, such that An(i′, j′) > 0.

Definition 2.3. SLP(n,Z) is the set of matrices M in MP(n,Z) such that
det(Mii) = 1 for 1 ≤ i ≤ N .

Abbreviations 2.4. MP(Z), M◦
P,+(Z) and SLP(Z) denote the sets MP(n,Z),

M◦
P,+(n,Z) and SLP(n,Z) for which n = (n1, . . . , nN ) with every ni =∞. When-

ever any such matrix family appears with no subscript P, it means that P = {1}
(the block structure is trivial).
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We say two matrices B,B′ in MP(n,Z) are SLP(n,Z)-equivalent in MP(n,Z)
if there are matrices U, V in SLP(n,Z) such that UBV = B′, and we write this
as (U, V ) : B → B′. We say a matrix is a basic elementary matrix if it equals
the identity matrix except in at most one offdiagonal entry. It is not difficult to
check that SLP(n,Z) is a group under multiplication which is generated by basic
elementary matrices [BH]. Given n ≤ r, we have natural truncation and embedding
maps between n-blocked and r-blocked matrices,

trun : MP(r,Z)→MP(n,Z) ,

ιr : MP(n,Z)→MP(r,Z) .

The truncation map replaces an ij block with its ni × nj upper left corner. The
embedding map embeds an ij block as the upper left corner of an ij block. If i 6= j,
then the image ij block is zero outside this embedded left corner; if i = j, it is the
identity outside this left corner. We will use A∞ to abbreviate ιn(A) in the case
that every ni =∞. We will also use trun, ιr and A∞ for matrix families other than
MP . The only potentially ambiguous point, which should be clear from context,
is whether the embedded block corners should be extended as above with MP to
match the identity matrix, or should be extended to match the zero matrix (e.g.
when the range is M◦

P,+).

2.2. Positive equivalence. Suppose for some (i, j) that E is a basic elementary
matrix with offdiagonal entry E(i, j) = 1, A ∈M◦

P,+(n,Z), and A(i, j) > 0. Then
we say that each of the equivalences

(E, I) : (I −A)→ E(I −A) , (E−1, I) : E(I −A)→ (I −A) ,

(I, E) : (I −A)→ (I −A)E , (I, E−1) : (I −A)E → (I −A)

is a basic positive equivalence in I −M◦
P,+(n,Z). Note, E ∈ SLP(n,Z). We say

that an SLP(n,Z) equivalence is a positive equivalence in I −M◦
P,+(n,Z) if it is a

composition of basic positive equivalences in I −M◦
P,+(n,Z).

To understand the meaning of a basic positive equivalence, supposeA ∈M◦
P,+(n,Z)

with A(i, j) > 0 and E is basic elementary matrix with offdiagonal entry E(i, j) = 1.
We first discuss the case (E, I) : (I−A)→ E(I−A). Define A′ by the requirement
E(I −A) = (I −A′). Then A and A′ agree except perhaps in row i, where

A′(i, k) = A(i, k) +A(j, k) if j 6= k , and

A′(i, j) = A(i, j) +A(j, j)− 1 .

View A as the adjacency matrix of a directed graph GA with edge set EA and vertex
set given by the n1 + · · · + nN indices for the rows/columns of A. (There can be
edges joining only finitely many of those vertices.) We can describe a directed graph
GA′ which has A′ as its adjacency matrix as follows. GA′ has the same vertex set
as GA. Now pick an edge e which runs from vertex i to vertex j in GA (e exists
because by assumption A(i, j) > 0). The edge set EA′ will be derived from EA as
follows: remove e from EA; and then for every vertex k, for every edge f in EA from
j to k add in a new edge (named [ef ]) from i to k. It is easy to verify that with
this edge set EA′ , the directed graph GA′ has adjacency matrix A′.

With this notation, now define a map γ : EA′ → (EA)
∗ by γ : f 7→ f and γ : [ef ] 7→

ef . Then γ induces an injective map (also called γ), from the set ΣA′ of biinfinite
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paths through GA′ to the set ΣA of biinfinite paths through GA, sending x′ to x by
the rule

γ : . . . x′−2x
′
−1|x

′
0x

′
1 . . . 7→ . . . γ(x′−2)γ(x

′
−1)|γ(x

′
0)γ(x

′
1) . . .

(in which the placement of the vertical bar indicates the indexing for x, e.g.
x0x1 · · · = γ(x′0)γ(x

′
1) . . . ). Briefly: we get x from x′ by replacing each A′ edge

[ef ] with ef .
The injective map γ : ΣA′ → ΣA is not surjective precisely because the image

will not contain points x for which x−1 = e (the image will contain the shifted point
σ−1x which is defined by (σ−1x)i = xi−1). However, although γ is generally not a
bijection, it does induce a bijection of orbits (under the shift) in ΣA and ΣA′ . Also,
γ induces a bijection of finite orbits: that is, γ induces a bijection (also called γ) of
cycles in GA and GA′ (which need not respect the cycle length). If 1 ≤ t ≤ N and
c is a cycle for the block Att, then γ(c) is a cycle for A′

tt, because if i and j are not
indices for the same component then γ is the identity on cycles. Also, if x in ΣA is
backwardly asymptotic (under the shift) to a cycle c and forwardly asymptotic to
a cycle c̃, then γ(x) is backwardly asymptotic to γ(c) and forwardly asymptotic to
γ(c̃). It follows that the matrix A′ satisfies the conditions of Definition 2.2 and lies
in M◦

P,+(n,Z) .
The discussion of the case (I, E) : (I − A) → (I − A)E = (I − A′) is much the

same. Let f be an A-edge from i to j. To form the A′ graph from the A graph in
this case, delete f , and add a new edge [ef ] for each edge e with terminal vertex i.
Then define γ as before.

The following lemma, fundamental to the sequel, is implicit in Franks’ paper [F].

Lemma 2.5. Suppose A ∈M◦
P,+(n,Z), E is a basic elementary matrix in SLP(n,Z)

whose nonzero offdiagonal entry is E(i, j) = 1, and there is a positive integer k such
that Ak(i, j) > 0.

(1) If (E(I − A))(i, j) ≤ 0, then (E, I) : (I − A) → E(I − A) is a positive
equivalence in I −M◦

P,+(n,Z) .
(2) If ((I − A)E)(i, j) ≤ 0, then (I, E) : (I − A) → (I − A)E is a positive

equivalence in I −M◦
P,+(n,Z) .

Proof. We will consider the claim for the first equivalence (E, I); the other case is
similar. By assumption, there is a list i = i0, i1, ..., ik = j (which we take to be of
minimal length, so the indices i0, i1, ..., ik are distinct) such that for 0 ≤ t < k we
have A(it, it+1) > 0. If k = 1, then the equivalence is a basic positive equivalence
(and we know a basic positive equivalence takes a matrix in I −M◦

P,+(n,Z) to a

matrix in I −M◦
P,+(n,Z) ). So suppose k > 1. Let Ft be the elementary matrix

whose which acts to add row it to row i. Let F = Fk−1 . . . F1. Then we have basic
positive equivalences

(I −A) → F1(I −A) → F2F1(I −A) → · · · → (Fk−1 · · ·F2F1)(I −A)

= F (I −A) → EF (I −A) → (Fk−1)
−1EF (I −A)

→ · · · → (F1)
−1 · · · (Fk−2)

−1(Fk−1)
−1EF (I −A)

= F−1EF (I −A) = E(I −A) .

¤
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2.3. Cycle components. The technical discussion of this subsection is only re-
quired for the case when the matrix A in M◦

P,+(n,Z) has a diagonal block whose
maximal irreducible submatrix is a permutation matrix.

Lemma 2.6. Suppose A is an S × S nonnegative integral matrix which has as its
unique irreducible submatrix a cyclic permutation matrix. Then the cokernel group
cok(I − A) = ZS/(I − A)ZS is isomorphic to Z. Let I denote the set of indices
involved in the cyclic permutation. Then the canonical basis vectors satisfy the
following conditions.

(1) [ei] is a generator of cok(I −A) if i ∈ I.
(2) [ei] = [ej ] if i and j are in I.
(3) [ei] = 0 if i /∈ I.

Proof. (3) If i /∈ I, then for large n, Anei = 0, and ei = (I − An)ei = (I − A)(I +
A+ · · ·+An−1)ei. Then [ei] = 0 in cok(I −A).

(2) Let π denote the given permutation and suppose i and j are in I. Then there
exists n > 0 such that Anei = ej , so in cok(I −A) we have [ei]− [ej ] = [ei − ej ] =
[(I −An)ei] = 0.

(1) Clearly now, if i ∈ I, then [ei] generates cok(I − A). Also, because det(I −
A) = 0, Z is a subgroup of cok(I −A). Therefore cok(I −A) ∼= Z. ¤

For a matrix A satisfying the hypotheses of the lemma, we make cok(I −A) an
ordered group by declaring its positive set to be the collection of those [w] such that
(in the notation of the statement of the lemma)

∑

i∈I wi ≥ 0. (This sum does not
depend on the representative w of [w].) We say an isomorphism between two such
cokernel groups is positive if it takes the positive set in the domain to the positive
set in the range.

If A ∈M◦
P,+(n,Z), then for 1 ≤ i ≤ N the diagonal block Aii contains a unique

maximal irreducible principal submatrix. If this matrix is a permutation matrix,
then we say that i is a cycle component of A. We let CA denote the set of cycle
components of A. For each i in CA, we make the cokernel group

cok(I −A)ii = Zni/(I −A)iiZ
ni ∼= Z

an ordered group as described above. For A and A′ in M◦
P,+(n,Z), if (U, V ) is an

SLP(Z) equivalence from A to A′, then for 1 ≤ i ≤ N the equivalence (U, V ) induces
an SL(Z) equivalence (Uii, Vii) from Aii to A′

ii, and this induces an isomorphism
from cok(I−A)ii to cok(I−A′)ii by the rule [x] 7→ [Uiix]. We say that the SLP(Z)
equivalence (U, V ) is positive on cycle components if this induced isomorphism of
the ith component cokernel groups is positive whenever i is a cycle component for
both A and A′. For example, if

Aii = A′
ii =

(

0 1
1 0

)

and Uii = Vii =

(

−1 0
0 −1

)

,

then (U, V ) is not positive on cycle components.

Proposition 2.7. Suppose (U, V ) is a positive SLP(n,Z) equivalence from (I−A)
to (I −A′) in I −M◦

P,+(n,Z). Then

(1) A and A′ have the same cycle components, and
(2) (U, V ) is positive on cycle components.
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Proof. It suffices to consider the case (U, V ) = (E, I) where E is a basic elementary
matrix with offdiagonal entry E(i1, j1) = 1 such that i1 and j1 index rows through
Aii and i is a cycle component of A.

(1) It is clear from the earlier discussion on positive equivalence that the ith
component of A has a unique cycle iff the ith component of A′ has a unique cycle.

(2) For any canonical basis vector es, the vector Ees is nonnegative because E
is nonnegative. It follows that (E, I) must be positive on components. ¤

3. Statement of results

In this section we state the main results (Theorem 3.1 and Theorem 3.3) which
do not involve the mapping class group. We also give Theorems 3.4 and 3.5, which
clarify computational issues. The definition of flow equivalence is given in Section
6, and all discussion of the mapping class group results is deferred to Section 7.

We need a little more notation. Given P, we will use the same index set IP ,
a disjoint union of countably infinite sets IPp , p ∈ P, for all matrices with P × P
blocking into infinite subblocks. Given finite posets P,P ′, let Iso[P,P ′] be the
set of poset isomorphisms from P to P ′. For each ν in Iso[P,P ′], fix an infinite
permutation matrix P = Pν such that

P (i, j) = 1 and j ∈ IPp ⇒ i ∈ IP
′

ν(p) .

Informally, a block P{p, q} is zero if q 6= ν(p) and is the (infinite) identity matrix
if q = ν(p).

Theorem 3.1 (Classification Theorem). Suppose A is in M◦
P,+(Z) and A′ is in

M◦
P′,+(Z). The following are equivalent.

