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Introduction. The main purpose of this article is to give some overview of matrix
problems and results in symbolic dynamics. The basic connection is that a nonnegative
integral matrix A defines a topological dynamical system known as a shift of finite type.
Questions about these systems are often equivalent to questions about “persistent” or
“asymptotic” aspects of nonnegative matrices. Conversely, tools of symbolic dynamics can
be used to address some of these questions. At the very least, the ideas of conjugacy,
shift equivalence and strong shift equivalence give viewpoints on nonnegative matrices and

directed graphs which are at some point inevitable and basic (although accessible, and
even elementary).
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My motivation for this article was to try to communicate some of this to matrix
theorists. The earlier sections are more descriptive. The later sections move more to
current frontiers and are oriented more to presenting open problems.

Trying to stay close to matrices, I've neglected huge parts of symbolic dynamics. Also
even some matrix matters get short shrift. I've barely mentioned state splitting (3.4) and
resolving maps (Sec. 10), which are important for constructions [AM,BMT,A2] and appli-
cations [ACH,AFKM,MSW)]. Marker methods are a key to some inverse spectral results,
but to avoid a nontrivial excursion into nonmatrix matters I just recommend some ref-
erences (Sec.8). For more general background, one can dig into [DGS],[BMT],[PT1],[P2]
and their references. Unfortunately, at present there is no single book which gives an
appropriate introduction (although one by Adler, Lind and Marcus could appear any year
now).

This article is a followup to the talk I was invited to give at the November 1991
I.M.A. Workshop on Combinatorial and Graph-theoretic problems in Linear Algebra. The
talk was on joint work with David Handelman [BH1,2] on solving inverse spectral (and
other) problems for nonnegative matrices, using tools from symbolic dynamics. My warm
thanks go to the organizers Richard Brualdi, Shmuel Friedland and Victor Klee, for the
interdisciplinary stimulation and good company.

SECTION 1. SHIFTS OF FINITE TYPE

1.1 Subshifts. For the purposes of this paper, a topological dynamical system will
be a continuous map T from a compact metric space X into itself. We can represent this
as (X,T) or just T. Except in Section 9, T is a homeomorphism.

The system which is the full shift on n symbols (know more succinctly as the n-shift)
is defined as follows. We endow a finite set of n elements-say, {0,1,...,n — 1}-with the
discrete topology. (This finite set is often called the alphabet.) We let X be the countable
product of this set, indexed by Z. We think of an element of X as a doubly infinite sequence
T =..T_1T0Z;... where each z; is one of the n elements. X is given the product topology
and thus becomes a compact zero dimensional metrizable space. A metric compatible with
the topology is given by (for @ not equal to y)

dist(z,y) = 1/(k+ 1), where k = min{|i| : z; # y;}.

That is, two sequences are close if they agree in a large stretch of coordinates around the
zero coordinate.

A finite sequence of elements of the alphabet is called a word. If W is a word of length
J — ¢+ 1, then the set of sequences « such that z,...z; = W is called a cylinder set. The
cylinder sets are closed and open, and they give a basis for the product topology on X.

There is a natural shift map S sending X into X', defined by shifting the index set by
one: (Sz); = z;41. It is easy to see that S is bijective, S sends cylinders to cylinders, and
thus S is a homeomorphism. The full shift on n symbols is the system (X, S).
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A subshift is a subsystem of some full shift on n symbols. This means that it is
a homeomorphism obtained by restriction of the shift to some compact set Y invariant
under the shift and its inverse. The complement of Y is open and is thus a union of
cylinder sets. Because Y is shift invariant, it follows that there is a (countable) list of
words such that Y is precisely the set of all sequences y such that for every word W on
the list, for every ¢ < j, W is not equal to y;...y;. If Y is a set which may be obtained by
forbidding a finite list of words, then the subshift is called a subshift of finite type, or just
a shift of finite type (SFT). For example, we get an SF'T by restricting the two-shift to the
set Y of sequences in which the word 00 never occurs.

1.2 Vertex shifts. We will define vertex shifts, which are examples of shifts of finite
type. For some n, let A be an n x n zero-one matrix. We think of A as the adjacency
matrix of a directed graph with n vertices; the vertices index the rows and the columns,
and A(7,7) is the number of edges from vertex ¢ to vertex j. Let Y be the space of doubly
infinite sequences y such that for every k in Z, A(yr, yx+1) = 1. We think of Y as the space
of doubly infinite walks through the graph, where the walks/itineraries are presented by
recording the vertices traversed. The restriction of the shift to Y is a shift of finite type:
a sufficient list of forbidden words is the set of words ¢j such that there is no arc from : to
J-

Notation: throughout this paper, “graph” means “directed graph”.

1.3 Edge shifts. Again let A be an adjacency matrix for a directed graph, but now
allow multiple edges: so, the entries of A are nonnegative integers. Let the set of edges be
the alphabet. Let ¥ be the set of sequences y such that for all k, the terminal vertex of
Yk is the initial vertex of yry;. Again, we can think of Y as the space of doubly infinite
walks through the graph, now presented by the edges traversed. The shift map restricted
to Y is an edge shift and it is a shift of finite type: a sufficient list of forbidden words is
the set of edge pairs ¢5 which do not satisfy the head-to-tail rule.

In the sequel, unless otherwise indicated an SFT defined by a matrix A is intended to
be the edge shift defined by A. We denote this SFT by Sa4.

1.4 Codes. Suppose (X, S) and (Y, T) are subshifts. A map f from X to Y is called
a code if it is continuous and intertwines the shifts, i.e. fS =Tf . We think of a code as
a homomorphism of these dynamical systems.

Now suppose F' is a function from words of length 2n + 1 which occur in S-sequences
into some finite set A. Then the rule

(fz)i=F(zi—pn..®iyn), foralliinZ,

defines a code f, called a block code, into the full shift on the alphabet A. This block
code defines a code from S into any subshift 7" which contains the image of f. The
“Curtis-Hedlund-Lyndon Theorem” asserts that every code is given by a block code. The
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argument is easy: given f, one obtains F' and n above for ¢ = 0 as a consequence of uniform
continuity, and the formula for all ¢ follows because f intertwines the shifts.

If a code f is surjective, then it is called a quotient or factor map. If it is injective,
then it is called an embedding. If it is injective and surjective, then it is an isomorphism
or conjugacy of subshifts. This notion of isomorphism is our fundamental equivalence
relation.

To expand on this a little, think of a code f from S4 to Sp as a map of infinite paths
in graphs. If we think of z; as our location on this path at time i, then we think of (fz);
as our location on the image path at time ¢. The rule F' above determines that location
(fz):, knowing the location z; with memory of the last n locations and anticipation of
the next n locations. The same rule F works for any i. If f is an isomorphism, then in a
strong sense the structure of these infinite path spaces is essentially the same.

1.5 Higher block presentations. Let S be a subshift. Suppose n is a positive
integer and j, k are nonnegative integers such that j 4+ k+1 = n. Given this we will define
a code f with domain the subshift S by the rule

(f:c), = Ti—j.Titk, 1in 2.

So, for the output sequence fz, the symbol (fz); is the word of length n in z in the
coordinates 7 — j through 7 + k. The shift map on the set of all output sequences is a
subshift T', and f is an isomorphism from S to T. (f is a block code and it is clearly
one-to-one.) The system T doesn’t depend on the choice of j (although the map does). T
is called the n-block presentation of S.

An easy exercise is to construct a one-block isomorphism between the n-block pre-

sentation of S and the subshift obtained by passing to the 2-block presentation n — 1
times.

For an important example, let S be the edge shift defined by a matrix A. Let G be the
graph with adjacency matrix A. A symbol in the alphabet of the two block presentation is
a word uv, where u and v are edges and the terminal vertex of u equals the initial vertex
of v (i.e. uv is a path of length 2 in G). We can define a new graph G' whose vertices
are the edges of G, and where there is an arc from u to v if the terminal vertex of u
equals the initial vertex of v. If we give such an arc the name uv, then we see that the
two-block presentation of S, is the SFT presented by the matrix which is the adjacency
matrix of G'. That is, for SFT’s defined by matrices, passing to the two-block presentation
amounts to passing from the defining graph to its edge graph (remember, all our graphs
are directed—the edge graph in this category is the directed graph we’ve just described,
it rarely has a symmetric adjacency matrix).

Similarly, we can think of the n-block presentation of S, as given by a graph G(n)
whose vertices are the paths of length n — 1 in G. Here (for n > 2) there is an edge from
vertex a(l)...a(n — 1) to a vertex b(1)...b(n — 1) iff a(2)...a(n — 1) = b(1)...6(n — 2). (For
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n = 2, there is an edge from vertex a(1) to vertex b(1) iff the terminal vertex of a(1) equals
the initial vertex of b(1).) Note, if the original subshift contains infinitely many points,
then as n goes to infinity the size of the adjacency matrix for G(n) must go to infinity. In
particular matrices of very different size may define isomorphic SFT’s.

1.6 One-block codes. Suppose f is a code from S to T. Then there is some n
such that for all z,(fz) is determined by the word & ...z, of length 2n + 1. Define an
isomorphism from S to its (2n + 1)-block presentation S’ as in §1.5, using 7 = k = n.
Let h be the inverse of this isomorphism. Then fh is a code from S’ to Sp, and fh is a
one-block map. Often, given a code from S, by passing to a higher block presentation in
this way we can assume that the code is just a one-block map.

For example, if there is a map from S to Sp, then there is a one-block map from Sc to
Sg, where C is a matrix giving some higher-block presentation of A. That is, by passing to
an iterated edge graph H of the graph with adjacency matrix A (H has adjacency matrix
C), there is a graph homomorphism from H to the graph with adjacency matrix B which
(applied at every edge along a path) gives a map from the set of infinite A-paths to the
set of infinite B-paths.

1.7 Isomorphic SFT’s. Any SFT (Y,S) is isomorphic to a vertex shift. To show
this, let W be a finite list of words such that Y is the set of all sequences (from some full
shift) in which no word of W occurs. Let n + 1 be the length of the longest word in W
(the SFT is then “n-step”). Without loss of generality, assume n > 0. Let V be the set of
all words of length n which occur in sequences in Y. Let V be the vertex set of a directed
graph. In this graph, there is an edge from v = uy...u,, to v = vy...v, if uv,, = uyv and this
word of length n + 1 occurs in a sequence in Y. This graph defines a vertex SFT (X, T).
An isomorphism f from Y to X is given by the rule (fy)i = yi--Yitn—1-

Also, any SFT is isomorphic to an edge shift, because the two-block presentation of a
vertex shift is an edge shift.

