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Abstract. For d ≥ 2, we use results of Hochman and Meyerovitch to con-

struct examples of Zd shifts of finite type of entropy log N , N ∈ N, which
cannot factor topologically onto the Zd Bernoulli shift on N symbols.

1. Introduction

For d > 1, the Zd shifts of finite type (SFTs) are a drastically more problematic
and diverse class of systems than the Z SFTs [16, 17, 18]. Most distinguishing
features of Z SFTs generalize, if at all, only to a subclass of Zd SFTs when d > 1
(for a rare exception, see [5]). As a part of the effort to understand the Zd SFTs,
we consider below the following problem studied by Johnson and Madden:

Question 1.1. [9] If N is a positive integer and X is a Zd SFT with entropy h(X) ≥
log N , must there exist a continuous factor map from X onto the full Zd shift on
N symbols?

Here a factor map between two Zd subshifts means a surjective map that in-
tertwines the shift actions. A factor map is called topological if it is in addition
continuous and it is called measurable if the factor map is a measure preserving
Borel map.

Question 1.1 is interesting as a matter of basic symbolic dynamics and also as
a question of whether there is a topological analogue (for SFTs) to one of the fun-
damental theorems in ergodic theory, Sinai’s Factor Theorem [19, 20]: an ergodic
measure preserving transformation on Lebesgue probability space has as a mea-
surable factor every Bernoulli shift of equal or smaller entropy. Sinai proved his
theorem for Z actions; his theorem was generalized to actions by discrete amenable
groups ([15]; alternately, see [10]), in particular actions by Zd.

In the case d = 1, the answer to Question 1.1 is emphatically yes; the proofs are
quite different for the cases of equal entropy [2, 13] and unequal entropy [3]. For
d > 1 and h(X) > log N , the answer to Question 1.1 is not known, but in this case
it is known that the answer is yes if in addition X has the mixing property of being
“corner gluing” [6, 9].

In this note, we will answer Question 1.1 in the equal-entropy case: given integers
N, d > 1, we will construct a Zd SFT with entropy log N which has no continuous
factor map onto the full Zd shift on N symbols. It should not be surprising that
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such examples exist; on the other hand, it appears to be nontrivial to actually
construct and verify an example.

We are assuming a basic familiarity with symbolic dynamics. Recall in particular
that the topological Zd entropy of a Zd subshift X is by definition

h(X) = hd(X) = lim sup
n

1
cardF (n)

log card{x|F (n) : x ∈ X}

where F (n) = {v ∈ Zd : 0 ≤ vi < n, 1 ≤ i ≤ d}. The measure-theoretic entropy
hµ(X) of X with respect to a shift-invariant Borel probability µ is generalized
analogously from the Z case.

We thank our ergodic guru Dan Rudolph for references to the literature and for
the proof of Lemma 2.12.

2. Zd shifts of finite type without equal-entropy Bernoulli factors

The purpose of this section is to prove the following result.

Theorem 2.1. Suppose N and d are positive integers strictly greater than 1. Then
there exists a Zd shift of finite type W of topological Zd entropy log N but for which
there is not a continuous shift commuting epimorphism onto the full Zd shift on N
symbols.

Given d we let F (n) be the subset {v ∈ Zd : 0 ≤ vi < n, 1 ≤ i ≤ d} of Zd. For
a point x in a Zd subshift and a set A of symbols, the upper frequency of A in x is
defined to be lim supn(1/ cardF (n)) card{v ∈ F (n) : x(v) ∈ A}. If the lim sup here
is a limit, then it is the frequency of A in x. A real number r is right recursively
enumerable if there exists a sequence of rational numbers r(n) ≥ r converging to
r and a Turing machine which given n ∈ N produces output r(n). Hochman and
Meyerovitch proved that for d > 1 the set of entropies of Zd SFTs is exactly the set
of nonnegative right recursively enumerable real numbers. The following result is
the main part of their proof, and the main ingredient for our proof of Theorem 2.1.

Theorem 2.2. [8] Suppose r is a right recursively enumerable real number and
0 ≤ r ≤ 1. Then there is a zero entropy Zd SFT Z and a subset A of the alphabet
of Z such that the following hold:

• for any point z in Z, the upper frequency of A is at most r
• there exists a point of Z in which A has frequency r.

(In addition, when r above is computable, the construction of Z was elaborated
in [8] so that A has frequency r in every point of Z.) In [8] a construction for Z in
Theorem 2.2 is given in the case d = 2, with Z a minimal SFT built over a tiling
subshift by a theorem of Mozes [14]. As remarked in [8], given d ≥ 1 and a Zd SFT
X with alphabet Σ, one can form a Zd+1 SFT

X ′ = {x′ ∈ ΣZd+1
: ∀j ∈ Z ∃x ∈ X ∀u ∈ Zd x′(u, j) = x(u)}

and here the topological Zd+1 entropy of X ′ will equal the topological Zd entropy
of X. Likewise, the frequency properties of X with respect to A ⊂ Σ needed in
Theorem 2.2 will carry forward.