(1) The SFTs σA and σA′ are flow equivalent.
(2) For some ν ∈ Iso[P,P ′], with P = Pν : there exists a positive SLP(Z)

equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

(3) For some ν ∈ Iso[P,P ′], with P = Pν : A and P−1A′P have the same
cycle components, and there exists an SLP(Z) equivalence from (I − A) to
(I − P−1A′P ) which is positive on cycle components.

Remarks 3.2.

(1) There are only finitely many automorphisms ν : P → P ′, and they are easily
computed. So, we can decide (3) in Theorem 3.1 if we can decide it in the
case where P = I and P = P ′.

(2) The content of Theorem 3.1 is contained in [H4, H5]. We will prove the
equivalence (1) ⇐⇒ (2) in Section 6. The implication (2) =⇒ (3) is
trivial. The implication (3) =⇒ (2) follows from the main contribution of
this paper, which is the next theorem.

Theorem 3.3 (Factorization Theorem). Suppose A and A′ are in M◦
P,+(Z), and

(U, V ) : (I−A)→ (I−A′) is an SLP(Z) equivalence. The following are equivalent.

(1) (U, V ) : (I−A)→ (I−A′) is a positive SLP(Z) equivalence in I−M◦
P,+(Z).

(2) A and A′ have the same cycle components, and (U, V ) is positive on cycle
components.

Below, given a matrix A in any M◦
P,+(n,Z), we let A∞ denote its embedding in

M◦
P,+(Z).
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Theorem 3.4. Suppose A and A′ are in M◦
P,+(n,Z), where n = (n1, . . . , nN ) and

the following hold for 1 ≤ i ≤ N :

• ni = 1 ⇔ i is a cycle component of A ⇔ i is a cycle component of A′,
• ni = 1 or ni =∞.

Then the following are equivalent.

(1) There exists a positive SLP(Z) equivalence from (I − A∞) to (I − A′
∞) in

I −M◦
P,+(Z).

(2) (I −A) and (I −A′) are SLP(n,Z) equivalent.

Proof of Theorem 3.4. (2) =⇒ (1) Suppose (U, V ) is the SLP(n,Z) equivalence.
If ni = 1, then Uii = Vii = 1 because {U, V } ⊂ SLP(n,Z). So, the embeddings of U
and V in SLP(Z) give an SLP(Z) equivalence (I−A∞)→ (I−A′

∞) in I−M◦
P,+(Z)

which is positive on cycle components.
(1) =⇒ (2) This follows from Lemmas A.3 and A.7. ¤

The point of Theorem 3.4 is to give a flow equivalence criterion in terms of just
SLP(n,Z) equivalence (which is characterized in [BH]), without a “positive on cycle
components” condition. Given matrices A1 and A′

1 in M◦
P,+(n,Z), Lemmas A.1

and A.2 give us positive equivalences, from I − A1 to I − A and from I − A′
1 to

I −A′, such that A∞ and A′
∞ are of the form described in Theorem 3.4.

Theorem 3.5. [BH] Suppose B and B′ are matrices in MP(n,Z) such that for
each diagonal block in B or B′, the greatest common divisor of the entries of the
block is 1. Suppose n ≤ r, and let ι be the embedding of MP(n,Z) into MP(r,Z).

Then B is SLP(n,Z) equivalent to B′ if and only if ιB is SLP(r,Z) equivalent
to ιB′.

Theorem 3.5, taken from the Stabilization result in [BH], reduces the problem
of SLP(Z) equivalence of the matrices (I − A) and (I − A′) in Theorem 3.4 to an
equivalence problem for finite matrices.

4. Factorization: the proof

To begin, we describe a matrix class in which our positivity considerations will
be simplified.

Definition 4.1. Given a subset C of {1, . . . , N}, and a vector n with positive
integer entries such that ni = 1 if i ∈ C, define M++

P (C,n,Z) to be the set of
n-blocked integral matrices M whose blocks Mij satisfy the following conditions:

• Mii = 0 if i ∈ C,
• Mij = 0 if i 6= j and i 6≺ j,
• Mij > 0 otherwise.

(So, each block of M has all entries zero or all entries greater than zero, Mii = 0
when i ∈ C, and otherwise Mij > 0 if and only if i ¹ j. If −M = I − A, then C is
the set of cycle components of A.)

Definition 4.2. An elementary positive equivalence in M++
P (C,n,Z) is an SLP(n,Z)

equivalence (U, V ) : B → B′ = UBV such that {B,B′} ⊂M++
P (C,n,Z); one of U, V

equals Id; and the other is a basic elementary matrix. A positive equivalence in
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M++
P (C,n,Z) is a composition of elementary positive equivalences in M++

P (C,n,Z).
For such an equivalence (U, V ), we use notations such as

(U, V ) : B −−−−→
+

B′
or B

(U,V )
−−−−→

+
B′ or B −−−−→

+
B′

.

Observation 4.3. Suppose B = (A− I), B′ = (A′ − I) and

(U, V ) : B −−−−→
+

B′
.

Then (U, V ) : (I −A)→ (I −A′) is a positive equivalence in M◦
P,+(n,Z).

Outline of the proof. Now we can give an outline of the proof of the Factorization
Theorem (3.3), which we break into four steps.

Step 1 of the proof (“block positive reduction”) is to reduce it to proving the
following theorem:

Theorem 4.4. Suppose B = A− I and B′ = A′ − I, satisfying

• B and B′ are in M++
P (C,n,Z)

• (U, V ) : B → B′ is an SL(n,Z) equivalence
• if i /∈ C, then dim(ker(Aii)) ≥ 2.

Then

(U, V ) : B −−−−→
+

B′
.

Step 2 (“the positive case”) is to prove Theorem 4.4 in the case B and B ′ are
positive (i.e. P = {1} and C = ∅). This step is the heart of the proof and it is carried
out in Section 5. This is the only step which uses the condition dim(ker(Aii)) ≥ 2.

Step 3 (“the unipotent case”) is to prove Theorem 4.4 in the case that U and V
lie in UP(n,Z), where UP(n,Z) denotes the set of matrices M in SLP(n,Z) such
that Mii = I for all i in P.

Step 4 (“the general case”) is to finish the proof of Theorem 4.4.

Step 1: Block positive reduction. We will accomplish this step by proving the
following proposition. Let CA = C denote the set of cycle components of A. For
each cycle component i, let Cseci denote the set of indices for rows/columns through

Aii such that i does not lie on a cycle, and let Cprimi denote the set of indices i for

rows/columns through Aii which lie on the unique cycle in Aii. Let C
prim = ∪Cprimi

and Csec = ∪Cseci .

Proposition 4.5. Suppose {A,A′} ⊂ M◦
P,+(n,Z); CA = CA′ = C; (U, V ) : (I −

A) → (I − A′) is an SLP(n,Z) equivalence which is positive on cycle components;
and n = (n1, . . . nN ) has positive integer entries. Then there is a commuting dia-
gram of SLP(n,Z) equivalences

(I −A) −−−−→ (I −A)

(U,V )





y





y
(U,V )

(I −A′) −−−−→ (I −A
′
)

such that

(1) The horizontal arrows are positive SLP(n,Z) equivalences in M◦
P,+(n,Z).
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(2) For both A and A
′
, the principal submatrix indexed by the complement of

Csec is strictly positive wherever the P ordering permits a nonzero entry,

and in addition the diagonal blocks (A − I)tt and (A
′
− I)tt are strictly

positive whenever t /∈ C.

(3) For both A and A
′
, Cprim is the set of indices ` such that for some i ∈ C,

(`, `) indexes the upper left corner of the ii block.
(4) A(i, j) = A′(i, j) = 0 whenever {i, j} ∩ Csec 6= ∅.
(5) U(i, j) = V (i, j) = δij whenever {i, j} ∩ C

sec 6= ∅.

For matrices A,A
′
in M◦

P,+(n,Z), we say an SLP(n,Z) equivalence (U, V ) : (I−

A)→ (I−A
′
) is nondegenerate if it satisfies the conditions 2,3,4,5 of Proposition

4.5. Note condition 3 implies that A(`, `) = 1 if ` ∈ Cprim.
Let us see that Proposition 4.5 reduces the proof of (2) =⇒ (1) in the Fac-

torization Theorem 3.3 to the proof of Theorem 4.4. Given (I − A), (I − A′) and
(U, V ) satisfying (2) in the statement of Theorem 3.3, pick a vector n with positive
integer entries large enough that

• for all i, j in P, the ij blocks of U, V, I − A and I − A′ agree with δijI
outside the upper left ni × nj corner, and
• if i /∈ C, then the upper left ni × ni corners of Aii and A′

ii have kernels of
dimension at least two.

Replace A,A′, U and V with their trunctations to n-blocked matrices. Then it
suffices to prove that (U, V ) : (I −A)→ (I −A′) is a positive SL(n,Z) equivalence
in M◦

P,+(n,Z). To do this, first apply Proposition 4.5 to the matrices U, V,A,A′.

Then truncate the resulting U, V ,A,A′ by removing all rows and columns indexed
by Csec, and call the resulting matrices U, V,A,A′. To finish the proof of the
Factorization Theorem 3.3, it suffices to show (U, V ) : (I − A) → (I − A′) is a
positive equivalence, and this now follows by an application of Theorem 4.4 and
Observation 4.3.

We want Proposition 4.5 in order to have a completely general result about
factoring equivalences into positive equivalences, and in order to see the main argu-
ments more clearly in the less technical setting of M++

P (C,n,Z). Because the proof
of Proposition 4.5 is tedious (almost entirely on account of technicalities involving
cycle components), we relegate the proof of Proposition 4.5 to Appendix A.

Below, we use UP to denote UP(n,Z) and we use M++
P to denote M++

P (C,n,Z).
For i, j in P and B a matrix with a P-indexed block structure, we let B{i, j} denote
the ij block of B.

Step 2: the positive case. This is carried out in Section 5.
Step 3: the unipotent case.

Lemma 4.6. Suppose U and V are matrices in UP , B and B′ are in M++
P , and

UBV = B′. Then

B
(U,V )
−−−−→

+
B′ .

Proof. Write U as a product of matrices in UP , U = Un · · ·U1, where for each Ut

there is an associated pair (it, jt), such that the following hold:

• Ut = I, except in the block Ut{it, jt}, and
• if s 6= t, then (is, js) 6= (it, jt).
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Note, whenever is is an immediate predecessor of js in P and B{is, is} = 0, these
conditions imply

(UsB){is, js} = B′{is, js} .(4.7)

We claim there are nonnegative matrices Q1, . . . , Qn in UP such that (with Q =
Q1 · · ·Qn)

B
(U1,Q1)
−−−−−→

+
·

(U2,Q2)
−−−−−→

+
· · ·

(Un,Qn)
−−−−−→

+
Un · · ·U1BQ1 · · ·Qn = UBQ .(4.8)

To show (4.8), first we will produce Q1 such that

B
(U1,Q1)
−−−−−→

+
U1BQ1 .

Denote (i1, j1) as (i, j). Factor U1 as U1 = U−
1 U+

1 , where U−
1 and U+

1 equal I
outside the {i, j} block, U+

1 {i, j} is the nonnegative part of U1{i, j}, and U−
1 {i, j}

is the nonpositive part of U1{i, j}. Clearly

(U+
1 , I) : B −→

+
U+

1 B .

For U−
1 there are two cases.

CASE I: B{i, i} > 0. We have U−
1 (U+

1 B) = U+
1 B outside blocks {i, k} such

that i ≺ j ¹ k. Because (U+
1 B){i, i} = B{i, i} > 0, we can pick Q1 in UP , with

sufficiently large nonnegative entries in such blocks {i, k}, to put U−
1 (U+

1 B)Q1 into
M++

P . Then

U+
1 B

(I,Q1)
−−−−→

+
U+

1 BQ1
(U−

1 ,I)
−−−−→

+
U−

1 U+
1 BQ1 = U1BQ1 .

CASE II: B{i, i} = 0. Again, U−
1 (U+

1 B) = U+
1 B outside blocks {i, k} such that

i ≺ j ¹ k. Because B{i, j} > 0, we can choose Q1 nonnegative in UP such that for
all k satisfying i ≺ j ≺ k, we have U−

1 (U+
1 B)Q1{i, k} > 0. (A positive entry in the

block Q{j, k} acts here to add a multiple of a column through the {i, j} block to a
column in the {i, k} block.) If there is some h such that i ≺ h ≺ j, then suitable
positive entries in Q1{h, k} will also achieve U−

1 (U+
1 B)Q1{i, j} > 0. If there is no

such h, then i is an immediate predecessor of j in P, and by appeal to (4.7) we
have

(

U−
1 (U+

1 B)Q1

)

{i, j} = (U1B){i, j}

= B′{i, j} > 0 .