Even if one is only interested in SFT’s defined from graphs, it is useful to consider
general n-step SF'T’s, because working with these gives access to topological and combi-
natorial arguments which can in turn yield results about the graphically defined SFT’s.
The vertex shifts are sometimes more simple to work with than the edge shifts. The edge
shifts are very useful. One reason is conciseness: an edge shift presented by a small matrix
(perhaps though with large entries) may be presentable as a vertex shift only by a large
matrix. Also, the set of zero-one matrices (the matrices which define vertex shifts) is not
closed under various operations under which the set of nonnegative integer matrices is
closed. Working only with zero-one matrices rules out some very useful matrix arguments
(e.g. [F2]) and interpretations. For one of these, first a little preparation.

If S is a subshift, then we let S™ denote the homeomorphism obtained by iterating S
n times. The homeomorphism S™ is isomorphic to a subshift T' whose alphabet is the set
of S-words of length n. An isomorphism from S" to T is given by the map f which sends
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a point z to the point y such that for all & in Z,
Yk = Tkn+T(k4+1)n-1-

Now, let an edge shift S be defined by a matrix A. Then the subshift S™ is conjugate
to the edge shift defined by A". The number of edges from vertex i to vertex J in the
directed graph with adjacency matrix A™ is just the (¢,7) entry of the matrix A™. This
is also the number of paths of length n from 7 to j in the directed graph with adjacency
matrix A. We can use bijections of these edges and paths to replace symbols y; of the
construction of the previous paragraph with edges in the directed graph defined by A™.
Then that construction provides the claimed isomorphism.

1.8 Topological Markov shifts. An SFT is also called a topological Markov shift,
or topological Markov chain. This terminology is appropriate because an SFT can be
viewed as the topological support of a finite-state stochastic Markov process, and also as

the topological analogue of such a process. (This viewpoint was advanced in the seminal
1964 paper of Parry [P1].)

Roughly speaking, in a Markov process the past and future are independent if condi-
tioned on the present (or more generally if conditioned on some finite time interval). We
can say precisely why an SFT is a topological analogue of this. Suppose the SFT is n-step
(given by forbidding a certain list of words of length at most n + 1). Also suppose that z
and y are points (doubly infinite sequences) in the SFT such that z¢...z(,_1) = yo...yn-1.
Then it follows that the doubly infinite sequence z defined by

zi=a; ifi<n

—y; ifi>0

must also be a point in the SFT. That is: the possibilities for the future (sequences in
positive coordinates) and the past (sequences in negative coordinates) are independent
conditioned on the near-present (i.e., the word in a certain finite set of coordinates).

1.9 Applications of SFT’s. For completeness I'll mention in the most cursory fash-
ion two ways in which SF'T’s appear in a natural and useful way.

First, imagining very long tapes of zeros and ones, consider infinite strings of zeros and
ones (i.e., points in the full shift on two symbols). It is natural to think of a block code
as a machine which takes an input tape and recodes it, and to suppose that somehow the
study of block codes may be relevant to efficiently encoding and decoding data. This turns
out to be the case [ACH,MSW], in fact I understand that some constructions arising from
symbolic dynamics have actually been built into IBM hardware.

Second, imagine a homeomorphism (or diffeomorphism) h on some space X. One way
to study h is by symbolic dynamics. Crudely, cut X into n pieces. Name the pieces
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1,2,...,n. To any given point z in X there is associated a sequence y in the full shift on n
symbols, where y is defined by setting y; to be the piece containing h*(z), for each integer
;. This gives some set of sequences y. The sequence associated to h(z) is the shift of y.
This establishes some relation between the topological dynamics of the shift space and the
dynamics of h. Sometimes a relation of this sort is very useful (for example for analyzing
h-invariant measures or periodic points), when the shift space which arises is a shift of
finite type [Bow1,2].

A variation on the last theme going back to Hadamard is the study of geodesic flows
with symbolic dynamics [AF].

SECTION 2. MATRIX INVARIANTS

Throughout this section A will represent a matrix with integral entries. Unless other-
wise indicated, we also assume that A is nondegenerate (every row has a nonzero entry and
every column has a nonzero entry) and that the entries are nonnegative. (This is because
if A were nonnegative with ith row or column zero, then A would define the same SF'T as
would the principal submatrix obtained by deleting row 7 and column 7 — it is only the
“nondegenerate core” of A which carries information about the SFT defined by A.) We let
S 4 denote the shift of finite type defined by A.

By a matrix invariant of A we will mean something determined by A which is the
same for matrices A and B which determine isomorphic shifts of finite type. Some of
these matrix invariants correspond to dynamically important invariants of the associated
shift. The matrix invariants usually have an algebraic flavor, often being defined for (not
necessarily nonnegative) integral matrices. Then one has an associated realization problem:
which of the algebraic invariants can be realized by nonnegative matrices? We’ll list the
most important of these invariants and discuss the corresponding dynamical properties.

2.1 Mixing properties. The nonnegative matrix A is primitive if some power has
all entries greater than zero. A is irreducible if for every position (7, j) there is n > 0 such
that A"(z,5) > 0. Otherwise A is reducible.

The associated SF'T S is mixing if and only if A is primitive. It has a dense forward
orbit if and only if A is irreducible. The most important class to understand is the class
of mixing SFT’s. Then one understands other SFT’s by how they are built up from
the mixing SFT’s. This is analogous to the situation with nonnegative matrices, which
one understands by first understanding the primitive case. (Caveat: often the general
case of a problem for SFT’s follows very easily from the mixing case, but sometimes the
generalization is quite difficult.) In the sequel we will sometimes make the simplifying

assumption that A is primitive. Sometimes this is only for simplicity and sometimes we
are avoiding serious difficulties.



2.2 Entropy. The premier numerical invariant of a dynamical system S is its (topo-
logical) entropy, h(S). For a subshift S,

h(S) = limsup log(#Wn(5))
n n

where W,(S) is the set of words of length n occurring in sequences of S. That is, the

entropy is the exponential growth rate of the S-words. For a full shift on n symbols, the

entropy is log(n). For an SFT defined by a matrix A, the entropy is the log of the spectral

radius of A. This is easy to prove because the number of words of length n is the sum of

the entries of A™.

What numbers can be entropies of mixing SFT’s? Equivalently, what numbers can
be spectral radii of primitive integral matrices? This was settled by Lind [L]: a number
is the spectral radius of a primitive integral matrix if and only if it is a Perron number.
A Perron number is a positive real number which is an algebraic integer which is strictly

greater than the modulus of any other root of its minimal polynomial.

2.3 Periodic Points. The periodic points of a topological dynamical system are often
involved in its dynamics in a crucial way. Let Fix(.S) denote the set of fixed points of a
map S, i.e. the set of points z such that Sz = z. Suppose that for every positive integer n,
the set Fix(S™) is finite. (This will be true for any subshift S, for which a fixed point of S™
is a periodic sequence of period dividing n.) Then the sequence #Fix(S™) contains all the
information one has from restricting S to its periodic points and forgetting the topology.
The favored choice in dynamics for compiling this information is the (Artin-Mazur) zeta
function of S,

o Fiz(S™
(s(z) = exp Z ——# 22( )zn.
n=1

(We will postpone to Section 4 some justification for this choice.) The zeta function can
be considered as a formal power series whenever Fix(S") is finite for all n. If also

lim sup[#Fiz(S™)])'/™ = a < 0

n

then the zeta function is defined as an analytic function on the open disc of radius 1/a
around the origin in the complex plane. For subshifts, such a number a always exists, not
larger than the cardinality of the alphabet. For an SFT defined by a matrix A, a is the
spectral radius of A.

If S is an SFT defined by a matrix A, then the number of fixed points of S is simply the

trace of A: a fixed point is a sequence consisting of one edge repeated forever. Similarly,
for all positive integers n

#HFwx(S™) = tr(A").
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From this one can compute

(s(z) = exp i tr(?n)z" = [H(l - az)]

7

1
= [det(I — z4)]™*

where the product is over the eigenvalues a of A, repeated according to multiplicity. (So
the inverse zeta function of an SFT is a polynomial with integral coefficients and constant
term 1.) The first equality follows from the definition of the zeta function and the previous
equation. The last two equalities hold for any square matrix A with real entries, as we
now argue. The last equality follows from dividing the equation

det(zI — A) = H(z —a)

a

by z* (where A is k by k) and then replacing 1/z with z. The second equality follows from
three facts:

(1) tr(A™) =3, a®,

(2) for any complex number a,

exp (
n=1

(to see this take the derivative of the log of each side),

(3) exp(302, 3, Ly = [T, exp(X02, el

Problem What are the nonzero spectra of primitive integral matrices?

=1/(1 - az)

(]
=
3
N——

In dynamical language, this problem is: what are the zeta functions of mixing shifts
of finite type? (Clearly the nonzero part of the spectrum of a matrix A—counting mul-
tiplicities, always—determines det(I — zA), and vice versa.) This is a difficult problem,
but there is very strong evidence supporting a conjectural answer of appealing simplicity,
which we discuss in Section 8 below.

2.4 Isomorphism. Matrices A and B are elementary strong shift equivalent over a
semiring S if there are matrices U, V with entries from S such that A = UV and B = VU.
The matrices U, V need not be square. If the semiring is not specified, then it is understood
to be the nonnegative integers. A and B are strong shift equivalent over S if they are linked
by a finite chain of elementary strong shift equivalences— that is, strong shift equivalence
is the transitive closure of elementary strong shift equivalence.

Two shifts of finite type S4 and Sp are isomorphic if and only if the matrices A and
B are strong shift equivalent [W1]. It is not trivial to prove isomorphism gives strong shift
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equivalence, so we refer to [W1] or [PT1,Sec.V.3] for this direction. However the other
direction is easy. Suppose A = UV, B = VU. Let G 4, Gp be the directed graphs with
adjacency matrices A, B and let these graphs have no vertices in common. Let U be the
adjacency matrix for a set of arcs with initial vertices in G4 and terminal vertices in Gg;
similarly V describes arcs from Gp to Ga. Let lower case letters a,b,u,v represent arcs

corresponding to A, B,U, V. From the matrix equations we may choose bijections of arcs
and paths of length 2,

{a} «— {uv}, {0} — {vu}
respecting initial and terminal vertex. We view a point of S 4 as an infinite path ...a_japa;...
of edges a; and apply the first bijection at each a; to get the following picture.

a d d

-1 0 1
Vi Vo Vi
u_, uy u,

(Here, for example, uovp is the path corresponding to ag.) We apply the second bijection
to give a correspondence v;u;41 «— b; and get a larger picture:

d d

-1 0 1
» » » c s @
V.'| VO V.I
4 “o 41
- -
by | b,

This picture gives a rule which sends a point of S4 to a point of Sg. It is easy to check
that the rule defines an isomorphism of the two SFT’s.