We introduce a little notation for another ingredient to our proof (elaborating
a part of [8]). Suppose Z is a Zd subshift, Σ(Z) is its alphabet, A ⊂ Σ(Z) and
K ∈ N. Define

A′ = (Σ(Z) \ A) ∪ {(a, i) : a ∈ A, i ∈ {1, . . . ,K}} .
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Define π : A′ → Σ(Z) by a 7→ a if a /∈ A and (a, i) 7→ a if a ∈ A. Define
W (Z,K,A) to be the subshift W consisting of all configurations w on alphabet A′
such that the one-block code defined by π sends w into Z. We also use π to name
this code W → Z. Given a measure µ on a subshift and a set of symbols E from
its alphabet, define µ(E) = µ{x : x(0) ∈ E}, and for brevity write µ({a}) = µ(a).
Given A above, and z ∈ Z with some z(v) ∈ A, define

γz : π−1z →
∏

v∈Zd: z(v)∈A

{1, . . . ,K}

by setting (γz(w))(v) = i when w(v) = (a, i). We say that a measure on π−1z is
uniform measure, denoted βz, if it is the pullback by γz to π−1z of the measure
on the image of γz which is the product measure of uniform discrete measure on
{1, . . . ,K}. (If π−1z is a single point, then we define βz to give this point measure
1.)

Given µ on W we let {µz} be the ν-a.e. unique family of Borel probabilities
on the fibers π−1z such that µ(E) =

∫
µz(E ∩ π−1z) dν(z), for all Borel sets E.

Given ν on Z, let ν̃ be the unique lift of ν in M(W ) such that ν̃z = βz for ν-a.e.
z. Here and below M(W ) denotes the set of shift invariant Borel probabilities of
some subshift W .

The next lemma is intuitively clear from consideration of the Zd ergodic theorem
[12]. We give an elementary proof.

Lemma 2.3. Suppose Z is a Zd subshift; W = W (Z,K,A), π and ν̃ are defined
as above; µ ∈M(W ); and πµ = ν. Then

hµ(W ) ≤ hν(Z) + ν(A) log K

with equality holding if and only if µ = ν̃.

Proof. Given finite measurable partitions P,Q of W , recall the conditional entropy
formula

Hµ(P|Q) =
∑
B

(µB)HµB
(PB)(2.4)

≤
∑
B

(µB) log(card(PB))(2.5)

where the sum is over the elements B of Q with µB > 0, PB is the partition B ∩P
of B and µB is the conditional probability on B defined from µ.

Given a finite subset F of Zd, let PF be the partition of W according to the
configurations w|F , and letQF be the partition of W according to the configurations
(πw)|F . For F,G disjoint finite subsets of Zd, we recall a subadditivity relation for
conditional entropy:

Hµ(PF∪G|QF∪G) = Hµ(PF |QF∪G) + Hµ(PG|QF∪G ∨ PF )(2.6)

≤ Hµ(PF |QF ) + Hµ(PG|QG) .(2.7)
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Setting F (n) = {v ∈ Zd : 0 ≤ vi < n, 1 ≤ i ≤ d}, we have

hµ(W ) = lim
n

1
cardF (n)

(
Hµ(QF (n)) + Hµ(PF (n)|QF (n))

)
(2.8)

hµ(W )− hν(Z) = lim
n

1
cardF (n)

Hµ(PF (n)|QF (n))(2.9)

hµ(W )− hν(Z) = inf
n

1
cardF (n)

Hµ(PF (n)|QF (n))(2.10)

where (2.10) follows from the subadditivity relation (2.7).
Now we consider the measure ν̃. By direct computation, we have

Heν(PF (1)|QF (1)) = ν(A) log K .(2.11)

Suppose F,G are disjoint finite subsets of Zd; P = PF ; Q is QF or QF∪G; B is an
element of Q; ν̃B > 0; and NB = card{v ∈ F (n) : (πw)v ∈ A for a.a. w ∈ B} .
Then HeνB

(PB) = NB log K. Consequently,

Heν(PF |QF∪G) = Heν(PF |QF ) .

Similarly,
Heν(PG|QF∪G) = Heν(PG|QF∪G ∨ PF ) .

Therefore for µ = ν̃, the inequality (2.7) is equality. By an induction we obtain for
every n that

Heν(PF (n)|QF (n)) = (cardF (n))Heν(PF (1)|QF (1))
and then from (2.9) and (2.11) we conclude that for all n,

heν(W )− hν(Z) =
1

cardF (n)
Heν(PF (n)|QF (n)) = ν(A) log K .