Therefore

U+
1 B

(I,Q1)
−−−−→

+
U+

1 BQ1
(U−

1 ,I)
−−−−→

+
U1BQ1

as required.
Thus in either case we have

B
(U1,Q1)
−−−−−→

+
U1BQ1 ∈M++

P .

An easy induction on the argument gives (4.8), with

B
(U,Q)
−−−→

+
UBQ ∈M++

P ,
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with Q a product of nonnegative elementary matrices in UP . The transposed argu-
ment gives a matrix P in UP such that P is a product of nonnegative elementary
matrices such that

B′ (P,V −1)
−−−−−→

+
PB′V −1 ∈M++

P .

Then

B
(U,Q)
−−−→

+
UBQ

(P,I)
−−−→

+
PUBQ = PB′V −1Q

(I,Q)
←−−−

+
PB′V −1 (P,V −1)

←−−−−−
+

B′

so

(P−1PU,QQ−1V ) = (U, V ) : B −→
+

B′

as required. ¤

Step 4: the general case.

Lemma 4.9. Suppose i /∈ C, E is a basic elementary matrix in SLP(n,Z), E{j, k} =
(Id){j, k} when (j, k) 6= (i, i), {B,B′} ⊂M++

P (C,n,Z) and

(E{i, i}, Id) : B{i, i} −→
+

B′{i, i} .

Then there exists V in UP such that

(E, V ) : B −→
+

B′ .

Similarly, if

(Id, E{i, i}) : B{i, i} −→
+

B′{i, i}

then there exists U in UP such that

(U,E) : B −→
+

B′ .

Proof. We will consider the equivalence (E, I), the other case is similar. Let E(s, t)
be the nonzero offdiagonal entry of E. If E(s, t) = 1, then set V = Id. Now
suppose E(s, t) = −1, so E acts from the the left to subtract row t from row
s. Then possibly there are nonpositive entries in blocks (EB){i, j} where i ≺ j.
To correct for this, pick r an index for a column through the ii block; note that
B(s, r) > B(t, r) because (EB){i, i} > 0 by assumption; consider a positive integer
M ; and let V be the matrix in UP which acts from the right to add column r to
column q, M times, for every q indexing a column through an ij block for which
i ≺ j. For these q,

(EBV )(s, q) = M(B(s, r)−B(t, r)) +B(s, q)−B(t, q) .

So, if M is large enough, then this gives

B
(I,V )
−−−→

+
BV

(E,I)
−−−→

+
EBV

as required. ¤

Proof of the general case. Now let (U, V ) : B → B ′ be the SLP(n,Z) equivalence,
with {B,B′} ⊂ M++

P (C,n,Z). By Step 2 (Theorem 5.1), for each i ∈ P \ C, we
have

(U{i, i}, V {i, i}) : B{i, i} −→
+

B′{i, i} .
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So, we may find a string of elementary equivalences, say (E1, F1), . . . (Et, Ft), with
every Et{i, j} = Ft{i, j} = (Id){i, j} unless i = j /∈ C, which accomplishes the ele-
mentary positive equivalence decomposition inside the diagonal blocks. By Lemma
4.9, we may find (U1, V1), . . . , (Ut, Vt) with each Us and Vs in UP , such that

B
(U1,F1)
−−−−−→

+
·

(E1,V1)
−−−−−→

+
· · ·

(Ut,Ft)
−−−−→

+
·

(Et,Vt)
−−−−−→

+
B′′ .

Let X = EtUt · · ·E2U2E1U1. Let Y = F1V1F2V2 · · ·FtVt. Then for all i in P,
X{i, i} = U{i, i} and Y {i, i} = V {i, i}, so UX−1 ∈ UP and Y −1V ∈ UP . It follows
from Step 3 (Lemma 4.6) that

B′′ (UX−1,Y −1V )
−−−−−−−−−→

+
B′ .

Thus (U, V ) : B → B′ is the composition

B
(X,Y )
−−−−→

+
B′′ (UX−1,Y −1V )
−−−−−−−−−→

+
B′

and this finishes the proof. ¤

5. Factorization: the positive case

In this section, all matrices are K×K, where K is a positive integer and K > 1.
We let M+ denote the set of K ×K matrices with strictly positive integer entries.

We say an equivalence (U, V ) : B → B′ is a positive equivalence through M+ if
it can be given as a chain of positive elementary equivalences

B = B0 → B1 → B2 → · · · → Bn = B′

in which every Bi is in M+.
The purpose of this section is to prove the following theorem.

Theorem 5.1. Suppose U and V are in SL(K,Z), and B and UBV are in M+.
Suppose also that B is SL(K,Z) equivalent to a diagonal matrix in which at least
two entries equal 1.

Then (U, V ) : B → UBV is a positive equivalence through M+.

Remark 5.2. The “two entries”technical assumption may be excessive, but is
harmless for our applications. Except for the final argument which addresses the
possibility that UB is nonpositive, we only use the weaker assumption that B has
rank greater than one.

The proof of Theorem 5.1 rests on three lemmas. We begin the preparations.
By a signed transposition matrix, we mean a matrix which is the matrix of a

transposition, but with one of the off-diagonal 1’s replaced by -1. By a signed
permutation matrix we mean a product of signed transposition matrices. Since
K > 1, any K×K permutation matrix with determinant 1 is a signed permutation
matrix. A K ×K matrix S is a signed permutation matrix if and only if detS = 1
and the matrix |S| is a permutation matrix (where |S|(i, j) := |S(i, j)|).

Lemma 5.3. Suppose B ∈ M+, E is a basic elementary matrix with nonzero
offdiagonal entry E(i, j), and the ith row of EB is not the zero row.

Then in SL(K,Z) there are a nonnegative matrix Q and a signed permutation
matrix S such that (SE,Q) : B → SEBQ is a positive equivalence through M+.
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Proof. If E(i, j) = 1, then let Q = I = S. Now suppose E(i, j) = −1, so E acts
from the left by subtracting row j from row i, and the rows i and j of B are not
equal.

Case I: For some k, B(i, k) > B(j, k).
Here we may repeatedly add column k of B to other columns, until we have a

matrix B′ with B′(i,m) > B′(j,m) for all m. This B′ is BQ for some Q which is a
product of nonnegative basic elementary matrices. Now (E,Q) : B → EBQ is the
composition of positive equivalences, (I,Q) : B → BQ followed by (E, I) : BQ →
EBQ. Let S = I.

Case II: For every k, B(i, k) ≤ B(j, k).
Because the rows i and j of B are not equal, after multiplying from the right

by a suitable Q we can assume in this Case that 0 < B(i, k) < B(j, k) for all k.
Now (I,Q) : B → BQ in M+, so for notational simplicity from here we may assume
Q = I.

For concreteness of notation, let (i, j) = (1, 2). For the rest of this Case, for
simplicity we will restrict what we write to these two rows, e.g.

E =

(

1 −1
0 1

)

and B =

(

B1

B2

)

,

where B1 and B2 denote the first and second rows of B, and we have B1 < B2. Let

S =

(

0 1
−1 0

)

. Then

(SE)B =

(

0 1
−1 1

)(

B1

B2

)

=

(

B2

B2 −B1

)

and the latter matrix is positive. Let E ′ =

(

1 1
0 1

)

and let E′′ =

(

1 0
−1 1

)

, then

SE =

(

0 1
−1 1

)

= E′E′′ .

Now (E′′, I) : B → E′′B is a positive equivalence in M+, since row 2 of B is positive
and greater than row 1; and (E′, I) : E′′B → E′E′′B is also a positive equivalence
in M+. ¤

Lemma 5.4. Suppose B is a K × K integral matrix of rank at least 2, and U
is in SL(K,Z), and no row of B or UB is the zero row. Then U is the product
of basic elementary matrices, U = Ek · · ·E1, such that for 1 ≤ j ≤ k the matrix
EjEj−1 · · ·E1B has no zero row.

Proof. Without loss of generality, assume K ≥ 3 and U is not the identity. Let E(i)
denote the set of integral matrices which equal I both on the diagonal and outside
of row i. Let U be the set of factorizations U = Un · · ·U1 such that for 1 ≤ h ≤ n,
the matrix Uh is not the identity and there is an index ih such that Uh ∈ E(ih).
Given such a factorization U = Un · · ·U1, let

z = #{h : 1 ≤ h ≤ n and row ih of Uh · · ·U1B is the zero row}

.
Step 1. We will produce an element of U for which z = 0.
By induction, it suffices to begin with a factorization U = Un · · ·U1 from U for

which z > 0, and produce another factorization from U with reduced z. Pick s
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minimal such that row is of Us · · ·U1B is zero, and let t be minimal such that t > s
and it = is. (This t exists because row is of UB is nonzero.) We will change the
factorization by replacing the subword Ut · · ·Us with a suitable word U ′

T · · ·U
′
s, to

be defined recursively.
First pick js 6= is such that row js of Us−1 · · ·U1B is nonzero (Us−1 · · ·U1B

just denotes B in the case that s = 1). Choose Fs an elementary matrix which
acts to add a multiple of row js to row is, such that (for notational simplicity)
F−1
s Us 6= I. Define U ′

s = F−1
s Us ∈ E(is). Now Ut · · ·Us = Ut · · ·Us+1FsU

′
s and row

is of U ′
sUs−1 · · ·U1B is not zero.

Now we give the recursive step. Suppose s < m ≤ t and we have produced
Ut · · ·Fm−1U

′
r · · ·U

′
s = Ut · · ·Us such that there is a nonzero integer cm−1 and an

index jm−1 6= is such that Fm−1(is, jm−1) = cm−1 and otherwise Fm−1 = I. We
will replace UmFm−1 with new terms. There are three cases.

Case 1: m < t and jm−1 6= im. Set Fm = Fm−1 and U ′
r+1 = F−1

m UmFm. For
example, if K = 3 and (is, im, jm−1) = (1, 2, 3), then we would have for some a, b, c
that

U ′
r+1 = F−1

m UmFm =





1 0 0
0 1 0
−c 0 1









1 0 0
a 1 b
0 0 1









1 0 0
0 1 0
c 0 1





=





1 0 0
0 1 0
−c 0 1









1 0 0
a+ bc 1 b

c 0 1



 =





1 0 0
a+ bc 1 b

0 0 1



 .

Now U ′
r+1 ∈ E(im) and FmU ′

r+1 = UmFm−1 and row im of U ′
r+1U

′
r · · ·U

′
sUs−1 · · ·U1B

equals row im of Um · · ·U1B.
Case 2: m < t and jm−1 = im. Choose an index jm such that jm /∈ {im, is}

and row jm of U ′
r · · ·U

′
sUs−1 · · ·U1B is not zero. This is possible because rows is and

jm−1 of U
′
r · · ·U

′
sUs−1 · · ·U1B are linearly dependent (since row is of FmU ′

r · · ·U
′
sUs−1 · · ·U1B

equals row is of Um · · ·U1B which is the zero row) and rank(B) ≥ 2. Pick
Fm with Fm(is, jm) = 1 and otherwise Fm = I. Set U ′

r+1 = F−1
m Fm−1 and

U ′
r+2 = F−1

m UmFm. Now

• FmU ′
r+2U

′
r+1 = Fm(F−1

m UmFm)(F−1
m Fm−1) = UmFm−1,

• U ′
r+1 ∈ E(is) and row is of U ′

r+1 · · ·U
′
sUs−1 · · ·U1B is not zero,

• U ′
r+2 ∈ E(im) and row im of U ′

r+2 · · ·U
′
sUs−1 · · ·U1B equals row im of

Um · · ·U1B.