Strong shift equivalence and shift equivalence (below) were introduced by Williams
[W1]. These are crucial ideas in the subject.
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2.5 Eventual isomorphism. Two matrices A and B are shift equivalent over a
semiring S if there are matrices U,V over S and a positive integer ¢ (called the lag) such
that the following equations hold.

A=Uv B =VU
AU =UB BV =VA.

Again, S is the nonnegative integers if the semiring is not specified.

Two systems S and T are eventually isomorphic if S™ and T™ are isomorphic for all
but finitely many n. If a pair U,V give a shift equivalence of lag £ from A to B, then At
and B* are strong shift equivalent. Also the pair AU,V gives a shift equivalence of lag
|+ n from A to B. Consequently, if A and B are shift equivalent, then the SFT’s S4 and
Sp are eventually isomorphic. The converse also holds because the shift equivalence of A?
and BP implies the shift equivalence of A and B if p is a sufficiently large prime [KR1].

Regardless of the semiring S, strong shift equivalent matrices must be shift equivalent.
This follows from manipulating a chain of ¢ elementary strong shift equivalences to produce
a lag ¢ shift equivalence.

At first glance, shift equivalence may appear to be a more obscure and complicated
equivalence relation than strong shift equivalence. In fact, it is just the opposite. (We will
say more about this below.) Williams introduced the idea of shift equivalence with the
intent of reducing strong shift equivalence to a manageable equivalence relation on matrices.
He conjectured that shift equivalence implies strong shift equivalence for matrices over Z 4
[W1]. This conjecture was finally refuted in the reducible case. This important result was
proved by Kim and Roush [KR7] using fundamental advances by themselves and Wagoner
[KRW]. However, the crucial irreducible case remains open.

Problem Suppose A and B are irreducible matrices shift equivalent over Z,. Must
they be strong shift equivalent over 7,7

It is not hard to show that the answer is yes to this question if and only if it is yes to
the question for primitive matrices.

The classification of reducible SFT’s will not follow easily from the classification of
irreducible SFT’s. However, work in progress by Kim and Roush indicates that one will be
able to classify shift equivalent reducible SF'T’s in terms of the classification of irreducible

SFT’s and the range of the dimension representation [[{RW] on their automorphism groups.

2.6 Flow equivalence. Two homeomorphisms are flow equivalent if they are cross
sections of the same flow. If the matrices A and B are irreducible and neither is a permu-
tation matrix, then S4 and Sp are flow equivalent if and only if

(i) det(I — A) = det(I — B), and

(1) the cokernels of I — A and I — B are isomorphic.

12



(Here, for example, if A is n x n then the cokernel of I — A is the abelian group which is
7™ modulo the image of I — A.) This was ultimately proved by Franks [F2] following the
earlier work of Bowen&Franks [BF] and Parry&Sullivan [PS].

The classification up to flow equivalence of SFT’s defined by reducible matrices is
difficult and interesting. Cuntz [C] has introduced algebraic invariants in a special case
from the viewpoint of associated C*-algebras. Danrun Huang, beginning from the work
of Franks and Cuntz, has gone much further on this problem [Hu]. Huang’s work is very
much in the vein of discerning the right invariants and then showing they are complete
by way of matrix constructions realizing prescribed algebraic actions subject to positivity
constraints.

We won’t be concerned with flow equivalence in this paper, except to flesh out certain
algebraic patterns below.

2.7 Relations.

For matrices over Z:
strong shift equivalence = shift equivalence =

same zeta function = same entropy.

Also, for irreducible matrices at least,
shift equivalence = same flow equivalence class.

None of these implications can be reversed.

SECTION 3. SHIFT EQUIVALENCE AND STRONG SHIFT EQUIVALENCE

In this section we will try to explain what it means for two integral matrices to be shift

equivalent over Z, and we will indicate some tools one derives from the ideas of strong shift
equivalence.

3.1 Shift equivalence and the dimension group. Suppose A is a n x n integral
matrix. Then A acts on Z" and from this we can form the direct limit group G(A), on
which A induces an automorphism A'. This gives a pair (G(A4), A'). Two integral matrices
A and B are shift equivalent over Z if and only if there is a group isomorphism f from
G(A) to G(B) such that fA' = B'f.

This was pointed out by Krieger [Krl1,2] who also did something much deeper, giving
a K-style construction of this group from certain compact subsets of the shift space. We
will skip the (easy) proof of the previous paragraph and any explanation of the topological
theory (see [BMT] for more).

We remark that G(A) is called a dimension group (and therefore (G(A), A') has been

called the “dimension pair”) for historical reasons. Krieger’s topological construction was
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adapted from K-theoretic constructions in operator algebras—in fact, G(A) is Ky of an
associated C*-algebra [CuK2]. It is natural to think of Ky of a ring R as a “dimension
group”, because K is concerned with (stable) isomorphism classes of finitely generated
projective R-modules and for R a field the isomorphism class of such a module is given by
its (vector space) dimension.

We will give a concrete description of (G(A), A"). Of course A acts on Q". Let V4 be
the rational subspace of Q" which is the image of A™. (So, if A is not nilpotent, then Vj is
the largest invariant subspace on which the action of A is nonsingular.) Now we can give
the following presentation for G(A):

G(A) = {vin V : for some k > 0,vA* is in 7"}.

With this presentation, the automorphism A’ is just multiplication by A. (We have arbi-
trarily chosen the action here to be on row vectors. The choice does matter, as a matrix
need not be shift equivalent to its transpose [PT1]. However matrices A and B are (strong)
shift equivalent if and only if their transposes are.)

For example, if A = [2], then in this presentation G(A) is the dyadic rationals-all
rational numbers p/q where p and ¢ are integers and ¢ is a power of 2. If |detA| = 1, then
G(A) is just Z"™.

Note: if (G(A), A') and (G(B), B') are isomorphic, then the actions obtained by ten-
soring with Q are isomorphic. In other words, the restrictions of A and B to V4 and Vg are
isomorphic as linear transformations of rational vector spaces. (In particular these restric-
tions have the same characteristic polynomial, which is just the characteristic polynomial
of A divided by the appropriate power of the indeterminate. Equivalently, det(I — tA)
= det(I — tB).) Another way to say this is that A and B have the same Jordan form

away from zero (i.e., the nonnilpotent parts of the Jordan forms of A and B are the same
modulo conjugation by a permutation matrix).

An example of two matrices with the same characteristic polynomial which are not
shift equivalent over 7 is given by the pair

1 2 1 1
A‘(z 3) B_(4 3)’

To see this easily, suppose there is a shift equivalence. Note that because |detA| = 1, we
must have |detU| = 1 (where U is the matrix in the defining equations for shift equivalence).

If AU = UB, then

U A-DU=(B-1I).

Since every matrix on the left side is integral and A — I is divisible by 2, the matrix on the
right side must have every entry divisible by 2, a contradiction. (For an alternate proof,

note that cok(l — A) =2 Z/2@ Z/2 and cok(I — B) = Z/4, so that A and B do not even
define flow equivalent SFT’s.)
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The general solution to the decision problem for shift equivalence is very difficult
[KR1,3]. But there are many classes of tractable examples. For example, if A has a single
nonzero eigenvalue k, then A is shift equivalent over Z to the one by one matrix [k]. If p(¢)
is the minimal polynomial of an algebraic integer A, then the shift equivalence classes over Z
of integral matrices with characteristic polynomial p(t) are in bijective correspondence with
the ideal classes of the ring Z[1/A] ([BMT]). Such algebraic aspects of shift equivalence turn
out to correspond to coding relations among corresponding shifts of finite type ([BMT],

[KMT], [As2]).

3.2 (Strong) Shift equivalence over Z,. If A and B are shift equivalent over
Z, then they are strong shift equivalent over Z. The same is true for matrices over any
principal ideal domain [E2],[W2] or Dedekind domain [BH2].

It is not known whether primitive matrices shift equivalent over Z4 must be strong
shift equivalent over Z . This is still unknown if Z is replaced by the rationals Q, or even
the reals R! So the order requirement complicates the situation for strong shift equivalence
drastically.

For shift equivalence, there are also complications but they are fewer. The best news
is that two primitive matrices are shift equivalent over Z if they are shift equivalent over
Z . (This is still true by the same proof if Z is replaced by any unital subring of the reals.)
This was first proved geometrically by Parry and Williams [PW], also see [KR1]. (Caveat:
irreducible matrices may be shift equivalent over Z but not over Z,, as an example of
Kaplansky and myself shows [B2].)

It is easy to sketch a proof of this. Suppose A and B are primitive and a pair U,V gives
a shift equivalence of lag ¢ (AU = U B etc.). The idea is, for large n the matrices A"U, VA"
are positive (possibly after replacing U, V' with —U, —V') and they give a shift equivalence
of lag 2n + ¢. To understand positivity, remember that the Perron Theorem implies that
for large n, A™ is “approximately” (a")RL where R is a positive right eigenvector, L is a
positive left eigenvector, LR = 1, and a is the spectral radius of A. Here “approximately”
means that the error is growing at an exponentially smaller rate. Thus it suffices to show
that LU and VR are positive. Because the Perron eigenvalue is a simple root of the
characteristic polynomial of B, the eigenvectors LU and VR for B must be multiples
of the corresponding (positive) eigenvectors for B. Because LUVR = LA‘R is positive,
either both of these multiples are negative (then we replace U,V with —U, —V) or both
are positive (and we are done).

One puts the requirement of nonnegativity into the dimension group context as follows
[Krl]. An ordered group is a group G with a set G4 (called the positive set) such that
G4+ is closed under addition and every element of G is a difference of elements of G .
An isomorphism of ordered groups is a group isomorphism mapping the positive set of
the domain group onto the positive set of the range group. Now one just adds to the
“dimension group” structure an order structure on the group to reflect shift equivalence
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over Z, rather than Z. With this structure, the isomorphism A’ above is an isomorphism
of the ordered group (G(4),G4+(A)). The “dimension pair” now becomes a “dimension
triple” (G,G4,A").

We’ll describe this in terms of the explicit presentation described in §3.1. Given a
nonnegative matrix A, define the positive set

G4+(A) = {v in G(A) : for some k > 0,vA* has all entries nonnegative}.

Multiplication by A induces an ordered-group automorphism A’ on (G(A),G+(4)). Now
matrices A, B over Z are shift equivalent if and only if there is an isomorphism of their
ordered groups intertwining A' and B'.

For more on dimension groups, see [E1].

3.3 The dimension module of an SFT. Here we make explicit a reformulation of
the dimension data, which will seem trivial (but correct) from a homological viewpoint
[Br]. This reformulation is by no means due to me (see [Wal, pp.92,120]).

