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Abstract. In this paper, a group shift is an expansive action of Zd on a com-

pact metrizable zero dimensional group by continuous automorphisms. All

group shifts factor topologically onto equal-entropy Bernoulli shifts; abelian
group shifts factor by continuous group homomorphisms onto canonical equal-

entropy Bernoulli group shifts; and completely positive entropy abelian group

shifts are weakly algebraically equivalent to these Bernoulli factors. A com-
pletely positive entropy group (even vector) shift need not be topologically

conjugate to a Bernoulli shift, and the Pinsker factor of a vector shift need not

split topologically.
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1. Introduction

By an algebraic Zd-action we will mean an action α of Zd by continuous auto-
morphisms αv (v ∈ Zd) on a compact metrizable group X. Since the inaugural
paper of Kitchens and Schmidt [12], a remarkably rich and thorough theory has
been developed for these actions, closely related to the theory of modules over Lau-
rent polynomial rings [20]. The case that X is expansive and zero dimensional is
one fundamental part of the study. In this paper, we focus on aspects of this case
related to Bernoullicity and entropy.

In this paper, we define a group shift to be an expansive action of Zd on a compact
metrizable zero dimensional group by continuous automorphisms. (In some works
treating more general situations, “group shift” has a more general meaning, as
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in [6].) We show in Section 3 that all group shifts factor topologically onto equal-
entropy Bernoulli shifts; this is our only result for possibly nonabelian groups. This
result is another example of the relative civility of group shifts in contrast to general
Zd shifts of finite type: for d,N positive integers greater than 1, there exist Zd shifts
of finite type of entropy logN which do not factor topologically onto a Zd Bernoulli
shift on N symbols [3].

In Section 6, we prove a finite entropy abelian zero-dimensional algebraic Zd

action has as an algebraic factor a canonical Bernoulli group shift of equal entropy.
Motivated by the work of Einsiedler and Schmidt [4], in Section 7 we prove an
abelian group shift is weakly algebraically equivalent to this Bernoulli factor if and
only if it has completely positive entropy. This allows in the zero dimensional case
a more simple proof (see Remark 7.3) for the difficult Bernoullicity theorem of
Rudolph and Schmidt [18].

We consider possible generalizations for Zd group shifts of the Kitchens theorem
which classified Z group shifts up to topological conjugacy. In Section 4, we recall
Kitchens’ theorem and find two generalizations. In particular for d > 1 the Pinsker
factor of a Zd group shift splits topologically if the closure of the homoclinic group
is algebraically conjugate to a Bernoulli group shift. Mostly the generalized state-
ments of Kitchens’ theorem are simply false, and in Section 5 we give a variety of
counterexamples. For example, a completely positive entropy Zd group shift need
not be topologically conjugate to a Bernoulli shift; we give an alternate argument
for this unpublished result of Kitchens [11]. Also, the Pinsker factor of a Zd group
shift need not split topologically, even if it has entropy log 2 (and is thus a vector
shift as in [10, 11]).

For the most part our proofs make little use of the Noetherian module theory
which is central to the study of algebraic Zd actions. It seems to us that there
is some value where possible to seeing alternate arguments, and in some cases we
provide them. Here a critical tool for us is the homoclinic group, as studied in
the abelian case by Einsiedler, Lind and Schmidt [13, 4]. The alternate proof we
provide in Proposition 2.5 extends some of this to the zero dimensional nonabelian
case, which we have not found in the literature. Moreover Section 2 contains general
background and particularly background for the homoclinic group.

This paper is dedicated in memory of Bill Parry. Bill made seminal contributions
to ergodic theory and symbolic dynamics; for example, the current paper studies
certain Zd shifts of finite type, and Bill’s paper [16] introduced the Z shifts of
finite type (topological Markov shifts), the most fundamental objects of symbolic
dynamics. The older author of the current paper is one of the mathematicians who
benefited hugely from Bill’s mathematics and kindness, and feels his absence.

We thank our ergodic guru Dan Rudolph for the references for Remark 7.3, and
in particular the unpublished result [17] used in Remark 7.3.

Finally, we thank the anonymous referee for alerting us to the unpublished man-
uscript [11] of Kitchens.

2. The Pinsker factor and the homoclinic group

Again, by an algebraic Zd-action we will mean an action α of Zd by continuous
automorphisms αv (v ∈ Zd) on a compact metrizable group X. In general there
are two fundamental cases, one where X is connected and the other where X is
totally disconnected (zero dimensional). Our focus in this paper is the expansive
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zero dimensional case. An algebraic Zd-action (X,α) is expansive if there exists an
open neighborhood U ⊂ X of the identity 0 ∈ X such that

⋂
v∈Zd αv(U) = {0}. To

shorten notation, we will often use X to represent (X,α) or α.
A topological factor map from a topological dynamical system (X,α) to another

such system (Y, β) is a surjective continuous map from X onto Y that intertwines
the actions α and β. A topological conjugacy is a bijective factor map. An algebraic
factor map between algebraic Zd actions is a topological factor map defined by a
group epimorphism and an algebraic conjugacy is an algebraic factor map which is
a topological conjugacy.

Let G be any finite group. The product GZd

with coordinatewise addition is a
compact zero dimensional metrizable topological group. For x ∈ GZd

and v ∈ Zd,
we may write x(v) as xv. Together with the usual d-dimensional shift action σ,
given by (σv(x))w = xv+w, it defines the Bernoulli Zd group shift (B(G), σ). We
say an algebraic Zd action is algebraically Bernoulli if it is algebraically conjugate
to some Bernoulli group shift. In this paper, by a Zd group shift we will mean an
expansive algebraic action on a zero dimensional group. Any closed shift invariant
subgroup of a Bernoulli group shift B(G), together with the Zd action given by the
restriction of σ, is a group shift. (Since B(G) is zero dimensional the algebraic Zd

action given by σ is expansive.)
The alphabet group of a group shift X is the group {xv : x ∈ X, v ∈ Zd} ≤ G of

symbols that actually occur in elements of X. When we say a group is a p-group,
we mean that p is a rational prime and every element of the group has order a
power of p. An abelian group shift X is algebraically conjugate to the product
(over finitely many rational primes p) of p-group shifts X(p).

A fundamental result of Kitchens and Schmidt [12] yields that an algebraic action
α of Zd on a zero dimensional group is expansive if and only if it satisfies the
descending chain condition, i.e. any nested sequence of closed α-invariant subgroups
stabilises after finitely many steps. As the decending chain condition is equivalent
to the existence of an algebraic conjugacy to some closed shift invariant subgroup
of (GZd

, σ) with G some (possibly finite) compact Lie group [12, Theorem 3.2],
every expansive Zd action on a compact zero dimensional group is algebraically
isomorphic to a closed shift invariant subgroup of some Bernoulli shift. Using the
descending chain condition one can easily show that a Zd group shift in fact must
be a Zd shift of finite type (SFT) [12, 20].

Moreover [12, Theorem 3.16], a general (perhaps nonexpansive) zero dimensional
algebraic Zd action is algebraically conjugate to an inverse limit X = (X1 ← X2 ←
· · · ) of group shifts Xk, k ∈ N (here the maps Xk ← Xk+1 are algebraic factor
maps). Any group shift has entropy logN for some N ∈ N (see the remarks before
Theorem 3.2); so, if X has finite entropy, then for some N ∈ N we have h(X) =
logN = h(Xk) for all but finitely many k. We assume familiarity with entropy,
and refer to [20, 14] for thorough background. However, for definiteness recall that
the Zd (topological) entropy of a Zd group shift X is limn(1/|Cn|) log |{x|Cn : x ∈
X}|, where Cn denotes the cube {v ∈ Zd : 0 ≤ vi < n}. We might denote this
entropy as hd(α), or just hd(X) or h(X) if context makes the simpler notation clear.
The measure-theoretic entropy h(X,µ) of α with respect to an α-invariant Borel
probability µ is generalized analogously from the Z case.