Case 3: m = t. If UtFt−1 6= I, then set U ′
T = U ′

r+1 = UtFt−1 ∈ E(is): row is
is the same in the matrices Um · · ·U1B and U ′

T · · ·U
′
sUs−1 · · ·U1B. If UtFt−1 = I,

then simply delete UtFt−1, so U ′
T = U ′

r.
The new factorization has z reduced. This concludes Step 1.
Step 2. Suppose we have the factorization from U with z = 0, U = Un · · ·U1,

with Uh ∈ E(ih). For 1 ≤ h ≤ n, we will replace Uh with a suitable product of
elementary matrices in E(ih). The argument will be clear from the case h = 1.
For notational simplicity, suppose i1 = 1. Write U1 as a product U1 = Ek · · ·E1

of basic elementary matrices which agree with I outside row 1. Now, choose a row
m > 1 of B which is not a rational multiple of row 1 of U1B (such a row m exists
because rank(B) > 1). Let E0 be the elementary matrix which adds row m to
row 1: if s > 0, then (E0)

sB has row 1 nonzero. Choose a nonnegative integer M
large enough that for 1 ≤ j ≤ k, row 1 of [Ej · · ·E1(E0)

M ]B is nonzero. Then for
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0 ≤ s ≤M ,

[E−s
0 ][Ek · · ·E1(E0)

M ]B = [EM−s
0 ][Ek · · ·E1]B

= [EM−s
0 ]U1B

and therefore row 1 of [E−s
0 ][Ek · · ·E1(E0)

M ]B cannot be zero. Thus the factoriza-
tion U1 = (E0)

−MEk · · ·E1(E0)
M has the required properties. ¤

Lemma 5.5 (Key Lemma). Suppose B and B′ are in M+, U and W are in
SL(K,Z), the matrix UB has at least one strictly positive entry, and UB = B ′W .
Then the equivalence (U,W−1) : B → B′ is a positive equivalence through M+.

Proof. Step 1: Reduction to the case UB > 0.
Consider an entry (UB)(i, j) > 0. We can repeatedly add column j to other

columns until row i of UB has all entries strictly positive. This corresponds to
multiplying from the left by a nonnegative matrix Q in SL(K,Z), giving UBQ =
B′WQ. Then we can repeatedly add row i of UBQ to other rows until all entries
of UBQ are positive. This corresponds to multiplying from the left by a matrix P
in SL(K,Z), giving

(PU)(BQ) = (PB′)(WQ) > 0

with positive equivalences in M+ given by

(I,Q) : B → BQ , (P, I) : B′ → PB′ .

Therefore, after replacing (U,B,B′,W ) with (PU,BQ,PB′,WQ), we may assume
without loss of generality that UB > 0.

Step 2: Reducing the length of an elementary factorization.
By lemma 5.4, we can write U has a product of basic elementary matrices,

U = Ek · · ·E1, such that for 1 ≤ j ≤ k, the matrix Bj = Ej · · ·E1B has no zero
row. By lemma 5.3, given the pair (E1, B), there is a nonnegative Q1 in SL(K,Z)
and a signed permutation matrix S1 such that

(S1E1, Q1) : B → S1E1BQ1

is a positive equivalence in M+. We observe that

UBQ1 = S−1
1 [S1EkS

−1
1 ] · · · [S1E2S

−1
1 ][S1E1]BQ1 .

Now, for 2 ≤ j ≤ k, the matrix S1EjS
−1
1 is again a basic elementary matrix E ′

j ,
and the matrix E′

j · · ·E
′
2(S1E1BQ1) has no zero rows.

Again using lemma 5.3, for the pair ([S1E2S
−1
1 ], [S1E1BQ1]) choose a signed

permutation matrix S2 and nonnegative Q2 producing a positive equivalence in
M+

(S2[S1E2S
−1
1 ], Q2) : S1E1BQ1 → S2[S1E2S

−1
1 ]S1E1BQ1Q2

so that we get a positive equivalence in M+

([S2S1E2S
−1
1 ][S1E1], Q1Q2) : B → [S2S1E2E1BQ1Q2]

and we observe that

UBQ1Q2 = S−1
1 S−1

2 [S2S1EkS
−1
1 S−1

2 ] · · · [S2S1E3S
−1
1 S−1

2 ][S2S1E2S
−1
1 ][S1E1]BQ1Q2 .
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Continue this, to obtain a signed permuation matrix S = Sk · · ·S1 and nonnegative
Q = Q1 · · ·Qk such that

UBQ = S−1[Sk · · ·S1EkS
−1
1 · · ·S

−1
k−1] · · · [S2S1E2S

−1
1 ][S1E1]BQ

= S−1(SUBQ)

and (SU,Q) : B → SUBQ is a positive equivalence in M+.
Step 3: Realizing the permutation.
We continue from Step 2. It remains to show that

(S, I) : UBQ→ SUBQ

is a positive equivalence in M+. Since S is a product of signed transposition
matrices, it may be described as a permutation matrix in which some rows have
been multiplied by −1. Since UBQ and SUBQ are strictly positive, it must be that
S is a permutation matrix. Also, det(S) = 1, so if S 6= I then S is the matrix of a
permutation which is a product of 3-cycles. So it is enough to realize the positive
equivalence in M+ in the case that S is the matrix of a 3-cycle. For this we write
the matrix

C =





0 1 0
0 0 1
1 0 0





as the following product C0C1 · · ·C5:




1 0 0
0 1 0
0 −1 1









1 0 0
−1 1 0
0 0 1









1 0 −1
0 1 0
0 0 1









1 1 0
0 1 0
0 0 1









1 0 0
0 1 0
1 0 1









1 0 0
0 1 1
0 0 1



 .

For 0 ≤ i ≤ 5, the matrix CiCi+1 · · ·C5 is nonnegative. Therefore the equivalence
(C, I) : B → CB is a positive equivalence through M+ whenever B ∈M+. ¤

We can now complete the proof of Theorem 5.1. It only remains to address the
technical point that in the equivalence (U, V ) : B → B ′, all the entries of UB might
be nonpositive. (For example, with K even we could have (U, V ) = (−I,−I).)

Proof of Theorem 5.1. By assumption there areX,Y in SL(K,Z) such thatXBY =

D, where D is diagonal and has the block form D =

(

I 0
0 F

)

, where I is 2×2. For

any H in SL(2,Z), the K ×K matrix G = GH =

(

H 0
0 I

)

yields a self equivalence

(X−1GX, Y G−1Y −1) : B → B .
For a matrix Q, we let Q{12; ∗} denote the submatrix consisting of the first

two rows. The matrix (XBY ){12; ∗} = D{12; ∗} has rank two, so the matrix
(XB){12; ∗} has rank two, and we may choose H ′ ∈ SL(2,Z) such that the first
row r of H ′[(XB){12; ∗}] has both a positive entry and a negative entry. For

M ∈ N, let HM =

(

M −1
1 0

)

, H = HMH ′, and G = GH . Let c denote the first

column of X−1. Since c is not the zero vector, the K ×K matrix cr has a positive
entry and a negative entry.

If M is sufficiently large, then the entries of the two matrices X−1GXB and Mcr
will have the same sign wherever the entries of Mcr are nonzero, and X−1GXB will
have a positive entry. Then the Key Lemma 5.5 shows that (X−1GX,Y G−1Y −1)
gives a positive equivalence in M+ from B to B.
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Similarly, for large enough M the entries of UX−1GXB will agree in sign with
the entries of UMcr wherever the entries of the latter matrix are nonzero. Because
U is nonsingular, the matrix Ucr is nonzero, and then contains positive and negative
entries because r does.

So, usingM sufficiently large, we obtain (U, V ) : B → B ′ as a positive equivalence
in M+, the inverse of (X−1GX,Y G−1Y −1) followed by (UX−1GX,Y G−1Y −1V ).

¤

6. Flow equivalence

The purpose of this section is to prove the claims of Theorem 3.1 involving flow
equivalence. As sketched in [B1] (see also [Ba1]), the positive K-theory framework
is most natural for this. Because a complete development of this connection has
not yet appeared, for brevity we will make no direct use of it below.

We begin with some background. For S a selfhomeomorphism of a compact
metric space X, the mapping torus YS of S is the quotient space (X×R)/ ∼ where
(x, n+ t) ∼ (Snx, t) if n ∈ Z. YS admits a natural flow,

YS × R→ YS

([(x, t)], s) 7→ [(x, s+ t)] .

This flow has the copy X0 = {[(x, 0)] : x ∈ X} of X as a cross section, and the return
map to X0 under the flow (given by [(x, 0)] 7→ [(Sx, 0)]) is obviously topologically
conjugate to S. Let T be another selfhomeomorphism of a compact metric space.
Then S and T are flow equivalent if and only if there is a homeomorphism YS → YT
which takes flow lines onto flow lines and respects the direction of the associated
flows. (Equivalently: S and T are conjugate to return maps of cross sections of a
common flow.)

For example, consider S = σA, T = σA′ and the map γ arising from a basic pos-
itive equivalence in Subsection 2.2. It is not difficult to see that γ is the restriction
of a homeomorphism YS → YT which takes flow lines onto flow lines and respects
the direction of the associated flows, and therefore σA and σA′ are flow equivalent.

Now fix A in M◦
P,+(Z) and A′ in M◦

P′,+(Z). Let F and F ′ be finite matrices

such that F∞ = A and F ′
∞ = A′. Let σA = σF and σA′ = σF ′ be the associated

SFTs. (So, for example σA is the left shift on the path space ΣA, which is given
the natural zero dimensional metrizable topology.) Parry and Sullivan [PS] showed
that σF and σF ′ are flow equivalent if and only if σF is topologically conjugate to
some SFT which after a time change is topologically conjugate to σF ′ . It follows
([PS]) that σF and σF ′ are flow equivalent if and only if F ′ can be obtained from F
by a finite sequence of basic flow moves, which are state splittings and stretchings
and their inverses. The inverse of a splitting is called an amalgamation. We will
describe the splitting and stretching moves now.

Let B and B′ be finite square matrices. B′ is obtained from B by an elementary
row amalgamation if there exist indices i1, i2 and i such that the columns i1 and
i2 of A′ are equal, and A is obtained from A′ as follows: add row i1 to row i2,
then remove the row and column indexed by i1. The reverse move is that B is
obtained from B′ by a row splitting. Analogously there are column splittings and
amalgamations. By state splittings we mean row splittings and column splittings.

We say B′ is obtained from B by a state stretching if for some indices i, j the
following hold: B′(i, j) = 1, the other entries of row i and column j are zero, and B
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is the matrix obtained from B′ by adding column i to column j and then removing
row i and column i.

We are now ready for the proof. Suppose A is in M◦
P,+(Z) and A′ is in M◦

P′,+(Z).
We will show the following are equivalent.

(1) σA and σA′ are flow equivalent.
(2) There exists ν ∈ Iso[P,P ′] such that for P = Pν , there exists a positive

SLP(Z) equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

Proof. Given (2), it follows from Lemma 2.5 that there is a chain of basic positive
SLP(Z) equivalences from (I−A) to (I−P−1A′P ). Each basic positive equivalence
gives rise to a flow equivalence as discussed above. It follows that (2) implies (1).

Now we assume (1) and will deduce (2). Let F and F ′ be finite matrices such
that F∞ = A and F ′

∞ = A′. After using Lemmas A.1 and A.2 to pass to flow
equivalent SFTs, we may assume that for each i ∈ P, the diagonal blocks Fii and
F ′
ii are strictly positive.
From [PS] we are given a sequence of basic moves through finite matrices,

F = F0 → F1 → · · · → Fm = F ′. We may regard P and P ′ as the posets of
irreducible components of F and F ′ respectively, where e.g. i ¹ j in P when there
exists a transition from i to j (by which we mean that there exists a point in the
SFT ΣA forwardly asymptotic to a cycle from component j and backwardly asymp-
totic to a cycle from component i). Each move Fi → Fi+1 induces a bijection of
irreducible components, respecting transitions, and thus the composition induces
a poset isomorphism ν : P(A) → P(A′). After replacing A′ with P−1A′P , where
P = Pν , we may assume P = P ′ and ν = Id.

Next, for 1 ≤ i ≤ n, we will associate to Fi a matrix Ai in M◦
P,+(Z) such

that (modulo permutations of indices) tru(Ai) = Fi. We must take a little care
with the indices, to be able to lift each of the moves Fi → Fi+1 to a (positive)
SLP(Z) equivalence (I −Ai)→ (I −Ai+1). Let Ind(B) denote the set indexing the
rows and columns of a square matrix B. For each Fj , we will define an injection
τj : Ind(Fj)→ I

P , and then define Aj = ι(Fj) by setting

Aj(s, t) = F (s′, t′) if (s, t) = (τj(s
′), τj(t

′))

= 0 otherwise.