To an SFT defined by a matrix A, we associated a “dimension pair” (G(A4),A’). The
action of A’ gives an action of the group Z on G(A). Whenever a group H acts on an abelian
group K by automorphisms of I, the group I\ acquires a ZH-module structure, where
ZH is the integral group ring of H [Br]. An isomorphism of such H-actions is equivalent
to a ZH-module isomorphism. So instead of referring to the “dimension pair” (G(A), A')
we can just refer to the dimension module. Here we mean the ZZ-module G(A). The ring
Z7 is isomorphic to the ring Z[t,t~!] of integral Laurent polynomials in one variable.

Since “dimension pair” and “dimension module” carry the same information, to some
extent passing from the latter to the former is just a matter of cleaner terminology. But it
is also a matter of a better functorial setup— “thinking right” as the group cohomologists
say. We’ll see more of this in Sections 5 and 7.

We encode the order information of the “dimension triple” by making the ZZ-module
an ordered module in the natural way. First, ZZ is an ordered ring in a natural way, with
the semiring 7, Z (formal nonnegative integral combinations of the set Z) the positive set.
(If we think of ZZ as the Laurent polynomials Z[t,t7'], then the positive set is Z4[t,t7!],
the Laurent polynomials whose coefficients are nonnegative integers.) Now an ordered
Z7Z-module is an ordered group (G, G4 ) which is a ZZ-module such that 77 sends G4
into itself. It is easy to check that this data is equivalent to the data in the dimension
triple.

“Dimension module” was used in a different sense by Tuncel [T]—we reconcile our
viewpoints in Section 6.

3.4 Strong shift equivalence and state-splitting. Let A be an n X n matrix. Let
A' be an (n+1) X n matrix related to A as follows: row 7 of A4 is the sum of row 7 and row
(n 4+ 1) of A', otherwise the rows of A and A’ are equal. Now define an (n + 1) X (n + 1)
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matrix B related to A’ as follows: column (n+ 1) of B equals column ¢ of A, and the first
n columns of A’ equal those of B. Then there is an elementary strong shift equivalence

(U,V) between A and B with A’ = V. For example,

0 9 0 99
A=(g ?,) A'=16 1 B=|6 11 U=<(1) (1) (1)>
2 4 2 4 4

In this case, or in the case where the roles of row and column are reversed, we say that B is
obtained from A by an elementary state-splitting (the state 7 is split into two new states)
and A is obtained from B by an elementary amalgamation. One of the fundamental tools
introduced in Williams’ paper [W1] is the following: if two SFT’s S4 and Sp are topo-
logically conjugate, then there is a finite sequence of state splittings and amalgamations
which begins with A and ends with B. (In fact this can be chosen to be a finite sequence
of row splittings followed by a finite sequence of column amalgamations [P2].)

3.5 The Masking Lemma. As one application of Williams’ theorem that strong shift
equivalence of nonnegative integral matrices is equivalent to isomorphism of the SFT’s they
represent, we state a case of Nasu’s Masking Lemma. (This is more or less his original
statement [N], but his argument gives a much more general result [BH1, App.1].)

THEOREM (NASU). Suppose A and B are square nonnegative integral matrices, and
there is a subsystem of S4 which is conjugate to Sp. Then there is a matrix A" which
defines an SF'T conjugate to S4, such that A' contains B as a principal submatrix.

I have no idea how one would prove this from scratch. With Williams’ theorem, the
basic idea is very simple. First one passes from A to a higher block presentation, which
has as a principal submatrix a matrix B’ defining an SFT conjugate to Sp. Williams’
result gives a strong shift equivalence from B to B'. Now one simply experiments with
2 x 2 block forms and sees that each elementary strong shift equivalence along this chain
can be extended. For details, see [N] or [BH1].

3.6 Algebraic topology. Wagoner [Wal-5] has introduced ideas of algebraic topol-
ogy into the study of shift equivalence, strong shift equivalence and other matters beyond
the scope of this survey. Essentially, these let one make arguments and constructions by
way of topological objects constructed as quotient spaces of certain infinite simplices from
the relations of (strong) shift equivalence. (Incidentally in this way natural new questions
arise not easily visible from the matrix situation.)

This setup has actually led to new constructions and results on matrices over Z,. In
particular, at present results from this context are a crucial part of the work [KRW] on
which the Kim-Roush counterexample [KR7] to Williams’ conjecture rests.
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SECTION 4: ZETA FUNCTIONS AND SPECTRA

Recall the zeta function of §2.2,

(s(2) = exp (Z #F—(S’) .

At first glance this may seem an unnecessarily tortured way to encode the information
of the periodic points. We’ll consider some justification for this, particularly from the
viewpoint of matrices and shifts of finite type.

4.1 “Higher mathematics”. The zeta function comes to us from more exalted zeta
functions in algebraic geometry and number theory. The zeta function was introduced by
Artin and Mazur [AM]. They used its natural relationship to certain algebraic geometric
systems to obtain constraints on the periodic points of large sets of diffeomorphisms by
proving rationality of the zeta function. The potential connections with such systems,
and other algebraically defined systems, are one reason to use the zeta function to count
periodic points. Algebraic topology also appears as a powerful tool for analyzing zeta
functions even of systems which do not arise from algebra [F'2 Fril].

4.2 Rationality constraints. Given a system S, consider the sequence f, = #Fix(S"),

n =1,2,.... Assume each f, is finite. We can capture the information in this sequence in
a generating function or a zeta function,

These functions do carry the same information. Also, if the zeta function is a ratio of
polynomials, then so is the generating function (it is the derivative of the log of the zeta
function, multiplied by z). But the converse is false.

The generating function is rational if and only if the sequence f, eventually satisfies
some recursion relation. It turns out [BowL] that the zeta function is rational if and only
if there are integral matrices C, D such that for all n,

fo =trC™ —trD".

It is sometimes the case in dynamics that one can prove the rationality of the zeta function
for interesting systems, precisely by finding such matrices [F1,Fril,Fri2]. The rationality
of the zeta function then sharply and transparently captures this constraint.
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4.3 Product formula. The zeta function can be written as a (usually infinite) prod-
uct,

¢s(z) = [[l1-2"1"

where there is a term [1 — 2"]! for each S-orbit of cardinality n. The numbers #Fix(S™)
are good for algebra, but the numbers of orbits of cardinality n are more fundamental
dynamically. The product formula relates them in a nice way.

4.4 Why not the characteristic polynomial?. If A is a matrix then its character-
istic polynomial y 4(z) = det(z] — A) is almost the zeta function of S = Sy; if A is n X n,
then

(' (2) = det(I — zA) = 2"det(27'T — A) = z"xa(z7).

However, the characteristic polynomial contains extraneous, noninvariant information; only
the nonzero spectrum matters for the traces of powers of A. Also, sometimes working with
det(I — zA) rather than det(zI — A), one avoids extraneous but nontrivial complications
of sign (e.g., §4.5). Still, sometimes for practicality one works not with the zeta function
but with the characteristic polynomial of A away from zero—this is the unique polynomial
with nonzero constant term which can be obtained from the characteristic polynomial by
dividing by a power of the indeterminate.

4.5 Cycles. Let A (for simplicity) be a nonnegative integer matrix. One can check
that det(I — zA) is a sum of terms (—z)*, where there is one term for each set of pairwise
disjoint simple cycles in the directed graph with adjacency matrix A, and k is the sum of
the lengths of the cycles in the set. Here a cycle is simple if it visits no vertex twice, and
two cycles are disjoint if they have no vertex in common. (I learned this viewpoint from
[W3] and [Aral; these authors consider matrices with more general entries, correspond-
ing to graphs labelled by polynomials—sometimes commuting, sometimes not—where the
viewpoint is especially useful and the terms acquire coeflicients which are products of the
labels along the cycles.) So there is some nice connection between the structure of simple
cycles and the zeta function.

4.6 Matrices with polynomial entries. We discuss this in the next section.

SECTION 5. GRAPHS VIA POLYNOMIAL MATRICES

5.1 Introduction. Recall, a n x n matrix over Z4 can be considered as the adjacency
matrix of a directed graph with n vertices. Using such matrices to represent SFT’s (as
edge shifts) allows a more concise presentation of SFT’s than one has using only zero-one
matrices (for vertex shifts), and gives access to additional arguments.

There is a still more general way to present a directed graph (hence an SFT), by using
matrices with entries in tZ4[t] (polynomials in one variable ¢, with nonnegative integer
coefficients, with every term divisible by t—i.e., the only constant term allowed is zero).
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This allows still more concise presentations, additional access to matrix arguments and
algebra, and a concordance of formal patterns which make it a convincing candidate for
the “right” general way to present a directed graph (or SFT).

The idea (like so many others) can already be found in rough basic form in Shannon
[Sh]. The computation of the zeta function from a polynomial matrix presentation was
worked out in [BGMY]. More recently, the idea has been used to develop more sophisti-
cated and manageable state-splitting arguments for analyzing Markov shifts [MT1] and
constructing codes [AFKM, HMS]. Exciting work in preparation by Kim, Roush and Wag-
oner, which we will not preempt with further discussion here, develops very interesting
and useful new constructions of conjugacies by methods which appeal in a fundamental
way to this polynomial matrix setting.

I thank Hang Kim and Fred Roush for suggesting to me that these polynomial matrices
may also be important for studying the inverse spectral problem and related problems for
nonnegative matrices.

5.2 The construction. The basic idea is extremely simple. Let A be an n X n matrix
over tZ 4 [t]. From A we will construct a directed graph. Its vertex set will include a set of
n vertices (say 1,2,...,n) which index the rows and the columns of A(t). If for example,
A(1,2) = 3t? 4+ t*, then there will be three paths of length 2 and one path of length 4 from
vertex 1 to vertex 2. At each interior vertex on one of these paths (a path of length k
has k — 1 interior vertices), there is just one incoming edge and one outgoing edge. These
interior vertices are disjoint from 1,2, ...,n. This recipe produces a graph which can have
many more than n vertices (hence the conciseness of the presentation). For example, the

0, t?
23, t+ ¢t

matrix
A(t) = [

produces the directed graph

~ \Q»j
| - ::.__::4\‘

Note as in [BGMY] (fondly referred to as the “bigamy” paper) that the distinguished

set of n vertices (corresponding to the indices of the rows and the columns of A) is a
“rome”: any sufficiently long path in the graph hits the rome. Given a rome in a directed
graph, one can reverse the procedure and produce a presenting matrix A over tZ 4 [t], where
A is n X n if the rome has cardinality n. If B is a matrix over Z, which is the adjacency
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matrix of a directed graph, then the matrix tB is one matrix over tZ[t] which presents
the graph in the new formalism.

Another viewpoint is to think of A as giving a directed graph G' with labelled edges.
The number of edges from 7 to j is the (¢,7) entry of A evaluated at ¢t = 1. An edge is
labelled by a power of t. The power corresponds to the length of a path.