We will use the following result repeatedly.
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Theorem 2.1 (Addition formula). [14] If φ : X → Y is an algebraic factor map
of algebraic Zd actions, then

h(X) = h(Y ) + h(ker(φ)) .(2.2)

The addition formula (2.2) is a special case of more general results [14, Appendix
B], which follow from work of Yuzvinskii as explained in [14]. The formula (2.2)
for topological entropy also holds for entropy with respect to Haar measure: for an
algebraic Zd action α on X, Haar measure λ on X is a measure of maximal entropy
for α, i.e. λ is an α-invariant Borel probability such that h(X,λ) = h(X).

An algebraic Zd action (X,α) has a Pinsker factor P(X). This is the maxi-
mal zero entropy algebraic factor of (X,α); it is also the maximal zero entropy
continuous (not necessarily algebraic) factor of (X,α); and with its Haar measure,
it is the maximal zero entropy measurable factor of (X,α, λ). We say a measur-
able/topological dynamical system has completely positive entropy (c.p.e.) if its
only zero entropy factor system is the system containing just one point. An al-
gebraic system (X,α) is c.p.e. (topologically or with respect to Haar measure) if
and only if the Pinsker factor group is the trivial group. An algebraic system of
finite entropy is c.p.e. if and only if Haar measure is its unique measure of maximal
entropy [20].

Let ||v|| = ||v||∞ = max{|vi| : 1 ≤ i ≤ d} denote the maximum-norm on Zd. We
now define a very useful tool for the sequel.

Definition 2.3. For an algebraic Zd-action (X,α), x ∈ X is called a homoclinic point
if for every sequence of Zd-vectors vn with limn ||vn|| → ∞ the sequence αvn(x)
converges to the identity in X. The set of homoclinic points forms a subgroup in
X, which is called the homoclinic group of (X,α) and is denoted by ∆X .

When X is a group shift, ∆X has a very simple definition; in this case,

∆X = {x ∈ X : xv = e for all but finitely many v ∈ Zd} ,
where e above denotes the identity element in the alphabet group of X.

Lind and Schmidt [13] used the homoclinic group to significantly clarify the
nature of c.p.e. and the Pinsker factor for expansive algebraic actions, as follows.
(In the statement, ∆X denotes the (topological) closure of ∆X in X.)

Theorem 2.4. [13] For an expansive Zd action by continuous automorphisms on
a compact abelian group X, the following hold.

(1) X has positive entropy if and only if ∆X is nontrivial.
(2) h(X) = h(∆X).
(3) The Pinsker factor map can be presented as the map π : X → X/∆X .
(4) X has completely positive entropy if and only if ∆X is dense.

So, ∆X is the maximal closed invariant subgroup of X on which the restricted
action has c.p.e.. Lind and Schmidt used Fourier analysis for part of their proof.
In the zero dimensional (group shift) case, we can avoid the abelian hypothesis and
the Fourier analysis, as follows.

Proposition 2.5. Let X be a group shift. Then the following hold.
(1) X has positive entropy if and only if ∆X is nontrivial.
(2) h(X) = h(∆X).
(3) The Pinsker factor map can be presented as the map π : X → X/∆X .
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(4) X has completely positive entropy if and only if ∆X is dense.
(5) X/∆X is algebraically conjugate to a group shift.

Proof. First suppose x is a nontrivial homoclinic point in X. Pick R > 0 such that
xv = e if ||v|| ≥ R. By composing appropriate translates of x, we see that there
are at least 2nd

distinct configurations in {x|{0,1,...,nR−1}d : x ∈ X}, and therefore
hd(X) ≥ (1/R)d log 2 > 0.

To prove the converse direction of (1), for n, r in N with r < n define

En = {v ∈ Zd : ||v|| ≤ n}

Bn,r = {v ∈ Zd : n− r ≤ ||v|| ≤ n} .

It is routine to check that for every positive integer r,

hd(X) = lim
n

1
nd

log max
x∈X

card{y|En : y ∈ X and y|Bn,r = x|Bn,r} .(2.6)

Therefore the assumption hd(X) > 0 implies that for any r we can find n ∈ N and
points x, y in X such that x and y agree on Bn,r and are not equal on En−r. Define
a configuration z by setting

zv =

{
(xy−1)v, if v ∈ En

e, otherwise .

Recalling that the group shift X is a shift of finite type, we see that if r was chosen
large enough, then z ∈ X. Clearly z is a nontrivial homoclinic point. This finishes
the proof of (1). We also see that the limit in (2.6) can be achieved using homoclinic
points for x in the formula of (2.6). This proves (2).

It follows from (2) and the addition formula for entropy (2.2) that hd(X/∆X) =
0, so the kernel of π contains the kernel of the Pinsker factor map. It follows from
(1) that the kernel of the Pinsker factor map must contain ∆X , which is the kernel
of π. Thus (3) is true, and (4) follows immediately from (3). (5) follows from
Proposition 7.10. �

The following consequence will be convenient for us.

Proposition 2.7. Suppose φ : X → Y is an algebraic factor map of group shifts.
Then φ maps ∆X onto ∆Y .

Proof. Clearly φ(∆X) ⊂ ∆Y . Also, we have a factor map X/∆X → Y/φ(∆X), with
h(X/∆X) = 0 and Y/φ(∆X) ⊃ ∆Y /φ(∆X). It follows that ∆Y /φ(∆X) is trivial,
since ∆Y has completely positive entropy. �

Notation 2.8. Given n ∈ N, we will use F (n) to denote the Bernoulli shift B(G)
such that the alphabet group is {g ∈ R/Z : ng = 0}. For example, the group shifts
B(Z/2) and F (2) are algebraically conjugate, and they are topologically conjugate
to 1

2F (2), which is a subshift of the group shift F (4) but is not a subgroup.

Notation 2.9. In what follows Rd = Z[u±1
1 , . . . , u±1

d ] denotes the Laurent polyno-
mial ring in d variables with coefficients in Z, and R

(p)
d = Fp[u±1

1 , . . . , u±1
d ], the

Laurent polynomial ring in d variables with coefficients in Fp, where p is a rational
prime and Fp the finite field of p elements.
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3. Group shifts factor topologically onto equal entropy Bernoulli
shifts

In this section, we will show (Theorem 3.2) that every group shift has an equal
entropy topological Bernoulli factor.

Definition 3.1. Let G be a finite group, with identity element e. Let X be a group
subshift of GZd

. Let ≺ denote lexicographic order on Zd. Given x ∈ X, the follower
set of x in X is defined to be

F(x) = {g ∈ G : ∃y ∈ X such that y0 = g and yv = xv for all v ≺ 0} .
Abusing notation, we let F(e) denote the follower set of the identity in X.

It is easily seen [9] that F(e) is a normal subgroup of G, and for any x, the
set F(x) is the coset of F(e) which contains x0. It is well known from work of
Yuzvinskii and Conze that h(X) = log |F(e)| (see the proof of [14, Theorem 4.5]);
for completeness an argument is included in the proof of the next result.

Theorem 3.2. Let X be a Zd group shift with alphabet group G. Then there is a
topological factor map φ from X onto a Bernoulli shift B of equal entropy, namely
B = F(e)Zd

.

Proof. For any x in X, the set F(x) is the coset of F(e) which contains x0. For
each such coset, chose a bijection b to F(e). Define a one block code φ from X to
B = (F(e))Zd

by the rule (φx)0 = b(x0).
Every finite B-word occurs in the image of φ, and therefore φ is surjective.