The maps τj will be defined recursively. For j = 0, we set A0 = A and take τj to be
compatible with the embedding of F as a principal submatrix of A. Now suppose
0 ≤ j < n and τj and Aj are given. The transition Fj → Fj+1 is given by a basic
flow move, and under such a move, every element of Ind(Fj+1) is naturally related
to one or two elements of Ind(Fj). (An element i of Ind(Fj+1) is related to two
elements i1, i2 of Ind(Fj) when the move Fj+1 → Fj is a splitting or stretching of
the state i into the states i1, i2.) In any case, for each i in Ind(Fj+1), fix a related
vertex rel(i) in Ind(Fj). Then choose any map τj+1 : Ind(Fj+1) → I

P such that
τj(rel(i)) and τj+1(i) lie in IPp for the same element p of P. (When i is related to
two indices, this p may depend on the choice for rel(i).) This defines the matrices
A = A0, A1, . . . , Am.

Next we will show that each elementary flow move Fj → Fj+1 gives rise to a
positive SLP(Z) equivalence (I − Aj) → (I − Aj+1). Each of the equivalences we
give will be accomplished by elementary matrices which must lie in SLP(Z) on
account of our choices of indices.
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First we show how an elementary row splitting gives rise to a positive SLP(Z)
equivalence. The general construction can be understood from the example

B =





a b 0
c1 + c2 d1 + d2 0

0 0 0



 →





a b b
c1 d1 d1

c2 d2 d2



 = B′ .

Here the positive equivalence (I −B)→ (I −B ′) is accomplished as follows:

(I −B) =





1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1





→





1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1









1 0 0
0 1 0
−c2 −d2 1



 =





1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1





→





1 0 0
0 1 −1
0 0 1









1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1



 =





1− a −b 0
−c1 1− d1 −1
−c2 −d2 1





→





1− a −b 0
−c1 1− d1 −1
−c2 −d2 1









1 0 0
0 1 1
0 0 1



 =





1− a −b −b
−c1 1− d1 −d1

−c2 −d2 1− d2



 .

The positive equivalence for a column splitting is constructed similarly.
Next we show that a state stretching gives rise to a positive equivalence. The

general construction can be understood from the example

B =





0 0 0
0 a b
0 c d



→





0 1 0
a 0 b
c 0 d



 = B′ .

Here the positive equivalence (I −B)→ (I −B ′) is accomplished as follows.

(I −B) =





1 0 0
0 1− a −b
0 −c 1− d





→





1 0 0
−a 1 0
−c 0 1









1 0 0
0 1− a −b
0 −c 1− d



 =





1 0 0
−a 1− a −b
−c −c 1− d





→





1 0 0
−a 1− a −b
−c −c 1− d









1 −1 0
0 1 0
0 0 1



 =





1 −1 0
−a 1 −b
−c 0 1− d



 .

At this point we have a positive SLP(Z) equivalence (I −A)→ (I −A′
n), where

there is a permutation matrix Q such that Q−1A′
nQ = A′. Because A′ = F ′

∞ and
F ′ has all diagonal blocks positive, if A′(i, j) > 0 then i lies on an A′ cycle and j lies
on an A′ cycle. Therefore the permutation given by Q can be chosen compatible
with the poset isomorphism ν = Id, and the matrix Q is a block diagonal matrix in
SLP(Z). It remains to check that I−A′

n → Q−1A′
nQ is accomplished by a positive

SLP(Z) equivalence. Because Q is block diagonal and we can use compositions,
it is enough to give the equivalence in the case that Q is the transposition matrix
for indices i, j which lie in some IPp . Choose indices α, β in IPp such that A′

n

is identically zero in the rows and columns indexed by α and β. Let P be the
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permutation matrix for the product of transpositions (i, j)(α, β). Then P is in
SLP(Z) and PA′

nP = Q−1A′
nQ. This finishes the proof. ¤

7. The mapping class group

In this section the symbols S, T denote subshifts (e.g., T is the restriction of
some full shift σ[n] to a closed shift-invariant subset, which we also call T ). As
in Section 6, let YS denote the mapping torus of S. We regard YS as an oriented
space, in the sense that the associated flow gives an orientation to each of its orbits
(i.e., to each connected component of YS). A flow equivalence from a subshift S
to a subshift T is an orientation preserving homeomorphism ϕ : YS → YT (where
“orientation preserving”means orientation preserving on each orbit). Two such
homeomorphisms ϕ0, ϕ1 are isotopic (ϕ0 ∼ ϕ1) if there is a continuous map t 7→
ϕt, 0 ≤ t ≤ 1, which connects them in the metrizable space of homeomorphisms
from YS to YT . Let Is(S, T ) denote the set of isotopy classes of flow equivalences
from S to T . We let Is(S, S) = Is(S) and call this the mapping class group of the
oriented space YS .
The isotopy futures group of YS.
Given S, x ∈ S and n ∈ Z, define

r(x, n) = {[(w, 0)] ∈ YS : w ∈ S,wi = xi for i ≤ n} .

We call such a set a ray in YS . We say two sets E,E′ in YS are isotopic (E ∼ E′)
if there is a homeomorphism ϕ : YS → YS such that ϕ(E) = E′ and ϕ is isotopic
to the identity. An isotopy ray is a set isotopic to a ray. A beam is a disjoint union
of finitely many rays. An isotopy beam is a set isotopic to a beam. Let B = B(S)
denote the set of isotopy beams of YS .

We define F(S), the isotopy futures group of S, to be ZB/K, where ZB is the
free abelian group with generating set B = B(S), and K = K(S) is the subgroup
of ZB generated by all elements of the following forms:

b− b′ , if {b, b′} ⊂ B and b ∼ b′ ,(7.1)

b−
k
∑

j=1

bj , if {b, b1, . . . , bk} ⊂ B, k ∈ N, and b = ∪̇jbj .(7.2)

For S a subshift, let Pn(S) denote the partition of S into clopen sets of the form
C(x, n) = {w ∈ S : wi = xi if |i| ≤ n}.

Lemma 7.3. Suppose S, T are subshifts and ϕ : YS → YT is an orientation pre-
serving homeomorphism and b ∈ B(S). Then ϕ(b) ∈ B(T ).

Proof. Exploiting the zero dimensionality of S as in [PS], after postcomposing
ϕ with a suitable map isotopic to the identity we may assume that there is a
positive integer M such that for any C in PM (S) there is a constant h = hC
and a homeomorphism f = fC from C to a clopen subset D of T such that
ϕ([(x, 0)]) = [(f(x), h)], for all x in C.

Because ϕ respects disjoint union and pushes Is(S) forward to Is(T ) (by the
rule [h] 7→ [ϕhϕ−1]), it suffices to consider the case that b is a ray r(x, n) with
n ≥ M . Let C ′ = {w ∈ S : wi = xi if i ≤ n} ⊂ C ∈ PM (S), with h = hC
and f = fC . Choose k ∈ N such that for all x in C, the sequence x(−∞, n]
determines (fx)(−∞, n−k] and the sequence (fx)(−∞, n+k] determines x(−∞, n].
So, if w ∈ f(C ′), then {z ∈ T : zi = wi if i ≤ n + k} ⊂ f(C ′). Let W be the
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(finite) set of words {w[n − k, n + k] : w ∈ f(C ′)}. Then ϕ(b) = ϕ(r(x, n)) =
∪W∈W{[(z, h)] : z(−∞, n− k− 1] = (fx)(−∞, n− k− 1] and z[n− k, n+ k] = W},
so ϕ(b) is an isotopy beam. ¤

The following proposition follows easily from the lemma.

Proposition 7.4. Suppose S and T are subshifts and ϕ : YS → YT is an orientation
preserving homeomorphism. Then the mapping of isotopy beams b 7→ ϕ(b) induces
an isomorphism ϕ∗ : F(S)→ F(T ).

Let Iso(F(S),F(T )) denote the set of group isomorphisms from F(S) to F(T ).
Let Aut(F(S)) = Iso(F(S),F(S)). The next proposition is now obvious.

Proposition 7.5. The rule ϕ 7→ ϕ∗ induces a group homomorphism ρ : Is(S) →
Aut(F(S)).

Remark 7.6. The construction of FS is one of several variations on the dimen-
sion group construction introduced by Krieger [Kr1, Kr2]; our construction was
influenced also by [LM] and [BFF]. The construction of FS is a flow equivalence
analogue of Krieger’s construction of a dimension group from a subshift S. The
map ρ : Is(YS) → Aut(FS) is the analogue for flow equivalence of the dimension
representation of the automorphism group of a subshift.

The isomorphism β : F(σA)→ cok(I −A).
Suppose A is a matrix in M◦

P,+(Z). Let I denote the index set of the rows and

columns of A. Let ZI be the group of (infinite) row vectors indexed by I, with all
but finitely many entries zero. For a symbol/edge xn of σA, let τ(xn) denote the
terminal vertex of the edge xn (so, τ(xn) ∈ I).

The group cok(I−A) is the cokernel of the map ZI → ZI given by v 7→ v(I−A)
(i.e., cok(I − A) = ZI/image(I − A)). Given a ray r = r(x, n) with i = τ(xn), let
ei be the ith canonical basis vector in ZI , and define β(r) = [ei] ∈ cok(I −A).

First note, given k ∈ Z and a ray r = r(x, n), if we set r′ equal to {[(w, k)] : [(w, 0)] ∈
r(x, n)}, then r′ is again a ray,

r′ = r(σkx, n− k) and β(r′) = β(r) .(7.7)

Here the equality of sets follow from the manipulations

{[(w, k)] : [(w, 0)] ∈ r(x, n)} = {[(σkw, 0)] : w(−∞, n] = x(−∞, n]}

= {[(z, 0)] : z(−∞, n− k] = x(−∞, n]} = {[(z, 0)] : z(−∞, n− k] = (σkx)(−∞, n− k]}

and then β(r) = β(r′) because the edges xn and (σkx)n−k are equal.
Next, given x ∈ σA, n ∈ Z and k ∈ N, for each σA-word W = W1 · · ·Wk

which can follow xn, choose a point y = yW such that y(−∞, n] = x(−∞, n] and
y[n+ 1, n+ k] = W . Then the equality

β(r(x, n]) =
∑

W

β(r(yW , n+ k)) ∈ cok(I −A)(7.8)

follows for k = 1 by direct computation and for k > 1 by induction.
Given a beam b which is a disjoint union of finitely many rays r(x(i), n(i)), we

now define

β(b) =
∑

i

β(r(x(i), n(i))) .
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(We will use the symbol β for various maps derived from the map β on rays.) To
see that this definition is independent of the particular choice of rays, suppose b
is also the union of rays r(w(j),m(j)). Choose M ≥ maxi,j{n

(i),m(j)}. Then b is

the disjoint union of rays r(z(k),M), each of the r(x(i), n(i)) and r(w(j),m(j)) is a
union of some of the rays r(z(k),M), and by (7.8) we have

∑

i

β(r(x(i), n(i))) =
∑

k

β(r(z(k),M)) =
∑

j

β(r(w(j),m(j))) .

Therefore β(b) is well defined.
We will write YA for the mapping torus of σA.

Lemma 7.9. If b and b′ are beams in YA such that b ∼ b′, then β(b) = β(b′).

Proof. Without loss of generality, choose M ∈ N and a finite set E of YA such
that b is the disjoint union of rays r(x,M), x ∈ E. Let {ϕt} be an isotopy such
that ϕ0 = id and ϕ1(b) = b′. Because ϕ1 ∼ id, there is a continuous function k(x)
such that for all [(x, 0)] in b, ϕ1 : [(x, 0)] 7→ [(x, k(x))]. Because ϕ(b) is a beam,
the function k is integer valued. Possibly after increasing our choice of M , we
may assume that k is constant on each ray r(x,M). By (7.7), ϕ1 takes each ray
r = r(x,M) onto a ray r′ such that β(r) = β(r′), b′ is the disjoint union of these
rays r′, and

β(b) =
∑

r

β(r) =
∑

r′

β(r′) = β(b′) .