5.3 Spectra. Suppose B is a matrix over Z, and A is a matrix over tZ[t], and A
and B are presentations of the same directed graph G. We will prove that

(*) det(I — tB) = det(I — A).

(Of course by inverting we get the zeta function of the associated SFT.) We can picture
the argument in terms of the graph G’ described in §5.2. We choose, if possible, some arc
from : to j labelled by t**!, with k > 0; then we delete this arc, add a vertex ¢', add an
arc labelled t from 7 to i', and add an arc labelled t* from i’ to j. It is clear that a finite
sequence of such moves produces the graph G, with every edge labelled by t. So we are
done if we show the invariance of det(I — A) under one such elementary move.

This is a simple computation. With 7,7', 7 and A as above, we may assume ' = 1,7 = 2.
Let A' be the matrix derived from A by the elementary move above. Adding t times row
1 of (I — A') to row 2 does not change the determinant. The resulting matrix M has
determinant equal to det(I — A), because the upper left entry is 1, every other entry in
the first column is zero, and the lower right diagonal block is I — A.

Below, by the zeta function of a matrix (over Z or tZ4[t]) we will mean the inverse of
the quantity (*) above. By its spectral radius we will mean the spectral radius of B in
(*)—i.e., 1/a, where a is the smallest positive root of (*).

5.4 Shift equivalence and flow equivalence.

In this part let B be the adjacency matrix for a graph which is also presented by
a matrix A over tZ,[t]. Let B have size N. Let L = Z[t,t"!] be the ring of Laurent
polynomials over Z. Let LY represent the N-fold direct sum.

The matrix I — tB maps LV into itself. It is well known [Wal, pp.92,120] that the
group cokernel(I — tB) is isomorphic to the dimension group G(B) of §3.1. It is not hard
to check that an isomorphism is determined by the map which sends an element [t"e;] of
cok(I — tB) (where e; represents the usual canonical basis vector) to the vector e;(B')™"
(where B' is the isomorphism of G(B) in §3.1). Moreover, if we let cok(] — tB) be an L-
module in the obvious way, then under this correspondence the action of t~! on cok(I —tB)
corresponds to the action of B' on G(B). So, the L-module cok(I —tB) is a version of the
dimension module of §3.3. (Similarly, we could use the module cok(I — ¢t~!B); then the
action of ¢t would correspond to the action of B.) For integral matrices C and D, there is
a module isomorphism between cok(I — tC') and cok(I — tD) if and only if C and D are
shift equivalent over Z.



To summarize: the L-module cok(l — tB) is the shift-equivalence-over-Z class. Also
det(I — tB) is the (inverse of the) zeta function.

Obviously we would like these facts to hold for A in place of tB. They do! (This was
observed independently by, at least, Wagoner and myself.) One proof that cok(I —¢B) and
cok(I — A) give isomorphic modules follows the pattern of the proof of §5.3 for det(l — A).
Again check each elementary step. Note that the matrix M in the proof of §5.3 has first
column with just the first entry (which is 1) nonzero. Adding t* times the first column of
M to column j of M does not change the isomorphism class of the cokernel and it produces
a matrix which is the direct sum of 1 and I — A. This is the proof.

Now also assume that B is primitive and nontrivial (i.e., B is not [1]). We will sketch
how shift equivalence and flow equivalence are nicely unified in this polynomial setting.
Recall, det(I — B) and cok(I — B) are complete invariants of flow equivalence for Sp within
the class of irreducible SF'T’s. Obviously we can get these from det(I —¢B) and cok(I —tB)
by setting t = 1. Can we recover these invariants from det(] — A) and cok(I — A) by setting
t =17 Yes.

A satisfying way to express this is the following. Given A, form the L-module cok(I —
A). This is the shift equivalence class and one invariant of it is det(I — A). Now, in the
language of group cohomology [Br], apply the coinvariants functor to this Z[¢,¢71] module
to get a Z-module. This Z-module (abelian group) cok(l — A(1)) is the Bowen-Franks
group. This group and det(I — A(1)) are complete invariants of flow equivalence. The
latter invariant is obtained by applying the coinvariants functor to det(I — A).

In other words, at least in this primitive case we get the flow equivalence class by
applying the coinvariants functor to the shift equivalence class. It will be interesting to
see how well this viewpoint carries over to more general situations.

5.5 Powers. Let B be a nondegenerate adjacency matrix for a graph which is also
presented by a matrix A over tZ[t]. Also, let n be a positive integer greater than 1. Recall
(§1.7) that the matrix B™ over Z presents an SF'T isomorphic to (Sp)".

In contrast, the SFT T, presented by the polynomial matrix A™ will never be iso-
morphic to (Sg)". It turns out that the SFT T} is a quotient of T,, by a map which is
everywhere n-to-1! (In particular, A and A™ present SF'T’s of equal entropy.) To see this,
let A have size k, and let 1,2,..., k represent the vertices comprising the natural rome in
the graph G, presented by A™. Similarly, let 1,2, ...,k represent the vertices comprising
the natural rome in the graph G, presented by A. An entry A"(z,j) represents the paths
in G,, from vertex ¢ which end at vertex j and whose interior vertices do not intersect the
rome in G,. This entry also represents the paths from : to 7 in G; whose interior vertices
hit the rome in G; exactly n — 1 times. This correspondence gives us a map from paths in
G, to paths in Gy. It is easy to check this map determines a code from T}, to Ty which is
everywhere n-to-1.

The inverse zeta function of T}, is det(I — A™); this polynomial is divisible by the
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polynomial det(I — A), which is the inverse zeta function of Sp. The ratio is det(I +
A+ ...+ A" 1), It is possible for the latter polynomial to be trivial (so det(I — A) =
det(I — A™)). An example for n = 2 (i.e., det(I + A) = 1) is given by

2, t
A=) :
o]
For completeness, we record an example A which satisfies det(/ + A) = 1 and which
also defines a mixing SFT:

- 2 t 0 0 0 07
t 0 0 0 t 0
s 0 0 1t t 0 0
0o 0 t 0 t 0
0 0 0 t? 0 t
L0 t 0 0 0 0l

Finally, we indicate briefly how the shift equivalence data for (Sp)" may be recovered
from the polynomial matrix A. In this polynomial setting, as in §5.4 we think of the shift
equivalence class of (Sp)" as the isomorphism class of a certain ordered L-module. We
derive a representative M of this class from the ordered L-module cok(I — A) as follows.
As an ordered abelian group, we let M equal cok(/ — A). We define the action of L on M
by defining the action of t on M to be the action of ¢" on the original module cok(I — A).

5.6 Small presentations. If a matrix is n x n, then we say it has size n. What is the
smallest size of a matrix with a given nonzero spectrum? With a given shift equivalence
class? These are difficult questions with unhappy answers.

For example, consider the 4-tuple (v/2, ¢, —t, €), where € is small and positive. This will
be the nonzero spectrum of a primitive real matrix, but as € goes to zero the minimum size
of such a matrix goes to infinity [BH1, Ap.3]. The problem of determining the minimum
size at which a primitive matrix can realize a given nonzero spectrum is notoriously difficult
[BH1, Ap.3].

For an example over the integers, consider the 3-tuple (5,1,1). There is an infinite
collection of primitive integral matrices which have nonzero spectrum (5,1,1) but which
are pairwise not shift equivalent. (This follows from the general results of [BH2]. It is also
given by a barehanded construction in [B2,Example 3.4], which works for tuples (M,a,a)
when M and a are positive integers with M > a+3 .) In particular, as one runs through
the possible shift equivalence classes, the sizes of the realizing primitive matrices must go
to infinity (since the entries of primitive integral matrices with bounded spectral radius
and size are uniformly bounded).

It is a plausible and exciting prospect that one can obtain much more control on
the size of a presenting matrix over tZ,[t]. As a quick example, we remark that it is
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easy to convert the above-mentioned primitive matrices (those constructed in [B2,Example
3.4]) into polynomial matrix presentations of size 4. That is, we get infinitely many shift
equivalence classes with the same zeta function, all presented by polynomial matrices of size
4. (Of course, the degrees of the polynomials in these matrices must become unbounded.)

The striking theorems below of Handelman and Perrin (§5.8 and §5.9), and the result
in §5.10, provide some general positive results for the existence of small polynomial ma-
trices presenting graphs (or equivalently, presenting nonnegative integral matrices) with
prescribed properties. They help motivate the following general problems, which basically
translate intractable problems about nonnegative matrices into the polynomial matrix set-
ting, which seems more promising.

Problem 1. Suppose C is a primitive integral matrix and A is a matrix over tZ4[t] ,
where C' is strong shift equivalent over Z, to the adjacency matrix for the graph presented
by A. Given C, what is the minimum size possible for A?

Problems 2 & 3. Suppose an integral matrix C of size n is shift equivalent over Z
to a primitive matrix. Find good bounds for the minimum size of a matrix A over tZ [t]
such that A presents a graph with primitive adjacency matrix B, where
( Problem 2) B is shift equivalent over Z to C
( Problem 3) B and C have the same nonzero spectrum.

We remark that for problems 1 and 2, the minimum number of generators for the
group cok(I — C) is a lower bound for the size of A. There are additional and independent
constraints involving the sequence trC'™ and the spectral radius of C. For example, if C
has spectral radius less than 2 and trC > k, then the size of A is greater than k.

5.7 Sparse matrices and labelled graphs.

Suppose for the moment, for concreteness and simplicity, that U is a unital subsemiring
of the reals (e.g., @ or R} ). Suppose C is a square matrix whose entries lie in tU[t]-i.e.,
they are polynomials over U with zero constant term. Then we can think of C' as presenting
a labelled graph much as above. If C' has size k, then there are k distinguished vertices
in the graph. A monomial term ct" in C(t,7) contributes a path of n arcs from vertex ¢
to vertex j, whose interior vertices connect to no additional vertices. The first arc on the
path is labelled ¢ and the others are labelled 1.

Let B be the matrix which is the adjacency matrix of this graph. So, B is N x N,
where N is the total number of vertices in the graph. B(z,j) is zero if there is no arc from
1 to j, otherwise it is the label on the arc from 7 to 7. Now B might be quite sparse, and so
we can think of C as a concise presentation of B. Also, it is an easy exercise following §5.3
to check that det(I — C) = det(I — tB). (Similarly, one can prove an analogue of §5.4.)

The point we wish to make is that matrices over polynomial rings may be a good
way to present sparse matrices. In particular, one can hope for more satisfying results on
the intractable problem of determining the smallest size nonnegative matrix with a given
nonzero spectrum, by allowing polynomial matrix presentations.
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Problems 2R & 3R. Suppose a real matrix C of size n is shift equivalent over R to a
primitive matrix. Find good bounds for the minimum size of a matrix A over tR[t] such
that A presents a graph with primitive adjacency matrix B, where

( Problem 2R) B is shift equivalent over R to C
( Problem 3R) B and C have the same nonzero spectrum.