Moreover, because X is SFT [12, Theorem 5.2], there must exist R > 0 such that
for all n, for any fixed configuration c on the R neighborhood in Zd of the cube
Cn = {v ∈ Zd : 0 ≤ vi < n, 1 ≤ i ≤ d}, there are at most |F(e)|nd

configurations
on Cn compatible with c. This implies that the entropy of X is at most log |F(e)|.
Since X factors onto B and h(B) = log |F(e)|, it follows that h(X) = h(B). �

Remark 3.3. We note some useful and well known facts for a group shift X which
is a p-group. Here F(e) must be a p-group, so h(X) = log |F(e)| implies h(X) is
an integer multiple of log p. In particular, because F (p) has no proper subsystem
of equal entropy, the only group shift in F (p) with positive entropy is F (p) itself.

Remark 3.4. We will show below (Theorem 6.5) that for abelian group shifts it is
possible to construct an algebraic factor map onto a Bernoulli shift of equal entropy.
However, this cannot in general be done with the construction used in the proof of
Theorem 3.2, even for Z group shifts. In that construction, if there is a choice of
bijections b which makes φ a group homomorphism, then there is a homomorphism
of the alphabet groups G→ F(e) which restricts to a bijection F(e)→ F(e). Here
is a Z group Markov shift example (a modification of the Kitchens example (7.9))
for which no such homomorphism exists. The alphabet group G is Z/4⊕Z/4. The
allowed transitions are, for a, b in Z/4,

(a, b)→ (0, 0), (0, 2), (2, 0), (2, 2), (1, 1), (1, 3), (3, 1), (3, 3) if 2b = 0 ∈ Z/4 ,
(a, b)→ (1, 0), (1, 2), (3, 0), (3, 2), (2, 1), (2, 3), (0, 1), (0, 3) if 2b 6= 0 ∈ Z/4 .

No homomorphism ψ : G→ F(e) can restrict to a bijection F(e)→ F(e), because
F(e) has index two in G; ker(ψ) would have to contain an element of order two in
the complement of F(e), and such an element does not exist.
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4. Two extensions of Kitchens’ theorem

In his influential early paper on Z group shifts, Kitchens gave the following
decisive topological classification theorem for Z group shifts.

Theorem 4.1. [9] Let X be a Z group shift. Then X is topologically conjugate to
the product of a Bernoulli shift and an automorphism of a finite group.

We will consider possible generalizations of Theorem 4.1 to Zd group shifts with
d > 1. (In [11], Kitchens himself addressed some of these issues for vector shifts and
thus in some cases group shifts, as we will see below.) There are severe limitations,
which we will indicate by examples in the next section. In this section we record
the two extensions of Theorem 4.1 which we do know, and state an open problem.

Let X be a group shift. Recall that ∆X is the homoclinic group of X, ∆X is
the group shift which is the kernel of the Pinsker factor map, and the image P(X)
of that factor map is the group shift which is the maximal zero entropy continuous
factor of X.

Proposition 4.2. Suppose n ∈ N and X is a group subshift of F (n). Then ∆X is
algebraically Bernoulli, and X is topologically conjugate to the product of the group
shifts P(X) and ∆X .

Proof. Let n =
∏

p p
kp be the factorization of n as a product of powers of the

primes p which divide n. Then F (n) is algebraically conjugate to the product∏
p F (pkp), and X is algebraically conjugate to a product of group shifts X(p),

where X(p) ≤ F (pkp). So without loss of generality we may assume for a prime p
that X = X(p) ≤ F (pk), and also h(X) > 0.

Let j be the smallest integer such that h(pjX) = 0. It follows from the addition
formula (2.2) that the kernel K of the multiplication-by-p map pj−1X → pjX has
positive entropy. Because K ≤ F (p), it follows that K = F (p) (see Remark 3.3).

Write an element x of X in the form x = p−kxk + · · · + p−1x1, where xi ∈
{0, 1, . . . , p − 1}Zd

. Because K = F (p), we see that for every element aj of
{0, 1, . . . , p − 1}Zd

, there exists x in X such that xj = aj and xt = 0 when t > j.
Then, if 1 ≤ i ≤ j and ai ∈ {0, 1, . . . , p−1}Zd

, there exists x in X such that xi = ai

and xt = 0 when t > i. By considering sums of such elements, we see F (pj) is a
group subshift of X. Since the kernel of the multiplication-by-pj map γ : X → pjX
is contained in F (pj), we conclude ker(γ) = F (pj). Because F (pj) has completely
positive entropy, it is contained in the kernel of the Pinsker factor map; thus the
zero entropy factor pjX of X must be the maximal zero entropy algebraic factor.
Therefore γ is the map X → P(X), and ∆X is algebraically Bernoulli because it is
the kernel of γ which equals F (pj).

Moreover, if p−kxk + · · ·+ p−1x1 ∈ X, then by subtracting the element p−jxj +
· · ·+p−1x1 of F (pj), we see that p−kxk + · · ·+p−(j+1)xj+1 ∈ X. We conclude that
the map

p−kxk + · · ·+ p−1x1 7→ ( p−k+jxk + · · ·+ p−1xj+1 , p
−jxj + · · ·+ p−1x1 )

defines a topological (not necessarily algebraic) conjugacy of group shifts X →
P(X)× F (pj). �

Recall an integer is squarefree if it is not divisible by the square of any prime.
Below, we use the Notation of 2.8 and 2.9.
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Theorem 4.3. Suppose X is an abelian group shift and ∆X is algebraically Bernoulli.
Then the following are true.

(1) X is topologically conjugate to the product of ∆X and P(X).
(2) If nX = 0 for a squarefree integer n, then X is algebraically conjugate to

the product of ∆X and P(X).

Proof. After considering the presentations of F (n) and X as direct sums of p-
groups for primes p, we assume without loss of generality that h(X) > 0 and there
are positive integers k,M such that X is a group subshift of (F (pk))M . Let Y
denote ∆X and set D = {y ∈ Y : py = 0}. Because Y is algebraically Bernoulli,
it follows that D is algebraically Bernoulli; also, h(Y ) > 0 implies h(D) > 0. Note
D ≤ (F (p))M .

As in [10] and [20], we may view D and (F (p))M as metrizable R
(p)
d -modules

(where each ui must act by a continuous group automorphism) and use the associ-
ated duality theory. This is Pontryagin duality of locally compact abelian groups,
with additional structure. The action of ui on (F (p))M is given by the ith coor-
dinate shift map, ui(x) = σei(x). The dual R

(p)
d -module of a module M, denoted

M̂, is the group of continuous homomorphisms M → Fp. The action of R
(p)
d on a

R
(p)
d -module M̂ is dual to the action on M; for χ ∈ M̂, (ui(χ))(m) = χ(ui(m)). Of

course M is discrete if and only if its dual is compact.
Because pD = 0 and D is algebraically Bernoulli with positive entropy, there is

a positive integer j such that D is algebraically conjugate to (F (p))j , the product
of j copies of F (p). The R

(p)
d -module D̂ is then a free R

(p)
d -module, isomorphic

to a direct sum of j copies of R
(p)
d . Since D ≤ (F (p))M , we have a dual module

epimorphism π : ̂(F (p))M → D̂. By freeness of D̂, this epimorphism π splits, and
its kernel D⊥ has a complementary internal direct summand, N . Define the group
shift

C = N⊥ = {x ∈ (F (p))M : χ(x) = 0 for all χ ∈ N} .
We conclude that (F (p))M is the internal direct sum of C and D, i.e. the map
C×D → (F (p))M given by (c, d) 7→ c+ d is an algebraic conjugacy of group shifts.