¤

An isotopy beam b is isotopic to some beam b′. Define β(b) = β(b′). It follows
from the lemma that β(b) does not depend on the choice of b′. Likewise we have a
well defined homomorphism of groups

β : ZB → cok(I −A) ,(7.10)
∑

nibi 7→
∑

niβ(bi) .

Proposition 7.11. The kernel of the map β in (7.10) is the subgroup K with
generators (7.1, 7.2). So, there is an induced isomorphism of groups

βA : F(σA)→ cok(I −A) .

Proof. First we show K ⊂ Kerβ by showing that β vanishes on the generators of
K. For (7.1), suppose b ∼ b′; then β(b− b′) = 0 by Lemma 7.9. For (7.2), suppose
b is an isotopy beam and b is the disjoint union of finitely many isotopy beams
bi. Without loss of generality, suppose b is a beam. The bi are a finite collection
of disjoint compact sets, so for sufficiently large m, for any C in Pm(S) such that
b ∩ C 6= ∅, the set (b ∩ C) will be contained in one of the bi. If m is large enough,
then b ∩ C if nonempty will be a ray. Thus, taking sums over C in Pm, and for
notational convenience defining β to be zero on the empty set, we get

β(b) =
∑

C

β(C ∩ b)

=
∑

j

∑

C

β(C ∩ bj) =
∑

j

β(bj) .

Now we show kerβ ⊂ K. Suppose g =
∑

njbj ∈ kerβ. There exists M ≥ 0

such that for each j, there are rays r(x(jk),M) such that bj −
∑

k r(x
(jk),M) ∈ K.
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so g =
∑

jk njr(x
(jk),M) (mod K). For any x, β(r(σMx, 0)) = β(r(x,M)); also,

r(x, 0) − r(x′, 0) ∈ K if x0 and x′0 have the same terminal vertex i. So, we may
choose for each i an element x(i) such that (x(i))0 has terminal vertex i, for each
x(jk) replace x(jk) with the appropriate x(i), and after reindexing obtain integers
mi such that

g =
∑

i

mir(x
(i), 0) (mod K) .

Because β(g) = 0 and K ⊂ kerβ, there is an integral row vector w such that
∑

imiei = w(I −A), and therefore

g =
∑

i

wi

(

[r(x(i), 0)]−
∑

j

Aij [r(x
(j), 0)]

)

(mod K) .

For each i, we have r(σAx
(i),−1)− r(x(i), 0) ∈ K, and also

r(σAx
(i),−1)−

∑

j

Aijr(x
(j), 0) ∈ K .

It follows that g = 0 (mod K). ¤

In our definition of F(S) and cok(I − A) we used sets r(x, n) and row vectors.
(So, cok(I −A) = rowcok(I −A).) In the same way, using sets

r+(x, n) := {[(w, 0)] ∈ YS : w ∈ S and wi = xi for i ≥ n}

we may define the pasts group P(S); and using column vectors, we obtain an
isomorphism P(σA)→ colcok(I −A). For a flow equivalence ϕ : YA → YB , the iso-
morphism ϕ∗ : F(σA)→ F(σB) given by Proposition 7.4 induces the isomorphism

ϕrow
∗ := (βB)ϕ∗(βA)

−1 : rowcok(I −A)→ rowcok(I −B) .

Likewise, the action of ϕ on P(σA) induces an isomorphism

ϕcol
∗ : colcok(I −A)→ colcok(I −B) .

The action of Is(σA) on cok(I −A).
For a flow equivalence ϕ : YA → YA, we have group homomorphisms

Is(σA)→ Aut(rowcok(I −A)) and Is(σA)→ Aut(colcok(I −A))

ϕ 7→ ϕrow∗ ϕ 7→ ϕcol∗ .

As described in subsection 2.2, if (U, V ) is a basic positive SLP(n,Z) equivalence
from (I − A) to (I − B) = U(I − A)V , and B plays the role of A′ in subsection
2.2, then there is an associated map γ from σA to σB , and it is easy to see that
this map is the restriction (to the cross section σA) of an orientation preserving
homeomorphism YA → YB . More generally, if (U, V ) is the composition of basic
positive SLP(n,Z) equivalences (Ui, Vi), and ϕ is the corresponding composition
of the flow equivalences associated to the (Ui, Vi), then we will write ϕ = ϕ(U,V ).
This is an abuse of notation in that we are not claiming that (U, V ) determines
ϕ (the map ϕ may depend on the particular factorization of (U, V )); we are only
indicating that ϕ arises via some factorization of (U, V ).

Proposition 7.12. Suppose A ∈M◦
P,+(Z). Suppose (U, V ) : (I −A)→ (I −B) is

a positive SLP equivalence, and ϕ(U,V ) is an associated flow equivalence.
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Then the induced map ϕrow
∗ : rowcok(I−A)→ rowcok(I−B) is given by the rule

[w] 7→ [wV ], and the induced map ϕcol
∗ : colcok(I −A)→ colcok(I −B) is given by

the rule [w] 7→ [Uw].

Proof. We will check the proposition in the case that (U, V ) = (E, I) and E is a
basic elementary matrix with unique offdiagonal entry E(i, j) = 1. The argument
for (I, E) is similar and then the proposition follows by composition. For concrete-
ness,, suppose E(1, 2) = 1 (in other entries E = I). Let ϕ = ϕ(E,I) be defined via
the map γ and edge e described in subsection 2.2.

Suppose x ∈ σA and x−1 has terminal vertex i. Then the edge (γx)−1 has
terminal vertex i and ϕ maps r(x,−1) onto r(γx,−1). It follows that the diagram

F(σA)
ϕ∗

−−−−→ F(σB)

βA





y
βB





y

rowcok(I −A)
Id

−−−−→ rowcok(I −B)

commutes; that is, ϕrow
∗ = Id.

If x ∈ σB and x0 has initial vertex not equal to 2, then ϕ maps r+(x, 0) onto
r+(γx, 0). Thus the map (ϕcol

∗ )−1 sends [ei] in colcok(I−A) to [ei] in colcok(I−B)
whenever i 6= 2. If the initial vertex of x0 is 2, then ϕ−1 sends r+(x, 0) to the set
of all points (w, 0) in r+(γ−1x, 0) such that w−1 6= e. Consequently, if y is a point
in σA such that yi = (γx)i if i ≥ 0 and y−1 = e, then

ϕ−1
(

r+(x, 0)
)

= r+(γ−1x, 0) \ r+(y,−1) .

We also have

βcolB : r+(x, 0) 7→ [e2] ∈ colcok(I −B) ,

βcolA : r+(γ−1x, 0) 7→ [e2] ∈ colcok(I −A) ,

βcolA : r+(y,−1) 7→ [e1] ∈ colcok(I −A) .

Therefore (ϕcol
∗ )−1 : [e2] 7→ [e2] − [e1], hence for all integral column vectors v we

have (ϕcol
∗ )−1 : [v] 7→ [E−1v] as required. ¤

Theorem 7.13. Suppose A ∈M◦
+(Z) and the mapping torus of σA is not a circle.

Then the induced map Is(YA)→ Aut(cok(I −A)) is surjective.

Remark 7.14. Of course, the theorem is true for colcok as well as for rowcok. In
the case that the mapping torus of σA is a circle (i.e., A has a unique irreducible
component, and this component is a permutation matrix), any orientation preserv-
ing homeomorphism from YA to YA is isotopic to the identity, but cok(I −A) ∼= Z
and Aut(cok(I−A)) ∼= Z/2, so the map Is(YA)→ Aut(cok(I−A) is not surjective.
Theorem 7.13 says that apart from this case, every automorphism of the isotopy
futures group of an irreducible shift of finite type is induced by a flow equivalence.

Proof of Theorem 7.13. It is proved in [BH] that any automorphism of rowcok(I −
A) or colcok(I − A) is induced by an SL(Z) equivalence (by the rules described
in the statement of Proposition 7.12). By the Factorization Theorem 3.3, such
an equivalence is a positive equivalence. By Proposition 7.12, a flow equivalence
associated to this positive equivalence has the desired action on the cokernel group.

¤
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From the view of symbolic dynamics, Theorem 7.13 stands in contrast to the
Kim-Roush-Wagoner result [KRW1] that the dimension representation of a mixing
shift of finite type is not in general surjective. (The contrast is meaningful because
the invariants are related by “setting t equal to 1” [B1].)

When A ∈ M◦
+(Z) (i.e. A is essentially irreducible) and σA is not a circle, the

flow equivalence class of σA is given by the SL(Z) equivalence class of I − A, for
which det(I − A) and cok(I − A) give complete invariants. When P is nontrivial
and A ∈ M◦

P,+(Z) (i.e. the SFT σA is reducible), the flow equivalence class of A

(modulo a permutation of P) is given by its positive SLP(Z) equivalence class, and
the complete algebraic invariants (introduced by Huang) are more subtle, involving
the “K-web” of the matrix I − A, denoted K(I − A). The K-web is a diagram
of exact sequences of certain kernel and cokernel groups of submatrices of I − A.
The K-web invariants are completely analyzed in [BH], which also characterizes
the automorphisms of K(A) which can be induced by an SLP(Z) equivalence. We
believe that the type of analysis carried out to describe the action of Is(σA) on
cok(I −A) in the irreducible case can be extended to describe the possible actions
of Is(σA) on the more complicated algebraic structure of the K-web which classifies
in the reducible case. Specifically, we expect that the following program can be
carried out. Together with [BH], this program would give a complete description
of the possible actions of Is(σA) on the K-web.

Program 7.15. For A,B in MP(Z+), we conjecture the following.

(1) The K-web data for I − A can be described in terms of isotopy beams
of subsystems of YA, and the map on isotopy beams by an orientation
preserving homeomorphism ϕ : YA → YB induces an isomorphism K(A)→
K(B).

(2) For a positive SLP(Z) equivalence (U, V ) from A to B, the isomorphism
K(A) → K(B) induced by ϕ(U,V ) is the natural isomorphism induced by
(U, V ) as described in [BH].

(3) If ϕ is an orientation preserving homeomorphism from YA to YB , then there
is a positive SLP(Z) equivalence (U, V ) such that ϕ is isotopic to ϕ(U,V ).

The most fundamental of the three steps above is the last one, and a version of
this has already been carried out in the irreducible case (i.e. P = {1}) by Badoian
[Ba1], as we discuss below.
The work of Badoian.

We’ll describe some of the work [Ba1] of Leslie Badoian, which gives alternate
proofs of some of our results. The work [Ba1] is too extensive for a full summary
here; roughly speaking, Badoian carries out for irreducible shifts of finite type a
flow equivalence version of the strong shift equivalence theory Wagoner [W1] built
on the foundation laid by Williams [Wi].

Badoian builds an infinite oriented CW complex, denoted FK. A zero-cell for
FK is an equivalence class of infinite, essentially irreducible, finitely supported zero-
one matrices, where two matrices are equivalent iff their unique maximal irreducible
principal submatrices are equal. A one-cell [A]→ [B] corresponds to an elementary
equivalence (I − B) = U(I − A)V satisfying certain conditions. Two-cells are also
defined, by certain matrix relations. The two main results of [Ba1] are the following.

• Classification Theorem. σA and σB are flow equivalent if and only if A and
B lie in the same connected component of FK.
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• Flow Equivalence Theorem. π1(FKA) ∼= Is(σA). (I.e., a path along one-
cells gives rise to a flow equivalence, and two paths give rise to isotopic flow
equivalences if and only if the paths are homotopic in FK.)

The elementary equivalences of [Ba1] are not the same as our elementary positive
equivalences, but Badoian has found short arguments [Ba2] which show directly that
that her elementary equivalences and ours generate the same set of flow equivalences
up to isotopy. With this fact and some technical remarks, the results of Section
6 for irreducible shifts of finite type follow directly from Badoian’s Classification
Theorem (which in turn rests on Parry-Sullivan [PS] and Williams [Wi], as does
our Section 6).

The Flow Equivalence Theorem gives an alternate route in the irreducible case
to the representation Is(σA, σB)→ Iso(cok(I − A), cok(I −B)): we could take the
natural definition along an edge (given by the associated flow equivalence), compose
along paths of edges, and consult the definition of two-cells in FK to verify that
the definition only depends on the homotopy class of the path of edges. All of this
is parallel to the development of the dimension representation in Wagoner’s strong
shift equivalence theory [W1].