Of course, in problems 2R and 3R above, in place of R we could consider any unital
subring of R.

5.8 Handelman’s theorem. Which Perron numbers A can occur as the spectral
radius of a matrix A over tZ4[t] of size one? Handelman [HG] proved that there is such
an A of size 1 if and only if no conjugate of A over the rationals is a positive real number.
The matrix A he constructs presents a graph with primitive adjacency matrix.

5.9 Perrin’s theorem. One can ask, given a Perron number A, what is the smallest
matrix A over tZ[t] with spectral radius A? Dominique Perrin has explained to me that
for any Perron number A there is a matrix A over tZ4 [t] which has size 2 and has spectral
radius A! This follows from his construction in [Pe]. Given A, the nonnegative integral
matrix B on page 364 of [Pe] has spectral radius A", for some positive n. The desired
matrix A is obtained by noticing that the labelled graph for ¢" B has a rome consisting of
the two vertices 1 and k.

To be honest, there is a nontrivial imperfection to Perrin’s striking result: the adjacency
matrix for the corresponding graph will be irreducible but not necessarily primitive, and
the period of the matrix (which will be the integer n above) may be large.

Problem. Can one prove Perrin’s result, but with the realizing matrix A correspond-
ing to a graph of period 17

5.10 A theorem on extensions.

Lind [L] proved that every Perron number (positive algebraic integer with modulus
strictly greater than that of any conjugate) is the spectral radius of a primitive integer
matrix (the converse is obvious from the Perron theorem). He did not bound the size of
such a matrix. Using the polynomial matrix presentation, we’ll produce a realizing matrix
whose size is the degree of the Perron number. Basically the proof just lifts a corollary
[BMT 5.14] of work of Lind and Handelman into the polynomial matrix setting.

As in [BMT], we say a matrix is IEP if it is square, every entry is an integer, and it
is eventually positive (i.e., all sufficiently large positive powers of the matrix have every
entry strictly positive).

LEMMA. Let B be an IEP matrix of size m. Then there is a primitive matrix C' of
size m over tZ 4 [t] with the same spectral radius as B such that the dimension module for
B is a quotient of that for C.



Proof. Following the lines of Lind’s proof [L] (but avoiding most of the difficulties via
the IEP hypothesis), one can construct a primitive matrix A with spectral radius equal to
that of B such that the dimension module for B is a quotient of that for A. This was done
in [BMT, 5.14]. The matrix A constructed there is the adjacency matrix of a (Z )-labelled
graph in which m vertices (denoted there as v(i,n), 1 <7 < 8 ; B there corresponds to m
here) comprise an obvious rome. Using this rome we pass to the size m matrix presentation
over tZ, [t].

0

THEOREM.

(1) Suppose A is a Perron number of degree n. Then there is a directed graph with
primitive adjacency matrix B (over Z,) which can be presented by a matrix A
over tZ[t], where A has size n.

(2) Suppose C is an n X n integral matrix whose spectral radius A is a simple root
of the characteristic polynomial which is strictly greater than the modulus of any
other root. Then there is a directed graph with primitive adjacency matrix B (over
Z ) which can be presented by a matrix A over tZ . [t], such that the following hold

- B has spectral radius A

- the dimension module for C' is a quotient of the module for B
- if A is irrational, then A has size n

- if A is rational, then A has size at most n + k,

where k is the smallest integer such that A\* > n + k.

Proof. First we prove (2) using results of Handelman. If A is irrational, then C is
similar over the integers to an IEP matrix [H1]. If A is rational, then C' is shift equivalent
over the integers to an IEP matrix of size at most n+k (& as defined in (2)) [H2]. In either
case, the lemma provides the desired matrix A.

Now we prove (1). If A is rational, then A is a positive integer, and we let A = [t)].
If A is irrational, then we let C' be the companion matrix of the minimal polynomial of A
and appeal to (2). This finishes the proof.

g
SECTION 6. MORE WILLIAMS’ PROBLEMS

6.1 Introduction. The equations defining (strong) shift equivalence can be used to
define (strong) shift equivalence for morphisms in any category. Always, strong shift
equivalence implies shift equivalence. By a Williams’ problem we mean the problem of
whether the converse is true.

It turns out that shift equivalence and strong shift equivalence arise in several natural
ways from problems in symbolic dynamics. We’ll consider them in this section. In each
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case we get a Williams’ problem. Often there is a dynamical interpretation for strong shift
equivalence and shift equivalence (isomorphism and eventual isomorphism) which gives
the problem direct dynamical meaning. Usually shift equivalence turns out not to imply
strong shift equivalence (but understanding the difference is fundamental).

First we recall a definition. If G is a semigroup, then the integral semigroup ring ZG
of G is the free abelian group with generator set GG, with the multiplication defined on G
by the semigroup operation and then extended to ZG by the distributive law. We picture
an element of ZG as a formal integral combination of elements of G. We let Z, G denote
nonnegative integral sums of elements of G. We make ZG an ordered ring by designating
Z. G to be the positive set. (Z4+G is closed under addition and multiplication and every
element of ZG is a difference of elements of Z,G.) If G is a group, then ZG is also called
the integral group ring.

If G is Z™, then ZG is isomorphic to the ring of Laurent polynomials in n variables,
Z[zy,x; oz, 2.

6.2 Markov shifts and matrices of Laurent polynomials. By a Markov shift we
will mean an irreducible shift of finite type (SFT) together with a shift-invariant Markov
measure with full support. It turns out that the analysis of Markov shifts is intimately
related to understanding matrices of integral Laurent polynomials, and in particular their
shift equivalence classes.

A Markov shift can be defined by an irreducible stochastic matrix P. Let A be the
zero-one matrix such that A(z, ) is zero if and only if P(7,7) is. Then S4 is the underlying
SFT. We view P as giving labels to the edges in the graph with adjacency matrix A—that
is, P is a function from arcs into the reals. P determines the Markov measure on the SFT
S4 as follows. Let ¢ be the positive left eigenvector for P whose entries sum to 1. Then
for any i, the measure of the set of points which see a given word ag...a;. in coordinates
2y.eeyt + Kk is €(vo)P(ao)P(ay)...P(ax), where vy is the initial vertex of the arc ay.

A code between Markov shifts S(P) and S(Q) is a code between their underlying SFT’s
which sends the P-measure to the Q-measure. (For more on these codes and their relatives,

we recommend [P2] and [MT1].)

It is natural to try to generalize the ideas of (strong) shift equivalence to this category
by using the (strong) shift equivalence equations on stochastic matrices. To see why this
fails, suppose we have P = UV and Q = VU with P and @ stochastic. We would like
to build up some elementary isomorphism between S(P) and S(Q) with these equations.
We could try to follow the construction of §2.3. But now we don’t know how to break up
UV -paths into arcs. An entry of UV can be interpreted as a sum of terms (weights) on
paths. Such a weight has the form U(z, )V (7,k). But UV (z,k) could be the sum of, say,
several such small terms or just a few larger terms. It turns out that what one really needs
to know are the path weights with multiplicities—information which is lost on multiplying
the real matrices.
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The solution [PT2] is to regard the entries of the stochastic matrix P as lying not in
the reals R but in a larger ring, ZR? , the integral group ring of the group R% of positive
reals under multiplication. (Parry and Tuncel [PT2] actually used an isomorphic ring with
a more analytic flavor.) It turns out [PT2] that in a natural way, P and @ are strong shift
equivalent over Z4RY if and only they define isomorphic Markov shifts. Also, P and Q
are shift equivalent as matrices over Z4 R if and only if all but finitely many powers of
the Markov shifts are isomorphic (i.e., they are eventually isomorphic) [MT1].

Finally there is a crucial simplification. Given P, Parry and Schmidt [PSc] showed it is
possible to pass in a canonical way from R to a finitely generated subgroup of R —that
is, to consider only matrices over a certain finitely generated subgroup of R%. This group
must be isomorphic to Z™ for some n. After choosing generators for the group, one simply
works with matrices over ZZ"—that is, matrices whose entries are Laurent polynomials
in n variables with nonnegative integral coefficients. So in the end, isomorphism and
eventual isomorphism of Markov shifts are determined by strong shift equivalence and
shift equivalence, but now of matrices over Laurent polynomials in several variables. (For
a complete explanation of these things, we recommend [MT1].)

Much of the structure for SFT’s generalizes here. For example, the information carried

by the periodic points is perfectly encoded in the stochastic zeta function of Parry and
Tuncel [PT2] , given by the formula

((z) = exp Z tr(?]:n)z" = [det(I — 2P)] 1.
n=1

Here the entries of P lie not in R but in its integral group ring (or, if one prefers, in
the isomorphic ring Z[exp] of Parry and Tuncel, see [PT2] or [MT1, Defn. 4.2]). The
equation above makes sense at the level of formal power series. (In earlier work of Parry
and Williams [PW], a “stochastic zeta function” was offered which was given by the same
formula but with the entries of P still regarded as lying in R. This gives an invariant,
but one which does not capture all the desired information. We have appropriated the
term “stochastic zeta function” for the Parry-Tuncel function because we regard it as the
correct end product of this line of development.)

For SFT’s, the dimension module (§5.3) was a certain Z[t,#~!]-module. The dimension
module of a Markov shift is a R[t,t”!]-module, where R may be taken to be the ring
of Laurent polynomials in n variables (by identifying the variables with generators of
the canonical subgroup mentioned earlier)—it is a version of Tuncel’s dimension module
[Tu]. The variable-length graphs still work—Dbut now they are labelled by elements of
tR,[t] rather than tZ.[t]. Recall if A is a matrix over tZ,[t] presenting an SFT, then
the shift-equivalence-over-Z data for the SFT is encoded as the isomorphism class of the
Z(t,t"']-module cok(I — A). In the stochastic case, the entries of A lie in tR4[t], and the
shift-equivalence-over-R data is encoded as the isomorphism class of the R[t,¢!]-module
cok(I — A). (There is even a notion of stochastic flow equivalence, for which one invariant
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[P2,Ara] can be interpreted in the following way: apply the coinvariants functor to the
R[t,t7']-module cok(I — A) to obtain the R-module cok(I — A(1)), which is an invariant of
stochastic flow equivalence. Here A(1) denotes the matrix obtained by substituting 1 for
t in A. Similarly the element det(I — A(1)) is an invariant of stochastic flow equivalence
[P2,Ara).)