Write an element x in (F (pk))M in the form x = p−kxk + · · · + p−1x1, where
xi ∈ ({0, 1, . . . , p − 1}Zd

)M . Let p−1x1 = c1(x) + d1(x) be the internal direct
sum representation with C and D. Let γ be the epimorphism of group shifts
X → X/D. Now ker(γ) ⊂ ∆X and by Proposition 2.7 γ(∆X) = ∆γX , so we have
γ−1(∆γX) = ∆X .

Note, given x = p−kxk + · · ·+ p−2x2 + c1(x) + d1(x) ∈ X, we have x− d1(x) =
p−kxk + · · ·+ p−2x2 + c1(x) ∈ X. Let W be the subset of X consisting of all points
of the form p−kxk + · · · + p−2x2 + c1(x). In general, W need not be a subgroup
of X (W might contain an element w such that 0 6= pw ∈ D), but it is closed
and shift-invariant, i.e. a subshift of X. The map W ×D → X given by the rule
(w, d) → w + d is continuous, shift-commuting, surjective and injective; so, X is
topologically conjugate to the product of subshifts W×D. Also, the restriction of γ
to W is bijective, and thus a topological conjugacy from W to the group shift γX.
It follows that X is topologically conjugate to the product of group shifts γX ×D.

If γX has positive entropy, then we can repeat this operation until we reach
a quotient group shift of zero entropy. At that point we have X topologically
conjugate to a product B × Z, where B is a product of copies of F (p), and Z is
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a zero entropy group shift which is the image of X under a homomorphism whose
kernel is ∆X , i.e. Z is the Pinsker factor ofX. The shiftsB and ∆X are topologically
conjugate because all Bernoulli shifts of equal entropy are topologically conjugate.

In the case pX = 0, X is the internal direct sum of those subgroups C and D; we
have D = ∆X and h(γX) = 0; the subshift W is C; the restriction of γ to C defines
an algebraic conjugacy C → γX; and X is algebraically isomorphic to D × C. �

Remark 4.4. We mention some related results of Kitchens. Given a finite field F,
a Zd vector shift is a closed shift-invariant vector subspace of some full-Fm-shift,
considered as a vector space over F. Kitchens showed [11, Theorem 3.4] that any
vector shift X admits a finite sequence of vector shift epimorphisms

X = X0 → X1 → X2 → · · · → Xr−1 → Xr = {0}

where ker(Xi → Xi+1) either has zero entropy or is a full-Fki-shift. This is an ap-
plication by duality of the primary decomposition theorem for Noetherian modules.
This setting generalizes the case of group shifts X for which pX = 0 with p prime
(in which case, X is a vector shift over the field of p elements).

Kitchens also explained the cocycle structure of a vector shift epimorphism φ :
X → X/Y . Here, he chose a vector shift presentation X1 of X/Y and chose a
continuous map c : Zd ×X1 → X such that for all v ∈ Zd, the map (σX)v on X is
topologically conjugate to the map on X1 × Y → X1 × Y defined by the rule

(z, y) 7→ ((σX1)
v(z), (σY )v(y)) + (0, c(v, z))

and consequently the map φ is presented as a coordinate projection.

Theorem 4.1 contains the result that all c.p.e. abelian Z group shifts are topo-
logically conjugate to Bernoulli shifts, even though such group shifts need not be
algebraically conjugate to Bernoulli shifts. For d > 1, if X is a c.p.e. Zd abelian
group shift which is not algebraically Bernoulli, it is possible for X to be topologi-
cally conjugate (5.9) or not topologically conjugate (5.3) to a Bernoulli shift.

Problem 4.5. Classify c.p.e. Zd group shifts up to topological conjugacy. In par-
ticular, when is a c.p.e. abelian group shift X topologically conjugate to a Bernoulli
shift?

5. Counterexamples around Kitchens’ theorem

In this section we will give examples which rule out various generalizations of
the Theorem 4.1 of Kitchens. Some must be well known and are provided for
completeness. We use the Notation of 2.8 and 2.9.

The following example shows that the topological conjugacy of Kitchens’ Theo-
rem 4.1 cannot in general be chosen to be a group isomorphism.

Example 5.1. Let X be the Z group shift generated by F (2) and the point {1/4}Z.
Here, X is topologically conjugate to the group shift Y which is the product of F (2)
and the identity automorphism on Z/2. However, X is not algebraically conjugate
to Y , because 2Y is trivial and 2X is nontrivial.

The phenomenon above likewise occurs in Zd group shifts for d > 1, as in the
next example.
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Example 5.2. Let Z be any nontrivial zero entropy Z2 group subshift of F (2), such
as the Ledrappier “three-dot” shift. Consider the group subshift of TZ2

which is

X = F (2) +
1
2
Z ≤ F (4) .

Here the closure of the homoclinic group ∆X is F (2); the Pinsker factor P(X) is
X/F (2), which is algebraically conjugate to Z; and X is topologically conjugate to
the group shift Y = F (2) × Z by the 1-block map x 7→ ( 1

2b2xc, 2x). However, the
topological conjugacy cannot be achieved by a group isomorphism, because 2Y = 0
but 2X 6= 0.

The next result is due to Kitchens [11]. We give a different argument for the
completely positive entropy step.

Proposition 5.3. The example [10, Example 3.2] of Kitchens is a Z2 abelian group
shift S of completely positive entropy such that 2S = 0, h(S) = log 2 and thus S is
measurably conjugate to a Bernoulli shift on two symbols, but S is not topologically
conjugate to any full shift.

Proof. Following [10], we write a coordinate entry of an element s of the Bernoulli
group shift B = B(F2 ⊕ F2) in the form s(i,j) = (s1(i,j), s

2
(i,j)). The example [10,

Example 3.2] is the subshift S consisting of all s in B such that

s1(i,j) + s1(i,j+1) + s2(i,j) + s2(i+1,j) = 0(5.4)

for all (i, j) ∈ Z2. The entropy of S is log 2, because |F(e)| = |{(0, 0), (0, 1)}| = 2.
Stated in dynamical language, the purpose of the example S in [10] was to

exhibit a c.p.e. group shift that is not algebraically conjugate to a Bernoulli shift,
which was shown by investigating algebraic properties of its dual module. The
same subshift reappears as Example 4.11 in [11] where Kitchens observed that S is
not even topologically conjugate to a Bernoulli shift. This is because all four fixed
points of B are contained in S, but a Bernoulli Z2 shift with entropy log 2 has only
two fixed points.

To finish the proof, it remains to see that S has completely positive entropy and
thus is measurably conjugate to some Bernoulli shift. Kitchens [10] proved this by
showing that the dual R

(2)
2 -module of S is torsion free but not free. Appealing to

Proposition 2.5, we’ll give an alternate proof by showing that the homoclinic group
is dense in S.

Suppose n > 1 and (a(i,j)), 1 ≤ i, j ≤ n is a square configuration occuring in a
point of S. It suffices to show there is a point s in S such that

s(i,j) =

{
a(i,j) , if (i, j) ∈ {1, 2, . . . , n}2

(0, 0) , if (i, j) /∈ {0, 1, 2, . . . , n+ 1}2 .

To use a picture, we will give the (perfectly general) argument for the case n = 4.
The 8 × 8 array below has coordinate set {−1, 0, . . . , 6}2, with (−1,−1) at the
lower left corner. The inner 4× 4 square is the given configuration on {1, 2, 3, 4}2;
the (boldface) boundary entries are all (0, 0); and we must specify the remaining
entries. The entries marked + are determined by the inner 4× 4 configuration and
the requirement (5.4) for (i, j) in {1, 2, 3, 4}2. The entries marked · are yet to be
determined. We have chosen some of the remaining entries to be 0; those choices in
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particular guarantee (5.4) holds at (i, j) if i = −1 or j = −1 and at (i, j) = (0, 0).