On the other hand, if µ 6= ν̃, then for some n and some B ∈ QF (n) with µB > 0,
there will be elements of B ∩ PF (n) with distinct measures, so that with F = G =
F (n) the inequality (2.7) becomes strict, and therefore

1
cardF (n)

Hµ(PF (n)|QF (n)) <
1

cardF (n)
Heν(PF (n)|QF (n)) = heν(W )− hν(Z) .

It then follows from (2.10) that hµ(W ) < heν(W ). �

The next lemma is an instance of a much more general disjointness theorem [7];
we thank Dan Rudolph for the simple proof below for the special case we use.

Lemma 2.12. For i = 1, 2, 3 let (Xi,Bi, µi, αi) denote a µi-preserving Zd action αi

on a Lebesgue probability space (Xi,Bi). Suppose α1 is zero entropy, α2 is Bernoulli
(i.e. µ2 is the product measure of a measure on the coordinate alphabet) and there
are measure preserving factor maps pi from (X3,B3, µ3, α3) to (Xi,Bi, µi, αi), i =
1, 2. Then p1 × p2 defines a measure preserving factor map from (X3,B3, µ3, α3)
to the product system (X1 ×X2,B1 ×B2, µ1 × µ2, α1 × α2).

Proof. The map p1 × p2 sends µ3 onto a joining ν of µ1 and µ2 (a measure which
is sent by the respective coordinate projections onto µ1 and µ2).

Write x in X = X1×X2 as (x1, x2). Let P andQ be the partitions of X according
respectively to the symbols x1(0) and x2(0). Because α1 has zero entropy, we have
from hν(α1 × α2) = hµ2(α2) that for all n,

inf
n

1
cardF (n)

Hν(QF (n)) = inf
n

1
cardF (n)

Hν(QF (n)|PF (n)) .
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Because the Bernoulli is i.i.d., the last equality implies that the partitions PF (n)

and QF (n) are independent for all n. This means that ν is the product measure
µ1 × µ2. �

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Pick a prime p dividing N and then an integer K > N such
that p does not divide K. Let r = (log N)/(log K); by virtue of the power series for
log, this r is recursively enumerable and therefore right recursively enumerable [8].
Appealing to Theorem 2.2, let Z be a zero entropy Zd SFT with a set A of symbols
occuring with frequency r. Define W = W (Z,K,A) as earlier. By Lemma 2.3 and
the variational principle, we have h(W ) = log N .

For a contradiction, let B denote the full Zd shift on N symbols, and suppose f
is a block code mapping W onto B. Let mB be the uniform product measure on
B, which is the unique measure of maximal entropy on B. There exists µ ∈M(W )
such that fµ = mB , and hµ(W ) = log N = h(W ). Let ν be the image of µ in
M(Z). Because hµ(W ) = h(W ), it follows from Lemma 2.3 that µ = ν̃.

It follows from Lemma 2.12 that for ν-almost-all z in Z, the restriction fz of f
to π−1z maps the measure ν̃z = βz to mB . Pick such a z. The map f is continuous
from the Cantor set π−1z to B. Therefore, if C is a clopen set in B, the set
f−1

z (C) will be clopen in π−1z, with βz(f−1
z C) = mB(C). Because p divides N ,

there is a clopen set C in B such that mB(C) = 1/p; because p does not divide
K, there can be no clopen set D in π−1z such that βz(D) = 1/p. This gives the
contradiction. �

Question 2.13. Our proof relied on the construction of Hochman and Meyerovitch,
but we do not know how much this is an artifact of the proof. For example, suppose
that W = W (Z,K,A) is constructed from a nontrivial uniquely ergodic Z2 SFT
Z with ν(A) = 1/2 and K = 4. Then h(W ) = log 2 and there is no longer a
measures-of-clopen-sets obstruction. Must W factor onto the Zd 2-shift?

Remark 2.14. An expansive action of Zd by continuous automorphisms on a com-
pact zero dimensional group is topologically conjugate to a Zd SFT. Such SFTs are
well known to have entropies of the form log N , N ∈ N. All of them factor onto
Bernoulli shifts of equal entropy [4].

Question 2.15. Outside of algebraic systems, we do not know many examples “in
nature” of Zd SFTs for which the entropy is known and is equal to log N for some
N ∈ N. However, let X be the Z2 SFT whose configurations are all colorings
of an infinite chessboard with three colors such that adjacent squares are colored
differently. It follows [18, Example 3.2(2)] from a famous computation of Lieb [11]
that h(X) = (1/2) log(64/27). Let Y be the product of X×X with the Z2 Bernoulli
shift on 27 symbols; Y is a Z2 SFT of entropy log 64. Does Y factor onto the Z2

Bernoulli shift on 64 symbols?
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