We have not relied in proofs on citation of [Ba1], for a few reasons. Although
there should be no fundamental problem with extending Badoian’s approach to
reducible shifts of finite type, the results in [Ba1] are only for irreducible shifts of
finite type. We also wanted self-contained and reasonably brief arguments. (The
long work [Ba1] deals with a fundamental difficult problem which we avoid: we
do not try to understand when two paths give rise to the same flow equivalence
up to isotopy.) Finally, although the CW complex approach has rather spectacu-
larly proved its worth [KR2, KRW1, W1], the Krieger-style construction remains
important, and its more earthy definition (by actions on sets) makes sense directly
for general subshifts. Matsumoto [Ma] has a far reaching extension of Williams’
theory to general subshifts, and this offers hope for some analogue of Wagoner’s
strong shift equivalence theory for general subshifts; but there is no such theory
yet.

Appendix A. Reduction to nondegenerate form

This appendix is devoted to the proof of Proposition 4.5.
We will prove Proposition 4.5 by composition in a larger commuting diagram (to

be assembled in three stages):

(I −A) −−−−→ (I −A1) −−−−→ (I −A2) −−−−→ (I −A)

(U,V )





y

(U1,V1)





y

(U2,V2)





y





y
(U,V )

(I −A′) −−−−→ (I −A′
1) −−−−→ (I −A′

2) −−−−→ (I −A′)

The horizontal arrows will be positive equivalences and the vertical equivalences
to the right of (U, V ) will be defined from them by composition (then the diagram

will commute). Stage I will produce the left square with A1 and A′
1 satisfying

conditions 2,3 and 4 of Proposition 4.5. Stage II will produce the middle square,
with (U2)ii = (V2)ii = Id for i ∈ C, and with A2 and A′

2 still satisfying conditions
2,3 and 4 of Proposition 4.5. Stage III will produce the right square to finish the
proof. The individual stages will follow from several lemmas.
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Lemma A.1. Suppose A ∈M◦
P,+(n,Z). Then there is a positive SLP(n,Z) equiv-

alence in I −M◦
P,+(n,Z) from I −A to a matrix I −C such that for all i ∈ CA the

following hold:

(1) The block Cii has its upper left corner entry equal to 1, and Cii has no other
nonzero entry.

(2) Let (`, `) be the entry of C which is the upper left corner of Cii. Then for
j 6= i, every row of a block Cij other than row ` is zero, and every column
of a block Cji other than column ` is equal to zero.

Proof. Suppose i ∈ CA. Let i1, . . . , ik be nonrepeated indices such thatAii(it, it+1) =
1, 1 ≤ t < k, and Aii(ik, i1) = 1.

Cycle-shortening construction. Suppose k > 1. Let A = A(0). For 1 ≤ j < k,
define A(j) by the equation I − A(j) = Ej(I − A(j−1)), where Ej denotes the

basic elementary matrix which acts to add row ik−j+1 to row ik−j . Each A(j)

is nonnegative. Then add the columns i2, . . . , ik of A(k) to column i1 of A(k). By
Lemma 2.5, each step in this process gives a positive equivalence in I−M◦

P,+(n,Z),
and in the last matrix A′, the block A′

ii has as its unique cycle the 1-cycle (i1).
Below is an example of the process, with (i1, i2, i3, i4) = (1, 2, 3, 4), viewed in the
principal submatrices on indices 1, 2, 3, 4:









1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1









→









1 −1 0 0
0 1 −1 0
−1 0 1 0
−1 0 0 1









→









1 −1 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1









→









0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1









→









0 0 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1









→









0 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1









→









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Now without loss of generality, we suppose k = 1 with A(i1, i1) = 1. Because
(i1) is the unique Aii cycle, if Aii is nonzero at any entry other than (i1, i1), then it
is nonzero at some entry (j, l) such that row l of A is zero or column j of A is zero.
In the former case, let E be the elementary matrix which acts from the left to add
row l to row j, then (E, I) : (I−A)→ E(I−A) = (I−A′′) is a positive equivalence
in which A′′ = A except that A′(j, l) = 0. The latter case is treated similarly,
by adding column j to column l. Iterating, we produce a positive equivalence in
I−M◦

P,+(n,Z) from I−A to a matrix I−A′ such that A′(i1, i1) is the only nonzero

entry of A′
ii.

Next, given i in CA′ with A′(i1, i1) = 1, we may for each j ≺ i add rows of
I−A′ through the ii block to rows through the ji block (never adding row i1) until
every column of the block (I − A′)ji except column i1 is zero. We do this for all
the cycle components i, for i in decreasing order, so that no block zeroed out for
some i is made nonzero by subsequent operations. Then similarly, taking i in CA
in increasing order, we add columns through the ii block to columns through the
ji blocks with i ≺ j, to end with a matrix C ′ which satisfies the statement of the
lemma (with C ′ in place of C), except that the distinguished indices i1 might not
be the corner indices `.

So, suppose i is a cycle component for which ` 6= i1. We apply four basic positive
equivalences to give (I −C ′)→ (I −C ′′), as viewed below in principal submatrices
on indices {i1, `, k} (where k is any index not in {i1, `}). (In the very special case
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that C ′ is 2 × 2, there can be no third index k and these principal submatrices
should be restricted to indices {i1, `}.) For concreteness we use (`, i1, k) = (1, 2, 3):





1 0 0
0 0 x
0 y z



 →





1 0 0
−1 1 0
0 0 1









1 0 0
0 0 x
0 y z



 =





1 0 0
−1 0 x
0 y z





→





1 0 0
−1 0 x
0 y z









1 −1 0
0 1 0
0 0 1



 =





1 −1 0
−1 1 x
0 y z





→





1 −1 0
−1 1 x
0 y z









1 0 0
1 1 0
0 0 1



 =





0 −1 0
0 1 x
y y z





→





1 1 0
0 1 0
0 0 1









0 −1 0
0 1 x
y y z



 =





0 0 x
0 1 x
y y z



 .

If above for any k we have x 6= 0, then x < 0 and the (i1, k) entry lies in an ij block
with i ≺ j; then y = 0 and it is a positive equivalence to add column i1 of C ′′ |x|
times to column k. Doing this as needed, and dealing similarly with nonzero entries
y using rows in place of columns, we produce another version of C ′′ which enjoys
the additional property that i1 = ` for the cycle component i. Then we repeat until
i1 = ` for every cycle component i. The resulting matrix C satisfies the statement
of the lemma. ¤

Lemma A.2. Suppose A ∈ M◦
P,+(n,Z), and n = (n1, . . . , nN ) is a vector with

positive integer entries. Then there is a positive SLP(n,Z) equivalence in I −
M◦

P,+(Z) from (I −A) to a matrix with the properties 2,3,4 of Proposition 4.5.

Proof of Lemma A.2. We will describe a sequence of row and column operations
(corresponding, by repeated tacit appeal to Lemma 2.5, to positive SLP(n,Z) equiv-
alences in I −M◦

P,+(Z)) which put the matrix I − A into the required form. To
simplify notation, rather than renaming I −A after an equivalence, we will discuss
changing properties of I −A. We begin with a matrix A with the properties stated
(for C) in Lemma A.1, i.e., A satisfies the properties 3,4 of Proposition 4.5.

Our first goal will be, given t ∈ P which is not a cycle component, to arrange
that the block (I − A)tt be strictly negative. Recall It denotes the index set for
rows/columns of Att. Let S denote the index set for the unique maximal irreducible
submatrix of Att, let S

′ denote the complement of S in It, and e.g. let A{S} denote
the principal submatrix of A on index set S. We will arrange (in order) the following
properties (after each stage keeping the properties achieved at earlier stages, and
not changing entries in any block Ass with s 6= t, and not losing the properties 3,4
of Proposition 4.5).

(1) ∃i ∈ S such that (I −A)(i, i) ≤ 0.
(2) {i, j} ∩ S ′ 6= ∅ =⇒ (I −A)(i, j) = δij .
(3) If S ′ 6= ∅, then |S| > 1.
(4) S ′ = ∅.
(5) The block (I −A)tt is strictly negative.

(1) If necessary achieve this with the initial row operations of the cycle-shortening
construction of the Lemma A.1.
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(2) First suppose this condition does not hold for some {i, j} ⊂ It. Then pick
some i ∈ S ′ and j ∈ It such that j 6= i and one of the following hold:

• (I −A)(i, j) 6= 0 and column i of Att is zero, or
• (I −A)(j, i) 6= 0 and row i of Att is zero.

In the former case, add column i of (I−A) to other columns j where (I−A)(i, j) < 0,
until (I−A)(i, j) = δij for all j ∈ It. In the latter case, similarly use row additions
to achieve (I − A)(j, i) = δij for all j ∈ It. This procedure reduces the cardinality
of the set of entries in (I−A)tt at which condition (2) fails, and it may be repeated
until condition (2) holds for {i, j} ⊂ It. We then add rows and columns indexed
by S ′ to others as needed until (2) holds in general.

(3) Suppose (for concreteness) that S = {1} and 2 ∈ S ′. Then we must have
A(1, 1) = k > 1 (since t is not a cycle component). Now, subtract row 2 of (I −A)
from row 1; then subtract column 2 from column 1. The effect of these moves is
to enlarge S = {1} to S = {1, 2}. The moves are summarized below in principal
submatrices on indices {1, 2, 3}, where 3 is an arbitrary additional index:





1− k 0 w
0 1 0
x 0 z



→





1− k −1 w
0 1 0
x 0 z



→





−(k − 2) −1 w
−1 1 0
x 0 z



 .

(4) Suppose S ′ 6= ∅. By (1) and (3), we may pick i1, j1 in S such that i1 6= j1,
(I − A)(i1, i1) ≤ 0, and (I − A)(i1, j1) ≤ −1. Add row i1 of (I − A) to row j1,
(|S ′| + 1) times, producing (I − A)(j1, j1) ≤ −|S

′|. For each j in S ′, subtract row
j of (I − A) from row j1. Then subtract each S ′ column from column j1. This
produces A with S ′ = ∅.

(5) With i1, j1 as in (4): add row i1 to row j1 (now (I −A)(j1, j1) < 0); for each
i in S with i 6= j1, add column j1 to column i (now row j1 of (I −A) is negative);
and for each i in S with i 6= j1, add row j1 to row i. We now have (I−A)tt strictly
negative as required.

After applying a positive equivalence, then, we may assume that (I − A)ii < 0
for every noncycle component i. Consequently, if i ≺ j, and i or j is not a cycle
component, then for large n the block (An)ij is strictly positive. We can then get a
positive equivalence to (I−A) whose block (I−A)ij is strictly negative, by adding
columns through i to columns through j (if i 6∈ CA) or by adding rows through j
to rows through i (if j 6∈ CA). Similarly, for every noncycle component j and cycle

component i, with Cprimi = {`}, add a j-row to row ` if i ≺ j, and add a j-column
to column ` if j ≺ i.

Note, if i ≺ j and {i, j} ⊂ C, with say Cprimi = {`i} and Cprimj = {`j},
then A(`i, `j) > 0, because the block Aij is not the zero block (because A ∈
Mo

P,+(C,n,Z)) and the only possible nonzero entry is A(`i, `j) > 0. Finally, when-

ever (I −A)ij < 0 with {i, j} ⊂ CA and i ≺ k ≺ j for some k in P, pick k such that
i ≺ k ≺ j, and add columns of I − A through component k to columns through
component j. The resulting matrix satisfies the statement of the lemma. ¤

Lemmas A.1 and A.2 finish the proof for Stage I. We now shift our focus to the
form of the equivalence (U, V ). The next lemma gives the proof for Stage II.

Lemma A.3. Suppose (U, V ) : (I−A)→ (I−A′) is an SLP(n,Z) equivalence which
is positive on cycle components, and A,A′ satisfy conditions 2,3,4 of Proposition
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4.5. Then there is a commuting diagram

(I −A) −−−−→ (I − Ã)

(U,V )





y





y
(Ũ,Ṽ )

(I −A′) −−−−→ (I − Ã′)

in which the horizontal arrows are positive equivalences; Ã and Ã′ still satisfy those
conditions 2,3,4; and for each i ∈ C, Ũii = Ṽii = Id.