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(0,0) (·, 0) (+, ·) (+, ·) (+, ·) (A,B) (C,D) (0,0)
(0,0) (·, 0) (�,�) (�,�) (�,�) (E,F) (G,H) (0,0)
(0,0) (·, 0) (�,�) (�,�) (�,�) (�,�) (·,+) (0,0)
(0,0) (·, 0) (�,�) (�,�) (�,�) (�,�) (·,+) (0,0)
(0,0) (0, 0) (�,�) (�,�) (�,�) (�,�) (·,+) (0,0)
(0,0) (0, 0) (0, 0) (0, ·) (0, ·) (0, ·) (0, ·) (0,0)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Working up column 0, and then across row 5, we see there are unique choices
for the corresponding · entries, and then B, such that (5.4) holds on column 0 and
at (i, 5) for i = 1, 2, 3. Similarly, working right in row 0 and then up in column 5,
we see there are unique choices for the corresponding · entries, and then G, such
that (5.4) holds on row 0 and at (5, j) for j = 1, 2, 3.

At this point, condition (5.4) is satisfied at all coordinates (i, j) except perhaps
the four coordinates of the square S′′ = {4, 5}2, whose group entries are named
A,B,C,D,E, F,G,H; we have defined B and G; and the remaining entries must
be specified to satisfy the required four equations. We set A = 0; H = E + F ;
C = G + E + F ; and D = B. The four equations will then be satisfied if C = D,
i.e. if in Z/2

B + E + F +G = 0 .(5.5)

If we sum the left hand side of (5.4) over all (i, j) not in S′′, then each entry to the
left or below S′′ appears in this sum exactly twice and B+E+F +G occurs once.
The sum is zero and this proves (5.5). �

Proposition 5.6. There is a Z2 group shift T such that 2T = 0, h(T ) = log 2, T
is not c.p.e and T is not topologically conjugate to the product of a c.p.e. system
and a zero entropy system.

Proof. We will construct T as a group subshift of B = B(F2⊕F2). Define the point
x in B by setting

x(i,j) =

{
(0, 1) if i is even
(1, 0) if i is odd

and then set y = σ(1,0)x and z = x + y. Let H denote the four element, shift
invariant subgroup {0, x, y, z} of B. Define T = S + H, where S is the example
of Kitchens studied in Proposition 5.3. Then x /∈ S, and x + S = y + S because
x− y = z ∈ S. T is the disjoint union of the subshifts S and x+ S. The closure of
the homoclinic group of T is S. The Pinsker factor P(T ) is the identity map on a
two element group. The Pinsker factor of a group shift T is the maximal continuous
zero entropy factor of T viewed as a topological dynamical system (forgetting the
algebraic structure). Therefore, if T is topologically conjugate to the product of a
c.p.e. system T ′ and a zero entropy system Z ′, then Z ′ must be a system consisting
of two fixed points, and T must be topologically conjugate to the disjoint union of
two c.p.e. systems of full entropy which are topologically conjugate to each other.
One of these two must be S, which is c.p.e. of full entropy; and then the other must
be the subshift x+S. However, these two are not topologically conjugate, because
S has all 4 fixed points of B and x+ S has none. �
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In the proof of Proposition 5.6, ∆T is not algebraically Bernoulli. By Theo-
rem 4.3 (or in this case by earlier results [11] of Kitchens described in Remark 4.4),
this is unavoidable.

Remark 5.7. Of course, Theorem 4.1 fails badly without the algebraic hypothesis,
even for Z SFTs. For example, if p is prime then the Z SFT X defined by the matrix(

0 p
1 0

)
has as a maximal continuous zero entropy factor (which is also the Pinsker

factor for the measure of maximal entropy) the system Z which is the transposition
of two points; but there is no system W such that X is topologically conjugate to
Z ×W , because the full shift on p symbols has no square root [2]. If 1 < n ∈ N,

and Y is the Z SFT defined by the matrix
(
n 1
0 1

)
, then the measure of maximal

entropy does not have full support; there is a continuous map onto a maximal zero
entropy topological factor of Y , but this zero-dimensional factor is not a subshift.

Let p be a rational prime. In the case that a c.p.e. abelian Z group shift X
satisfies pX = 0, Kitchens proved X is algebraically Bernoulli ([9], also see [20, Ex-
amples 10.11]). (In the Z2 case, this fails by Proposition 5.3.) Kitchens [9] also gave
an example of an abelian Z group shift X such that 4X = 0 and X is topologically
but not algebraically Bernoulli. Fagnani [5] classified up to algebraic conjugacy the
c.p.e. Bernoulli Z group shifts X such that p2X = 0. In particular, for k = 2 and
every rational prime p, Fagnani (correcting a finiteness claim in [9]) constructed
an infinite family of group shifts of entropy k log p, pairwise not algebraically con-
jugate, but all topologically conjugate to a Bernoulli shift. Schmidt extended this
construction to every k ≥ 2 [20, Examples 10.11].

We will finish this section by remarking that a simple construction used in [7, 8]
produces Zd examples from these Z examples.

Definition 5.8. Suppose X is a Zd group shift with alphabet group G. The full
Zd+c extension of X is defined to be the Zd+c group shift X(d→d+c) with domain

{x = x(u,v) ∈ GZd×Zc

: x(.,v) ∈ X for all v ∈ Zc}

and the usual definition of addition coordinatewise.

Remark 5.9. Suppose X and Y are Zd group shifts. We remark, hd+c(X(d→d+c)) =
hd(X); X(d→d+c) is topologically/algebraically Bernoulli if and only if X is; and
X(d→d+c) is topologically/algebraically conjugate to Y (d→d+c) if and only if X is
topologically/algebraically conjugate to Y .

To deduce conjugacy (in either sense) of X and Y from conjugacy of X(d→d+c)

and Y (d→d+c), let X1 denote the subgroup of points in X(d→d+c) fixed by every
element of {0} × Zc. A conjugacy X(d→d+c) → Y (d→d+c) must induce a conjugacy
of the associated actions of Zd × {0} on X1 and Y1. But the action of Zd × {0}
on X1 is conjugate to X. We leave the verification of the remaining claims as an
exercise (see also [8]).

Thus from any of the infinite Fagnani/Schmidt families of Z group shiftsX which
are topologically isomorphic to the same Bernoulli but pairwise not algebraically
isomorphic, we get a family of Zd group shifts X(1→d) with the same properties.
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6. Abelian group shifts factor algebraically onto equal entropy
Bernoulli group shifts

Recall that for a group shift X its homoclinic subgroup is denoted ∆X . We
begin with the following simple lemma. In the abelian (and not necessarily zero
dimensional) case, the essence of the lemma already appears in [4, Lemma 4.5].

Lemma 6.1. Suppose γ : X → Y is an algebraic factor map between group shifts.
Then the following are equivalent.

(1) h(ker(γ)) = 0.
(2) h(X) = h(Y ).
(3) for every closed shift invariant subgroup W of X, h(γW ) = h(W ).
(4) ∆X ∩ ker(γ) is the trivial group.