Even in the primitive case, shift equivalence does not imply strong shift equivalence
for matrices over Ry [B3]. (A matrix over Ry is primitive if some power has every entry
nonzero.) Thus even in the primitive case we must be concerned with order in the classifi-
cation of matrices up to shift equivalence over R,. We can express the order information
in the module framework by considering the R4 [t,t#~1]-module cok(I — A) as an ordered
module. Here the positive set of cok(l — A) is the set of vectors which have all entries
in R, [t] after multiplication by a sufficiently large power of A. Now shift equivalence of
matrices over tR[t] is equivalent to isomorphism of their ordered modules, i.e. a module
isomorphism which takes one positive set onto the other.

The realization problems for polynomial matrices are vastly more difficult. Recall,
Lind characterized the spectral radii of nonnegative integral matrices [L]. The analogue
for irreducible matrices over Ry is the beta function of Tuncel (see [MT1]). To think of
this in a finite way, consider an irreducible matrix A over R4 as a matrix with entries
in Z+[:c1,a:l_1,...,:£n,:c;1] and let p(t) be its characteristic polynomial. Factor p(t) in
Z[zy,z7", ..., zn, 27 !][t]. There will be one factor such that for any substitution of positive
reals for the variables z1, ..., z,,, this factor will have the largest root. You may regard that
factor as the beta function. What are the beta functions of irreducible matrices over Ry 7
There is not even a good conjecture at present. Progress to date has rested on a blend of
techniques from algebra, geometry and analysis [H3-6,deA] .

Problem. What are the beta functions of primitive matrices of Laurent polynomials?

Problem. What are the zeta functions arising from primitive matrices of Laurent
polynomials? (That is, which polynomials can arise as det(I — tA) for some primitive
matrix A whose entries are Laurent polynomials with nonnegative integral coeflicients?)

6.3 Boolean matrices. The Boolean semiring B is the set {0,1}, with addition and
multiplication defined as the quotient of these operations on the nonnegative reals by the
map sending 0 to 0 and sending all positive numbers to 1. So, 1 is a multiplicative identity,
0 is an additive identity, 141 = 1, 0x 0 = 0. Relations among nonnegative matrices project
to relations among Boolean matrices (matrices over B). For example, if A and B are shift
equivalent nonnegative matrices, then their Boolean images are shift equivalent over B;
and if A and B are to be strong shift equivalent, then their Boolean images must be. So
it makes sense to look at Williams’ problem for matrices over B, if only to check necessary
conditions on Williams’ problem for matrices over Z; (or Ry, or Q4 ).

Kim and Roush have completely classified all Boolean matrices up to shift equivalence
and also up to strong shift equivalence [KR5]. Their general result is lovely, but for
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simplicity we will just state the answer for primitive Boolean matrices (those for which
some power is the matrix with every entry 1). They are all shift equivalent! And two such
matrices are strong shift equivalent if and only if they have the same powers with zero
trace (there are only finitely many such powers). In particular, shift equivalence does not
imply strong shift equivalence in this setting.

One useful spinoff of their work is an intriguing tool for controlling the sign patterns
of nonnegative matrices. As remarked in [KR5, p.154], if A and B are two nonnegative
matrices whose Boolean projections are strong shift equivalent, and their entries lie in a
nondiscrete unital subring S of the reals, then B is strong shift equivalent over Sy to a
matrix with the same block sign pattern as A. For example, this with the classification
result [KR5] shows that a matrix over the nonnegative rationals Q4 with positive trace is
strong shift equivalent over Q4 to a matrix with all entries strictly positive. In particular,
if A is the nonzero spectrum of a primitive real matrix with positive trace, then A is the
nonzero spectrum of a strictly positive real matrix [BH1, Ap.4].

6.4 Markov shifts over infinite alphabets. Wagoner [Wal,2] has developed shift
equivalence and strong shift equivalence for SFT’s over infinite alphabets. Here a crucial
feature is that the morphisms are required to be uniformly continuous.

6.5 Sofic shifts. There are also notions of shift equivalence and strong shift equiva-
lence available for sofic shifts (these are the subshifts which are quotients of SFT’s) [BK].
Again strong shift equivalence corresponds to isomorphism and shift equivalence corre-
sponds to isomorphism of all large powers. The equations of (strong) shift equivalence are
now applied to elements of an integral semigroup ring, where the semigroup is the semi-
group under multiplication of infinite zero-one matrices with all row sums at most one and
with all but finitely many entries zero. Now, instead of considering matrices over a com-
mutative integral group ring, we are looking at the (noncommutative) integral semigroup
ring of a nonabelian semigroup. Because of this noncommutativity, it is a serious problem
even to define an appropriate zeta function [B4]. Nevertheless, I{im and Roush showed
that shift equivalence in this setting is decidable [KR4], which matches their result in the
SFT setting [KR3]. A key reduction in their proof is an analogue of the Parry-Schmidt
result [PSc] for Markov chains, which allowed one to restrict to modules over smaller rings:
in the sofic case, for considering shift equivalence (but not strong shift equivalence), Kim
and Roush observed by appeal to work of Nasu [N] that for two given systems it suffices
to consider modules over the integral semigroup ring of a certain finite semigroup (the
zero-one matrices of a certain bounded size).

For an explanation of these ideas, we refer to [BI,Sec.1] and [KR4]. Our aim here is
primarily to indicate by yet another example that the basic ideas of shift and strong shift
equivalence return in various guises to describe symbolic dynamical structures.
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SECTION 7. GENERAL MATRICES

In this section we’ll consider shift equivalence and strong shift equivalence a bit more
generally. This has algebraic and order aspects. We justify the investigation by the sym-
bolic dynamical relevance of (strong) shift equivalence in various settings, and because
these relations are algebraically natural in general (e.g., st ~ rs generates a definition of
Ky (R) via projections in GL(R)).

First we consider the algebraic aspect. Let R be a unital ring (unital means that R
has a multiplicative identity). We define shift equivalence and strong shift equivalence of
matrices over R by the same equations we use for R = Z. Does shift equivalence imply
strong shift equivalence?

If R = Z, the answer is yes. This was proved in old unpublished preprints by Williams
and by Effros [E2],[W2]. They offer related but different arguments, both of which go
through for any principal ideal domain. The answer is still yes for a Dedekind domain
[BH2]. On the other hand the following is open.

Problem [BH2]. Suppose R is a unital subring of the reals which is not a Dedekind
domain. If two matrices are shift equivalent over R, must they be strong shift equivalent
over R? What if R has finite homological dimension?

Next we consider order. A ring R is ordered if there is a subsemiring Ry (called the
positive set) such that every element of R can be written as the difference of two elements in
R,. We have already looked at shift and strong shift equivalence for R =7 and Ry = Z4.
There Williams’ problem is open in the irreducible case. Even for matrices of size 2, after

all this time, it is settled (in the affirmative) only if the determinant is not less than —1
[Bal,CuKr,W1].

Problem [Bal]. Suppose A and B are primitive size 2 matrices over Z4 which are
shift equivalent over Z,, with det4A < —1. Must A and B be strong shift equivalent over
Z+7

There are additional ideas [Ba2] but the problem is tough (as can be attested by the
calibre of some of the mathematicians who have spent months or years on Williams’ prob-
lem for matrices over Z —Williams, Parry, Franks, Krieger, Marcus, Baker, Handelman,

Kim&Roush....).

A sane response is to back off and consider Williams’ problem for matrices over the
nonnegative rationals or reals. Here Kim and Roush proved that shift equivalent matrices
over Q. are strong shift equivalent—if each has exactly one nonzero eigenvalue, with
multiplicity one (equivalently, the inverse zeta function is 1 — at, where a is the nonzero
eigenvalue) [KR6]. (It is some indication of the difficulty of the problem that this seemingly
simple case was open for so long.) They have also added to Baker’s viewpoint [Ba2] the
development of approximation and homotopic techniques [KR8,9].

But still: strong shift equivalence remains very poorly understood.
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Problem. Does shift equivalence over Ry imply strong shift equivalence over R4 for
strictly positive matrices over the reals?

SECTION 8. INVERSE PROBLEMS FOR NONNEGATIVE MATRICES

In [BH1,2], Handelman and I studied certain inverse problems for nonnegative matri-
ces, using tools from symbolic dynamics. As we took pains to explain and motivate the
problems there, in this section the discussion will be brief, and we refer to [BH1,2] for
more.

8.1 The inverse spectral problem. Let A = (dy,...,d,) be an n-tuple of complex
numbers. An old problem asks, when is A the spectrum of a nonnegative real matrix of size
n? (A is the spectrum of a matrix A if the characteristic polynomial is x a(t) = [[;(t —d;).
So A includes the information about multiplicities and we don’t care about the order in
which the d; are listed.)

Necessary conditions on A are discussed in [BH1], especially in Appendix 3. The best
reference to the literature on this problem is still [BePl], for a more recent discussion see
[Mi]. To my knowledge the problem first appears in print in Suleimanova’s 1949 paper
[Su] (if we neglect the glorious work of Perron and Frobenius early in this century). It has
been rather intractable. The solution is known if n = 3 [LL] or if n = 4 and the entries of
A are real [Ke]. The problem is still open even for n = 5 (or n = 4 with some entries not
real).

Thus it is natural to relax the old problem in some useful way. From the viewpoint
of symbolic dynamics, one only cares about the nonzero spectrum (as in §2.3), and it is
appropriate to ask when an n-tuple A of nonzero complex numbers can be the nonzero
part of the spectrum of some nonnegative matrix. This is also natural from just the matrix
viewpoint and certainly occurred to matrix theorists working on the problem (e.g. Charles
Johnson). I would guess this viewpoint was never seriously pursued because constructions
which could make much use of the relaxed condition were unavailable.

Aside from motivating the pursuit of the nonzero spectrum, symbolic dynamics en-
ters the picture by providing some tools which let one exploit the extra room provided
by passing to arbitrarily large matrices subject to a given nonzero spectrum. In some
cases there are matrix constructions for which codes need not be mentioned, but whose
inspiration comes from coding constructions. There are also the ideas around strong shift
equivalence, which provide some direct constructions, and which let one translate coding
constructions into matrix results. In this vein there is especially one result, the Submatrix
Theorem, which plays an essential role in [BH1,2] and for which the only proof known
(so far) relies in a fundamental way on coding ideas independent of matrices. These ideas
are the marker methods of the proof of Krieger’s Embedding Theorem [Kr3]. Because the
Embedding Theorem has been a basic and useful tool in the study of shifts of finite type
(read: asymptotic theory of nonnegative integral matrices), it may be that the Submatrix
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Theorem will have other applications in the study of “asymptotic” aspects of more general
nonnegative matrices.