Proof. Suppose i is a cycle component for which ni > 1 (otherwise there is nothing

to prove). Then (I − A)ii = (I − A′)ii = Q, where Q =

(

0 0
0 I

)

, in which I is

(ni−1)× (ni−1). Considering blocks of UiiQ = QV −1
ii , we see Uii and Vii have the

corresponding block forms Uii =

(

a 0
x Z

)

and Vii =

(

b y
0 Z−1

)

. The positive on

cycle components assumption implies a = 1. Then det(U) = 1 implies det(Z) = 1.
Then det(Z−1) = 1 = detV implies b = 1. So we have

Uii =

(

1 0
x Z

)

and Vii =

(

1 y
0 Z−1

)

(A.4)

for some Z in SL(ni − 1,Z).
Now suppose E is a basic elementary matrix with offdiagonal entry E(j, k) = 1,

where j, k index rows of the ii block other than the first row. Then

(I −A)
(I,E−1)
−−−−−→ ·

(E,I)
−−−→ (I −A)(A.5)

gives a factorization of (E,E−1) : (I−A)→ (I−A) into basic positive equivalences.
For example, if rows 1,2,3 run through Q and Q(1, 1) = 0, then in the principal

submatrix on indices 1,2,3 we could have E =





1 0 0
0 1 1
0 0 1



, and (A.5) would become





0 0 0
0 1 0
0 0 1





(I,E−1)
−−−−−→





0 0 0
0 1 −1
0 0 1





(E,I)
−−−→





0 0 0
0 1 0
0 0 1



 .

Now we can factor (U, V ) as

(I −A)
(I,E−1)
−−−−−→ ·

(E,I)
−−−→ (I −A)

(UE−1,EV )
−−−−−−−−→ (I −A′)(A.6)

Because Z is a composition of elementary matrices, and the conditions 2,3,4 are not
disturbed by this move, we can repeat this move to obtain a positive equivalence
(G,G−1) : (I − A) → (I − A) such that the (U, V ) equals (G,G−1) followed by
(UG−1, GV ) where (UG−1)ii and (GV )ii have the forms (A.4) with Z = I. After
doing this as needed for every cycle component i, we can assume for each i ∈ C

with ni > 1 that we have the forms Uii =

(

1 0
x(i) I

)

and Vii =

(

1 y(i)

0 I

)

.

Let D and D′ be the block diagonal matrices equal to Id except in cycle compo-
nent diagonal blocks, where Dii = Uii and D′

ii = V −1
ii . We will produce matrices

P,Q in UP(n,Z) such that (D,Q) : (I −A)→ D(I −A)Q and (P,D′) : (I −A′)→
P (I−A′)D′ are positive equivalences, and the matrices D(I−A)Q and P (I−A′)D′
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satisfy those conditions 2,3,4. Then the lemma will follow by defining (Ũ , Ṽ ) by
requiring the following diagram to commute:

(I −A)
(D,Q)
−−−−→ D(I −A)Q

(U,V )





y





y
(Ũ,Ṽ )

(I −A′) −−−−→
(P,D′)

P (I −A′)D′

We will prove the first claim, for (D,Q); the proof of the second claim is similar.
Let i1 < i2 < · · · < ik be the elements of C. (Recall, i ≺ j =⇒ i < j.) To begin,
let i = ik and let 1, 2, . . .m index the rows through Uii. For 2 ≤ j ≤ m, let Rj be
the elementary matrix which acts from the right to subtract column j from column
1. Let R = R2 · · ·Rm and let 1 denote a vector with every entry equal to 1, then

((I −A)R)ii =

(

0 0
−1 I

)

, and

((I −A)R)rs = (I −A)rs if rs 6= ii ,

and we get a positive equivalence

(I −A)
(I,R2)
−−−−→ · · ·

(I,Rm)
−−−−→ (I −A)R .

Next, let Dk be a product of elementary matrices, E = En · · ·E1, where Et

acts from the left to add εt (εt = 1 or εt = −1) times row 1 to row jt, and
2 ≤ jt ≤ m. Consider the equivalence (E1, I) : (I − A)R → E1(I − A)R. Notice
(E1(I − A)R)ii = ((I − A)R)ii. So, this equivalence (E1, I) is positive unless
(E1(I − A)R)(j, k) > 0 for some columns p to the right of the ii block. Let F1 be
the product of basic elementary matrices F1,t, 1 ≤ t ≤ T say, which act from the
right to subtract column j1 from such columns p enough times to guarantee (with
F1 = F1,1 · · ·F1,T ) that (E1(I −A)RF1)(j1, p) < 0. Then

(I −A)R
(I,F1,1)
−−−−−→ · · ·

(I,F1,T )
−−−−−→ ·

(E1,I)
−−−−→ E1(I −A)RF1

gives a positive equivalence (E1, F1) : (I − A)R → E1(I − A)RF1. Recursively, for
1 ≤ t < m, apply this procedure, to produce Ft+1 giving a positive equivalence

Et · · ·E1(I −A)RF1 · · ·Ft
(I,Ft+1)
−−−−−→ ·

(Et+1,I)
−−−−−→ Et+1 · · ·E1(I −A)RF1 · · ·Ft+1 .

Let Qk = F1 · · ·Fm: then we have a positive equivalence

(I −A)
(Dk,RQk)
−−−−−−→ Dk(I −A)RQk

(I,R−1)
−−−−−→ Dk(I −A)RQkR

−1 .

Because RQk = QkR, altogether we get

(I −A)
(Dk,Qk)
−−−−−→ Dk(I −A)RQk .

Notice, Qk ∈ UP(n,Z). Moreover, if j ∈ P and j < ik, then for any t the tj blocks
of (I −A) and (Dk(I −A)kQk) are equal.

Next, for the cycle components ik−1, . . . , i1 (in that order) we repeat the pro-
cedure used above for (Dk, Qk) to produce pairs (Dk−1, Qk−1), . . . , (D1, Q1) with
D = DkDk−1 · · ·D1 and Q(−) := QkQk−1 · · ·Q1 giving a positive equivalence

(I −A)
(Dk,Qk)
−−−−−→ ·

(Dk−1,Qk−1)
−−−−−−−−→ · · ·

(D1,Q1)
−−−−−→ D(I −A)Q(−) .
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To see that the (Di, Qi) define positive equivalences, note that for is 6= ik, the
column-subtracting moves we use to prepare the entries in a block isj to the right
of the isis block do not change the sign of entries outside the isj block (because
we are subtracting columns through the isis block with diagonal entry 1, and these
columns have no other nonzero entry at this stage, because the earlier subtractions
of columns through block irir with r ≥ s do not affect the is block column).

For every cycle component i, the ii block of the matrix D(I −A)Q(−) equals Id.
Suppose there exists (r, s) such that r ∈ Csec and (D(I − A)Q(−))(r, s) < 0; then
choose such an (r, s) with r minimal, and add column r to column s. Because the
(r, s) entry cannot lie in a diagonal block, this elementary positive equivalence is
implemented by multiplication from the right by a matrix in UP(n,Z). Repeat this
move until a matrix is produced in which the (r, s) entry is zero whenever r ∈ Csec.
Let the corresponding positive equivalence be denoted (I,Q(+)) : D(I −A)Q(−) →
D(I −A)Q(−)Q(+). The proof is finished by setting Q = Q(−)Q(+). ¤

The next lemma gives the last ingredient, Stage III, for the proof of Prop. 4.5.

Lemma A.7. Suppose U, V,A,A′ satisfy the assumptions of Lemma A.3 and in
addition assume that Uii = Vii = Id for every i ∈ C. Then there is a commuting
diagram of SLP(n,Z) equivalences

(I −A) −−−−→ (I −A)

(U,V )





y





y
(U,V )

(I −A′) −−−−→ (I −A′)

satisfying the conclusion of Proposition 4.5. (Moreover, A = A and A′ = A′.)

Proof. We will build a suitable commuting diagram

(I −A)
(E−1,H)
−−−−−−→ (I −A)

(H,E
−1

)
−−−−−−→ (I −A)

(U,V )





y
(U3,V3)





y





y
(U,V )

(I −A′) −−−−→
(I,I)

(I −A′) −−−−→
(I,I)

(I −A′)

and then use (HE−1, HE
−1

) and (I, I) for the upper and lower horizontal arrows in
the diagram required for the lemma. First we work on the left half of the diagram.
We will choose E,H,U3 satisfying

(i) U3(i, j) = δij , ∀i ∈ Csec,
(ii) (E−1, H) : (I −A)→ (I −A) is a positive equivalence, and
(iii) H−1(i, j) = δij , ∀i /∈ Csec .

Recall, Is denotes the set of indices for rows/columns through Ass. To choose E, let
the entries (i, j) for which i ∈ Csec and U(i, j) 6= δij be listed as (i1, j1), . . . , (in, jn),
where ik ∈ Is(k) and s(1) ¹ s(2) ¹ · · · ¹ s(n). (So, jk ∈ It(k) with s(k) ≺ t(k) since
by assumption Us(k)s(k) = Id.) Let µk = U(ik, jk). Define matrices Ek, 1 ≤ k ≤ n,
by Ek(ik, jk) = −µk and otherwise Ek(i, j) = δij . Then (UEk)(ik, jk) = 0. Define
E = E1E2 · · ·En. Then by our ordering s(1) ¹ s(2) ¹ · · · ¹ s(n), we have
(UE)(i, j) = δij for i ∈ Csec. Let U3 = UE, now (i) holds, and U = (UE)E−1 =
U3E

−1 as required for the diagram to commute. Also E(i, j) = δij if i /∈ Csec, so
E−1(i, j) = δij if i /∈ Csec.
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Next for 1 ≤ k ≤ n, we will define Hk such that (E−1
k , Hk) : (I − A) → (I − A)

is a positive equivalence and Hk(i, j) = δij when i /∈ Csec. Then we will set

(E−1, H) = (E−1
n · · ·E

−1
1 , H1 · · ·Hn), so that (E−1, H) : (I − A) → (I − A) is the

composition of positive equivalences and satisfies (ii). To prepare for the definition
of Hk, given k pick M a positive integer greater than the absolute value of any
entry in row ik of E−1

k (I − A), and define a matrix Fk as follows: Fk(ik, j) = −M

if ik 6= j and (E−1
k (I −A))(ik, j) 6= 0, and Fk(i, j) = δij otherwise. Define a matrix

Gk by setting Gk(ik, j) = −(E−1
k (I − A)Fk)(ik, j) and Gk(i, j) = δij otherwise.

Then we have the positive equivalence

(I −A)
(I,Fk)
−−−−→ ·

(E−1

k
,I)

−−−−−→ ·
(I,Gk)
−−−−→ (I −A) .

Let Hk = FkGk. Note Hk(i, j) = δij if i /∈ Csec, so H(i, j) = δij if i /∈ Csec, and
therefore also H−1(i, j) = δij if i /∈ Csec. We now have E,H,U3 satisfying (i)−(iii).

To get the right half of the commuting diagram, we apply to the equivalence
(U3, V3) the transpose of the procedure above to get matrices E,H, V , U satisfying

(i) V (i, j) = δij , ∀j ∈ Csec,

(ii) (H,E
−1

) : (I −A)→ (I −A) is a positive equivalence, and

(iii) H
−1

(i, j) = δij , ∀j /∈ Csec ,

where U and V are defined by U = U3H
−1

and V = EV3. Using (i) and the forms
of (I −A) and (I −A′), we get for every j ∈ Csec and every i that

U(i, j) = (U(I −A))(i, j) = (U(I −A)V )(i, j) = (I −A′)(i, j) = δij = V (i, j) .

Now suppose i ∈ Csec. We claim that U(i, j) = δij . Suppose not. Pick j 6= i such

that U(i, j) 6= 0. Because U = U3H
−1

, it follows from (i) that U(i, j) = H
−1

(i, j),

and then from (iii) that j ∈ Csec. This is a contradiction.
Finally, for i ∈ Csec we obtain

V (i, j) = ((I −A)V )(i, j) = (U(I −A)V )(i, j) = (I −A′)(i, j) = δij .

This finishes the proof. ¤
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