Proof. (1)⇐⇒ (2) This follows from the addition formula for entropy (2.2).
(1)⇐⇒ (4) This follows from Proposition 2.5.
(3) =⇒ (2) This is trivial.
(4) =⇒ (3) Let W be a closed shift invariant subgroup of X. Because ker(γ|W ) ⊂

ker(γ) and ∆W ⊂ ∆X , it follows from (4) that ∆W ∩ ker(γ|W ) is trivial. As before
this implies h(γW ) = h(W ). �

We review a little algebra. For Rd as in Notation 2.9 and n = (n1, . . . , nd) ∈ Zd,
we use the notation

un = (u1)n1 . . . (ud)nd .

and we write an element f of Rd as

f =
∑
n∈Zd

cf (n)un

where each cf (n) is in Z and cf (n) 6= 0 for only finitely many n. Such an f defines
a character χf on TZd

by the rule

χf : x 7→
∑
n∈Zd

cf (n)xn

and any character on a subgroup of TZd

is the restriction of some χf . For f in
(Rd)J we use notation f = (f1, . . . , fJ). From such an f we obtain a character χf

on (TZd

)J by the rule

x = (x1, . . . , xJ) 7→ f1(x1) + · · ·+ fJ(xJ)

and all characters on (TZd

)J arise in this way. Given a character χf on TZd

we
define a homomorphism πf : TZd → TZd

by the rule (πfx)n = χf (σnx).
We will usually restrict the domain of χf and πf , and will indicate the restricted

domain where needed. When we say f is zero we mean that it is identically zero,
and likewise a group is zero if it contains just one element.

Lemma 6.2. Suppose p is a rational prime, k ∈ N, f ∈ Rd and f is not zero mod
p. Let γ denote the restriction of πf to X = F (pk). Then the following hold:

(1) h(γY ) = h(Y ), for every closed shift invariant subgroup Y of F (pk).
(2) γX = X.
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Proof. To prove (1), it suffices by Lemma 6.1 to show given a nontrivial homoclinic
point x in X that γ(x) 6= 0. Let ≺ denote lexicographic order on Zd, and let ≡
denote congruence modulo p. Define vectors v,w in Zd by

xv 6≡ 0 , and n ≺ v =⇒ xn ≡ 0 ;

cf (w) 6≡ 0 , and w ≺ n =⇒ cf (n) ≡ 0 .

Because ker(γ) is shift invariant, we may suppose v = w = 0. Then

(γx)0 =
∑
n∈Zd

cf (n)xn

≡ cf (0)x0 6≡ 0 .

This proves (1). Now (2) follows because X has no proper subshift of full entropy.
�

Lemma 6.3. Let p be a rational prime. Suppose X is an abelian algebraic subshift
of a Bernoulli group shift B = B1×· · ·×BJ where Bj = F (pkj ), and X 6= B. Then
there is a continuous group homomorphism φ : B → B′, where B′ is the Bernoulli
group shift B′ = B′1 × · · · ×B′J such that the following hold:

(1) there is an index i such that B′i = F (pki−1) and B′j = Bj for j 6= i
(2) h(φX) = h(X).

Proof. By Pontryagin duality, since X ≤ B and X 6= B, there is a character χ
which annihilates X but does not annihilate B. Pick f = (f1, . . . , fJ) ∈ (Rd)J so
that χ = χf . Without loss of generality choose fj = 0 if χfj

annihilates Bj . Let
g = (g1, . . . , gJ) be the unique element of (Rd)J such that f = prg where r is a
nonnegative integer and g is not identically zero modulo p. Let J = {j : fj 6= 0}. If
j ∈ J , then χfj

(Bj) 6= 0, and therefore r < kj , for every j in J . Define the integer
K = max{kj : j ∈ J }. Without loss of generality, if necessary after permuting the
coordinate groups Bj , we may assume 1 ∈ J and k1 = K and g1 is not zero modulo
p. Because r < K and prχg annihilates X, we have

πg(X) ≤ F (pr) = pK−rF (pK) ≤ pF (pK) .(6.4)

Define φ : B → B by the rule

(φx)i = xi , if i > 1

(φx)1 = px1 − πg(x) .

It follows from (6.4) that φX ≤ pB1 × B2 × · · · × BJ . Because F (pK−1) = pB1,
the lemma will follow if we show h(φX) = h(X). By the addition formula (2.2), it
suffices to show that the kernel of φ has zero entropy. Clearly,

ker(φ) = {x = (x1, 0, . . . , 0) ∈ X : px1 − πg1(x1) = 0} .

Define an element ` of Rd by ` = pu0 − g1, so the restriction γ of π` to F (pK)
sends a point y to the point py − πg1(y). Since g1 modulo p is not zero, it follows
from Lemma 6.2 that ker(γ) has entropy zero. Because the algebraic shift ker(φ)
is isomorphic to the shift ker(γ), it follows that ker(φ) has entropy zero. �

Theorem 6.5. Suppose α is a finite entropy action of Zd by continuous auto-
morphisms on a compact metrizable zero dimensional abelian group. Then there is
an algebraic factor map φ : X → B where B is a Zd Bernoulli group shift such
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that h(X) = h(B). This Bernoulli group shift is unique up to isomorphism of its
alphabet group.

Remark 6.6. Above, the group shift B is canonically associated to α, but we are
not constructing a canonical factor map to B.

Proof of Theorem 6.5. Without loss of generality we assume α has positive entropy.
First we prove existence of φ. Given α, there exists an algebraic factor map onto
a group shift of equal entropy. So, we can assume X is a group shift. There is
a continuous group isomorphism which sends X to a group which is the product
of finitely many groups X(p), where X(p) is a subgroup of a group of the form
B = F (pk1) × · · · × F (pkJ ), and X(p) is invariant under the Zd shift. For each
X(p), iteration of Lemma 6.3 produces a continuous group epimorphism φ(p) onto
a Bernoulli shift of entropy h(X(p)). Define φ =

⊕
p φ(p). This proves existence of

the Bernoulli shift B.
For uniqueness, let φ : X → B be an algebraic factor map with B Bernoulli.

First suppose thatX is a group shift. As usual, without loss of generality we assume
that X is a p-group. We can assume B =

⊕K
k=1 F (pk)dk with dK > 0 and dk ≥ 0

for 1 ≤ k < K, and clearly those numbers dk determine B up to isomorphism of
the alphabet group. We observe that

h(pjB) = 0 , if j ≥ K ,

h(pK−1B) = dK log p ,

h(pK−2B) = (dK−1 + 2dK) log p , and

h(pjB) = (dj+1 + 2dj+2 + · · ·+ (K − j)dK) log p , if j ≤ K − 2 .

For every nonnegative integer j, φ maps pjX onto pjB, and then by Lemma 6.1
we have h(pjX) = h(pjB). Thus the entropies h(pjX) and the displayed equations
determine the numbers dk recursively. This proves the uniqueness claim in the case
that X is a group shift.

In general, up to algebraic conjugacy we may assume X is an inverse limit
by algebraic factor maps of group shifts, X = (X1 ← X2 ← X3 ← · · · ), with
x ∈ X written as x = (x1, x2, . . . ). By finite entropy and zero dimension, we have
h(Xn) = h(X) for all large n; by uniform continuity and zero dimension, for all large
n there are algebraic factor maps φn : Xn → B such that φ(x) = φn(xn). Now for
all large n and all nonnegative integers j we have h(pjXn) = h(pjXn+1) = h(pjX).
The uniqueness claim then follows from the group shift case. �

Remark 6.7. For an action α of Zd on a compact metrizable group, there is a canon-
ical maximal algebraic factor map onto a zero dimensional algebraic action, which
is the homomorphism whose kernel is the connected component of the identity [14].
Thus it follows from Theorem 6.5 that α has as a quotient a canonical Bernoulli
group shift of maximal entropy whenever this maximal zero dimensional factor has
finite entropy; in particular, whenever α itself has finite entropy.