8.2 Submatrix theorem. Let S be a unital subring of the reals. Given square
nonnegative matrices A and B over S, with A primitive, the Submatrix Theorem produces
(subject to “obvious” necessary conditions on the nonzero spectra) a matrix A’ with B as
a principal submatrix, where A’ is strong shift equivalent over S to A. If we are interested
only in invariants of strong shift equivalence (such as the nonzero spectrum), then this
provides tremendous control over submatrices for constructions.

If the ring S is discrete, then it must be the integers. The necessary trace condition
for the Submatrix Theorem is different in this case, and to avoid discussing it we just refer

to [BH1, Thm.1.10].

Recall (§2.3) the polynomial det(I —tC') determines the nonzero spectrum of a matrix
C and vice versa.

SUBMATRIX THEOREM (NON-DISCRETE CASE) [BH1]. Let S be a dense unital subring
of the reals. Suppose that A and B are nonnegative matrices with entries from S, such
that A is primitive. Then there exists a primitive matrix C' with entries from S such that
B is a proper principal submatrix of C' and det(I — tC') = det(I — tA) if and only the
following three conditions hold:

(1) The spectral radius of B is strictly smaller than that of A.
(2) For all positive integers n, trB™ < tr A™.
(3) For all positive integers n and k, if trB™ < tr A™ | then tr B™* < trA™*

Given conditions (1),(2) and (3), C may be chosen strong shift equivalent over Sy to A.

8.3 Spectral Conjecture. Handelman and I [BH1] conjectured that certain “obvi-
ous” necessary conditions are sufficient for an n-tuple A = (dy, ..., d,) of complex numbers
to be the nonzero spectrum of a primitive matrix whose entries lie in a given unital subring
S of the reals. (The general case follows easily from the primitive case [BH1].) It seems
to us that the supporting evidence [BH1] is fairly overwhelming. (Not that we can prove
it.) For example, the conjecture is true if S is the reals, or if S is nondiscrete and Y d; is
nonzero [BH1].

Those necessary conditions on A are a Perron condition, a Galois condition, and a
trace condition. The Perron condition is that there be a positive real number which is
listed just once in A and which is strictly larger than the modulus of any other entry. The
Galois condition is simply that the degree n polynomial [[(t — d;) must have its coefficients
in S. The trace condition is different if S = Z, so here we will just state the trace condition
when S is nondiscrete. For k > 0, let (k) denote the sum of the kth powers of the entries
of A. Then the trace condition is that for all positive integers m and k, two things hold:

(1) t(k) 20, and
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(2) if t(m) > 0, then t(mk) > 0 .

8.4 Generalizing the Spectral Conjecture. Again let S be a unital subring of
the reals. Suppose A is a square matrix over S. The Spectral Conjecture asserts that
there exists a primitive matrix B over S with the same nonzero spectrum as A if two
necessary conditions, a Perron condition and a trace condition, are satisfied. (Here the
Galois condition is automatically satisfied.) The Generalized Spectral Conjecture of [BH2]
asserts that under these same necessary conditions, one can require the primitive matrix
B to be shift equivalent over S to A. Handelman and I take this opportunity to make
a further generalization: we conjecture that under these same necessary conditions, there
exists a primitive matrix B strong shift equivalent over S to A.

But, remember, at this moment we do not know if two matrices shift equivalent over
S must be strong shift equivalent over S (Sec.7)—i.e., it may be that this generalization
is equivalent to the Generalized Spectral Conjecture of [BH2].

SECTION 9. ONE-SIDED SHIFTS

Let A be a square nonnegative integral matrix. Then A defines a one-sided SFT Tjy.
This is defined just as the two-sided SFT S4 was, with one difference: now the sequences
are £ = zoZ;... (that is, the coordinates are indexed only by nonnegative integers, not
by all the integers). Here the shift map is still continuous and (if A is nondegenerate)
surjective, but usually it is not invertible. (In fact, it is invertible only when the space
of sequences is finite. When A is nondegenerate, this means that up to conjugation by a
permutation matrix, A is a direct sum of permutation matrices.)

We have the same facts about codes and block codes as before, but now a block code
can only depend on nonnegative coordinates. That is, if there is a code f from T4 to Tp,
then there is some positive integer N and some function F' from T4 words of length N to
the alphabet of Ts such that for all  and for all ¢« > 0,

(fe)i = F(z;...xixN=1).

Williams classified these systems up to isomorphism [W1]. (There is an exposition of this
in [BFK], which also has a good deal more about these systems.) The classification is
beautifully simple, so we will describe it.

Given the matrix A, if possible choose two equal columns ¢ and 7; then add row j
to row ¢, and then erase row j and column j. This produces a smaller matrix A;. The
matrix A; may also have a pair of equal columns, which we can “amalgamate” as before
to get a yet smaller matrix. If B is a matrix obtained by a (finite) sequence of column
amalgamations in this way from A, then we call B an amalgamation of A. If B has no pair
of equal columns (i.e. cannot be further column-amalgamated), then B is called a total
amalgamation of A.
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Williams [W1] proved that the total amalgamation of A is independent (up to con-
jugation by a permutation matrix) of the choices of columns at each step, and that T4
is isomorphic to T if and only if the total amalgamations of A and B are the same (up
to conjugation by a permutation matrix). So for one-sided SFT’s the classification has a
clean and simple solution.

However there is another fundamental problem which seems much harder in the one-
sided case. Recall a matrix is nondegenerate if it has no zero rows or columns, and a
primitive matrix is a square nonnegative matrix some power of which has every entry
strictly positive.

Problem. Suppose B is a square nondegenerate nonnegative matrix and A is a prim-
itive matrix. Give necessary and sufficient conditions under which the one-sided SFT Tg
is isomorphic to a proper subsystem of the one-sided SFT T4.

Let us immediately express this problem in purely matrix terms. With no loss of
generality, we may (and should) assume that B is a total amalgamation. Then Tp is
isomorphic to a proper subsystem of T4 if and only if for some matrix C' presenting a
higher block presentation of T4, the matrix C' has a proper principal submatrix D such
that B is a total amalgamation of D.

The solution of the corresponding two-sided case is I{rieger’s embedding theorem [Kr3].
There, simple necessary conditions on entropy and periodic points are sufficient for the
proper embedding: the entropy of S4 must strictly exceed that of Sp, and for every positive
integer n the number of orbits of cardinality n for Sp cannot exceed the corresponding
number for S4.

These necessary conditions do not suffice in the one-sided case. For example, a point
with k preimages must be sent to a point with at least k£ preimages. Similarly there are
constraints counting preimages of preimages, etc.; and these are mixed with constraints on
periodic points (e.g. a fixed point with 3 preimages must go to a fixed point with at least
three preimages).

Krieger’s theorem is proved by a marker argument, but the possible markers are much
more limited and tightly defined in the one-sided case [Asl]. One-sided systems are much
more closely tied to their presenting matrices than are two sided systems [W1,BFK]. So
it 1s plausible that in the one-sided case a proof of the embedding theorem may be much
more closely tied to graphs and matrices (and therefore could lead to better algorithms
for constructing the embedding codes which exist by Krieger’s theorem in the two-sided
case). There have only been a few papers on one-sided SFT’s ([W1],[BFK],[Asl]), so we
have a situation common in symbolic dynamics: there’s not too much to learn, but there
is something to invent.

The problem above is posed for embedding SFT’s only (rather than general subshifts),
in contrast to the statement of Krieger’s theorem. This is to emphasize the matrix aspect.
There is almost surely no loss of generality. It is an exercise to check that an embedding

35



of a subshift (one-sided or two) into a shift of finite type always extends to an embedding
of some SFT containing the subshift. Every subshift is a nested intersection of SFT’s in
a well-understood way. So from the solution of the problem above, one should be able
without great difficulty to give the solution to the general problem. (This is certainly the
case for two-sided shifts—but in that case, at present there is no real simplification of
Krieger’s proof obtained by embedding only SFT’s.) v

SECTION 10. QUOTIENTS

Let S4 and Sp be (for simplicity) mixing SFT’s. When is Sp a quotient of S4? That
is, when is there a code from S, onto Sg? It is easy to check that a necessary condition
is the entropy inequality

h(SA) 2 h(SB)

There is a fundamental dichotomy for such maps. If h(S4) > h(Sp) and f is a quotient
map from S4 onto Spg, then the points with uncountably many preimages under f comprise
a residual subset of Sp. If h(S4) = h(Sp) and f is a quotient map from S4 onto Sp, then
there is a positive integer N such that no point in Sp has more than N preimages under
f [CP].

As it turns out, the case of strict inequality is relatively easy [B1]. If h(S4) > h(SB),
then Sp is a quotient of S, if and only if the trivially necessary periodic point condition
holds: for all n > 0,

*) tr(A™) > 0 = tr(B") > 0.

The equal-entropy case is much more rigid, subtle and algebraic. The periodic point
condition (*) is still necessary for Sp to be a quotient of S4. But also, the dimension
module of Sp must be a quotient of a closed submodule of the dimension module of S4
[KMT]. (In the terminology of §3.1, a closed submodule is given by restricting A’ to a
subgroup H of G(A) which is the intersection of G(A) with an A’-invariant subspace of
Va. A submodule given by restricting A’ to some A'-invariant subgroup H is not closed if

(QH)N G(A) contains a point not in H.)

CONJECTURE. Suppose A and B are primitive matrices over Z 4 of equal spectral
radius satisfying the periodic point condition (*) such that the dimension module of B is
a quotient of a closed submodule of the dimension module for A.

Then Spg is a quotient of S 4.

This conjecture is strongly supported by the work of Jonathan Ashley [As2]. For
primitive integral matrices A and B of equal spectral radius satisfying (*), he showed
that Sp is a quotient of S4 by a closing map if and only if the dimension module of
Sp is a quotient or closed subsystem of the dimension module of S4. (Closing maps are
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topologically conjugate to resolving maps, which can be constructed from certain matrix
equations and are the most useful codes for industrial applications [ACH]. See [AM] and
[BMT] for background.)

Ashley’s proof begins with a construction (the Eventual Factors Theorem of [BMT])
which produces interrelated quotient maps of higher powers of the shifts. This construction
is derived from matrix equations which capture the quotient relation for the dimension
modules. One scheme for approaching the conjecture above is to mimic this pattern: first
find matrix equations for the dimension condition, then find an “eventual” construction
from these analogous to the starting result from [BMT], and then adapt Ashley’s arguments
for coding into and out of long periodic blocks. (Caveat: this may be a red herring.)

There are, at least, some nice matrix equations for the dimension condition. Let A
and B be primitive integral matrices of equal spectral radius. Then the dimension module
for B is a quotient of a closed submodule of the dimension module for A if and only if
there are positive integral matrices R, S and a positive integer n such that for all positive
integers k,

RA*S = Btk

We leave a proof to the interested reader (it may help to consult [BMT,Sec.2]).
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