7. Classification of c.p.e. abelian group shifts up to algebraic weak
equivalence

Following Einsiedler and Schmidt [4], we say two actions α, α′ of Zd by continuous
automorphisms on compact groups X,X ′ are algebraically weakly equivalent if there
are continuous group epimorphisms X → X ′ and X ′ → X which intertwine the
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actions. In this section we classify c.p.e. abelian group shifts up to algebraic weak
equivalence, as follows.

Theorem 7.1. Suppose X is an abelian group shift of completely positive entropy.
Then X is weakly algebraically equivalent to a Bernoulli group shift. Two Bernoulli
group shifts are weakly algebraically equivalent if and only if they have isomorphic
alphabet groups.

Remark 7.2. There are some earlier examples in this direction from [11]. There,
Kitchens constructed several explicit vector shifts as algebraic quotients of full
shifts, and in some cases constructed an explicit (nonobvious) algebraic conjugacy
back to the full shift.

Remark 7.3. Before continuing to the proof of Theorem 7.1 and related matters,
we note that Theorem 7.1 gives an alternate proof in the zero dimensional case of
a difficult theorem of Rudolph and Schmidt ([18] or [20, Theorem 23.1]): a c.p.e.
Zd action by continuous automorphisms on a compact abelian group is measurably
(with respect to Haar measure) isomorphic to a Zd Bernoulli shift. In the zero
dimensional case, such an action is an inverse limit of abelian group shifts, which
by Theorem 7.1 are factors of Bernoulli group shifts. Thus the zero dimensional
case of the theorem by Rudolph and Schmidt follows immediately given two results
of the general Bernoulli theory for amenable group actions: a factor of Bernoulli is
measurably Bernoulli [15] and an inverse limit of Bernoullis is measurably Bernoulli
(which according to [17] can be deduced from [19]).

Let X be a compact metrizable abelian group with expansive Zd action α by
continuous automorphisms; then the homoclinic group ∆X is a countable group,
and becomes an Rd module (recall Notation 2.9) via the Zd action by restriction of
α. Einsiedler and Schmidt [4] defined the adjoint action α∗ to be the Zd action dual
to this module. They showed among other results that α∗ is expansive and c.p.e.;
α∗ is weakly algebraically equivalent to α if α is c.p.e.; and α∗∗∗ is algebraically
isomorphic to α∗. When X is an abelian group shift, so is X∗.

Proof of Theorem 7.1. By Theorem 6.5 there is a continuous algebraic homomor-
phism φ from X onto a Bernoulli group shift B of equal entropy. Theorem 7.1
will then follow from the uniqueness statement of Theorem 6.5 if we can find an
algebraic factor map from B onto X. For this, we will give two proofs.

First, because h(X) = h(B), it follows from Lemma 6.1 that φ : X → B induces
an embedding of homoclinic modules ∆X → ∆B . Duality gives an algebraic epimor-
phism B∗ → X∗. The general result of Einsiedler and Schmidt [4] mentioned above
gives an algebraic factor map X∗ → X. The composition B∗ → X∗ → X gives an
algebraic factor map B∗ → X. Finally, B∗ and B are algebraically isomorphic, so
we have the required map B → X.

Second, for a self-contained proof in the spirit of seeing the group shift case
directly, we’ll give an elementary construction of an algebraic factor map B →
X. The basic idea is that any map from the natural generating set of ∆B into
∆X extends uniquely to an algebraic map B → X, and with a little care we can
guarantee this map is surjective.

Without loss of generality, suppose h(X) > 0, p is prime andB =
⊕K

k=1(F (pk))dk ,
where dK > 0 and dk ≥ 0 for 1 ≤ k < K. Let {bki : dk > 0, 1 ≤ i ≤ dk, 1 ≤ k ≤
K} be the natural corresponding set of generating homoclinic points in B: here
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bki (v) = 0 for every v ∈ Zd except v = 0, and bki (0) is 1 in the coordinate for the
ith copy of F (pk), and 0 in other coordinates. For each bki we will pick an image
homoclinic point xk

i of order pk in X. Such a choice determines a map ψ : B → X
by the rule

ψ :
K∑

k=1

dk∑
i=1

k−1∑
j=0

∑
v∈Zd

c
(k)
i,j,vp

jσvb
(k)
i 7→

K∑
k=1

dk∑
i=1

k−1∑
j=0

∑
v∈Zd

c
(k)
i,j,vp

jσvx
(k)
i

where the c(k)
i,j,v are arbitrary in {0, 1, . . . , p − 1}. Every point of B has a unique

expression of the input form above; when the x(k)
i are homoclinic, the output expres-

sions are well defined and ψ is a continuous shift commuting group homomorphism.
For a group shift Y , let Ek(Y ) = {y ∈ Y : pky = 0} and let Dk(Y ) be the closure

of the homoclinic subgroup of Ek(Y ). We claim that for 1 ≤ k ≤ K,

(7.4) h(pk−1(Dk(X))) = (dK + · · ·+ dk) log p .

To prove the claim, first note by the entropy addition formula (2.2) we have

h(X) = h(pkX) + h(Ek(X))

h(B) = h(pkB) + h(Ek(B)) .

We also have h(X) = h(B) and by Lemma 6.1(3) we have h(pkX) = h(pkB), and
therefore h(Ek(X)) = h(Ek(B)). Then again by the addition formula (2.2), we
have

h(Ek(X)/Ek−1(X)) = h(Ek(B)/Ek−1(B)) = (dK + · · ·+ dk) log p .

Because h(Dk(X)) = h(Ek(X)) and Dj−1(X) ≤ Dj(X), again using the addition
formula (2.2) we have

h(Dk(X)/Dk−1(X)) = h(Ek(X)/Ek−1(X)) = (dK + · · ·+ dk) log p .

This proves the claim (7.4), because the group shiftsDk(X)/Dk−1(X) and pk−1Dk(X)
are isomorphic.

We will need a little notation for our recursive choice of the homoclinic points
x

(k)
i and some related objects. For 1 ≤ k ≤ K, let W k

0 be the group subshift
generated by the set

Sk = {pt−1x
(t)
i : t ≥ k, dt > 0, 1 ≤ i ≤ dt} .

(So, WK+1
0 = 0.) For k with dk > 0, we will make our choices of the points x(k)

i

using the inductive hypothesis that the points x(t)
i have been chosen for t > k and

that

(7.5) h(W k+1
0 ) = (dK + · · ·+ dk+1) log p

where for k = K we interpret the right side of (7.5) to be zero.
So, assume dk > 0 and the inductive hypothesis is satisfied. For 1 ≤ i ≤ dk, we

will inductively choose points x(k)
i and yi, and group shifts Wi. Here W0 = WK+1

0 ,
and for 1 ≤ i ≤ dk the group shift generated by Wi−1 and yi is Wi. At step i we
will then choose points xi and yi satisfying the following conditions, assuming if
i > 1 that they have been satsified at steps t < i.

(1) yi ∈ pk−1Dk and yi−1 /∈Wi−1.
(2) yi = pk−1x

(k)
i , where x(k)

i is a homoclinic point in Dk.
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(3) x(k)
i has order pk.

(4) h(Wi) = (dK + · · ·+ dk+1 + i) log p.
(Note that the last item for i = dk establishes the inductive hypothesis (7.5) for
the next stage.) Now we explain why we can make the choices at stage i satisfying
the listed conditions.

(1) We have W0 ≤ pk−1Dk and yt ∈ pk−1Dk for t < i, so Wi−1 ≤ pk−1Dk.
By (7.4) we have h(Wi−1) < (dK + · · ·+ dk) log p = h(pk−1Dk). Therefore
we can choose yi as required.

(2) The point yi is in the complement of the closed subset Wi−1 of pk−1Dk, and
the homoclinic points of Dk are dense in Dk. So perhaps after redefining
yi, we can choose a homoclinic point x(k)

i of Dk such that yi = pk−1x
(k)
i .

(3) We have pk−1x
(k)
i 6= 0 because pk−1x

(k)
i /∈ Wi−1. We have pkx

(k)
i = 0

because pkDk = 0. So, x(k)
i has order pk.

(4) Because pWi−1 = 0 = pWi, recalling Remark 3.3 we see the entropies of
Wi−1 and Wi are integer multiples of log p. Because Wi is generated as a
group shift by the group shift Wi−1 and the single point yi of order p, Wi is
an algebraic factor of Wi−1 ×F (p), so either h(Wi) = h(Wi−1) or h(Wi) =
h(Wi−1)+log p. Because yi is a nonzero homoclinic point not inWi, we have
h(Wi) > h(Wi−1), so h(Wi) = h(Wi−1) + log p = (dK + · · ·+ dk+1 + i) log p
as required.

This finishes our choice of the homoclinic points x(k)
i of order pk. It remains

to check that the algebraic map B → X determined by the rule b(k)
i 7→ x

(k)
i is

surjective. Let U denote the group shift W1 above, generated by the D = dK +
· · ·+ d1 points pk−1x

(k)
i of S1. Now h(U) = D log p and pU = 0.

There is an algebraic factor map γ mapping F (p)D = Y onto U , determined by
sending the D natural generating homoclinic points of Y to the points pk−1x

(k)
i .

Because h(Y ) = h(U), the restriction of γ to ∆Y is injective, and thus an isomor-
phism onto the group generated by S ′. Consequently, given any choices of terms
c
(k)
i,k−1,v from {0, 1, . . . , p− 1} with only finitely many of them nonzero, we have

K∑
k=1

dk∑
i=1

∑
v∈Zd

c
(k)
i,k−1,vp

k−1σvx
(k)
i = 0 =⇒ every c(k)

i,k−1,v = 0 .(7.6)

Now we consider our map ψ : B → X determined by the choices b(k)
i 7→ x

(k)
i .

Because B and X are c.p.e. with equal entropy, ψ will be surjective if its restric-
tion to ∆B is injective. For this, given an arbitrary choice of terms c(k)

i,j,v from
{0, 1, . . . , p− 1} with all but finitely many nonzero, and given

z :=
K∑

k=1

dk∑
i=1

k−1∑
j=1

∑
v∈Zd

c
(k)
i,j,vp

jσvx
(k)
i = 0 ,(7.7)

it suffices to show all the terms c(k)
i,j,v are zero. So, suppose not. A nonzero term

c
(k)
i,j,vp

jσvx
(k)
i in the sum for z is (7.7) a point of order pk−j > 0. Let t be the

maximum such order and consider the presentation of 0 = pt−1z as the sum of the
nonzero points c(k)

i,j,vp
j+t−1σvx

(k)
i . The sum of these nonzero points is a sum of the

form on the left side of (7.6). This contradicts (7.6), and finishes the proof. �
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Remark 7.8. If φ : X → Y is an algebraic factor map of equal entropy group shifts,
then φ restricts to an injection γ : ∆X → ∆Y and φ maps ∆X onto ∆Y . This
by no means assures the map ∆X → ∆Y will be bijective. For example, suppose
X is c.p.e. abelian, Y = B a Bernoulli group shift and γ is surjective. Then
γ−1 : ∆B → ∆X extends to an algebraic factor map ψ from B onto X. In this case
φψ is the identity on ∆B = B and it follows that φ is an algebraic conjugacy. In
particular, if X is c.p.e. and not algebraically Bernoulli, then the homomorphism
φ : X → B constructed in Theorem 6.5 can never restrict to a bijection ∆X → ∆B .

Example 7.9. In this example, X is a c.p.e. Z group shift such that X∗ is not
algebraically Bernoulli. Inductively set X<0> = X and X<n+1> = X∗

<n>. Then
for all n > 0, the group shift X<n> is also not algebraically Bernoulli.

Here X comes from [9, Example 3] of Kitchens; X is the Markov subgroup of
the Bernoulli shift with alphabet Z/4⊕ Z/2 with transitions

(0, 0), (2, 0), (1, 1), (3, 1)→ Z/4⊕ {0}
(1, 0), (3, 0), (2, 1), (0, 1)→ Z/4⊕ {1} .

The homoclinic group ∆X is generated under the shift by two points of the form
x = (0, 0)∞.(2, 0)(0, 0)∞ and x′ = (0, 0)∞(1, 0).(1, 1)(0, 0)∞. We note that as a
R1-module, ∆X is not cyclic. For if ∆X were generated by a single homoclinic
point z = (zi)i∈Z = (z1

i , z
2
i )i∈Z, then x′ would be a sum of shifted multiples of z

and so z2
i = 1 for at least one i ∈ Z. Obviously having another z2

j = 1 would force
an infinite number of coefficients an ∈ Z/4 in x′ =

∑
n anσ

n(z) to be non-zero.
Without loss of generality assume z2

0 = 1 and z2
j = 0 for all j 6= 0. Now all an

(n 6= 0) have to be even but a0 has to be odd. This implies z1
0 and z1

−1 are odd
and z1

i are even for all i /∈ {0,−1} and therefore 2z = (0, 0)∞(2, 0).(2, 0)(0, 0)∞. As
x2

i = 0 for all i ∈ Z, the equation x =
∑

n bnσ
n(z) is only valid if every bn is even,

but then again the two odd components z1
−1 and z1

0 force infinitely many bn to be
non-zero.

The system X∗ contains elements of order four and has entropy log 4. If X∗ were
algebraically Bernoulli, then its dual module ∆X would have to be cyclic with a
generator of order 4; but ∆X is not cyclic. Therefore X∗ is not Bernoulli. By [4,
Theorem 4.7], X<n> is algebraically conjugate to X<n+2> for all n ≥ 1. If Y is
algebraically Bernoulli, then Y is algebraically conjugate to Y ∗. It follows that no
X<n> is algebraically Bernoulli.

To continue the concrete example, note that projection onto the Z/4 coordinate
defines an algebraic factor map φ from X onto the Bernoulli group shift B with
alphabet Z/4. As guaranteed by Remark 7.8, the induced injection of homoclinic
groups is not surjective; φ(∆X) is the set of homoclinic points y in B such that∑

n yn is zero mod 2, and φ(∆X) has index 2 in ∆B . The Laurent modules ∆B

and ∆X are of course not isomorphic, because ∆B is cyclic and ∆X is not.

We do not know if the abelian hypothesis in Theorem 7.1 is necessary. On the
other hand, an algebraic factor of a group shift must be algebraically conjugate to
a group shift, for the following reason.

Proposition 7.10. Suppose (X,α) and (X ′, α′) are algebraic Zd actions, and α′ is
an algebraic factor of α. If X is zero dimensional, then so is X ′. If α is expansive,
then so is α′.
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Proof. First, suppose X is zero dimensional, and u, v are points in X with distinct
images under the assumed algebraic factor map X → X ′, with kernel K. For
sufficiently small clopen neighborhoods Cu, Cv of u, v the sets K +Cu, K +Cv are
disjoint and clopen. Therefore X ′ is zero dimensional.

For the other claim, we use equivalence of expansiveness and the descending
chain condition [12] or [20, Cor. 4.7]. Suppose α′ is not expansive. Then there is
an infinite decreasing chain of distinct α′ invariant subgroups, and their preimages
give a chain of the same sort for α. Therefore α is not expansive. �

For the case Zd = Z and X ′ a nonexpansive inverse limit of equal entropy
Bernoulli shifts, it follows from [1, Theorem 2.10] that there cannot even exist a
shift of finite type X which admits a topological factor map from X onto X ′.
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