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1. Introduction

The ideas around shift equivalence and strong shift equivalence provide funda-
mental tools for the study not only of shifts of finite type but also of various other
symbolic dynamical systems. Recently there has emerged another such general
framework, dubbed “positive K-theory” by Wagoner. This paper is an exposition
of the positive K-theory approach to classification problems in symbolic dynamics,
which has its successes and appeal, but which is also still a work in progress. The
organization of the paper should be apparent from the table of contents.
I thank Jack Wagoner for very helpful feedback on this article (not to mention

his essential role in creating the theory), and I thank Bill Parry for the material on
strong shift equivalence of cocycles in Section 5.3.

2. Subshift definitions

For completeness we recall some elementary background definitions for subshifts.
A reader familiar with these can skip this section.
The system which is the full shift on n symbols (also called the n-shift) is defined

as follows. We give a finite set of n elements — say, {0, 1, ..., n− 1} — the discrete
topology. (This finite set is often called the alphabet.) We let X be the product of
countably many copies of this set, with the copies indexed by Z. We think of an
element x of X as a doubly infinite sequence

x = ...x−1x0x1...

where each xi is one of the n elements. X is given the product topology and thus
becomes a compact metrizable space. A metric compatible with the topology is
given by defining, when x is not equal to y,

dist(x, y) = 2−k, where k = min{|i| : xi 6= yi}.

That is, two sequences are close if they agree in a large stretch of coordinates around
the zero coordinate.
A finite sequence of elements of the alphabet is called a word. If W is a word

of length j − i + 1, then the set of sequences x such that xi...xj = W is called a
cylinder set. The cylinder sets are closed and open, and they give a basis for the
product topology on X. Thus X is zero dimensional.
There is a natural shift map homeomorphism S sending X into X, defined by

shifting the index set by one: (Sx)i = xi+1. The full shift on n symbols is the
system (X,S).
A subshift is a subsystem of some full shift (X,T ) on n symbols. This means

that it is a homeomorphism obtained by restriction of T to some compact subset
Y invariant under the shift and its inverse. The complement of Y is open and is
thus a union of cylinder sets. Because Y is shift invariant, it follows that there is
a (countable) list of words such that Y is precisely the set of all sequences y such
that for every word W on the list, for every i ≤ j, W is not equal to yi...yj . That
is, Y is the subset of all sequences which avoid the forbidden words.
A subshift is a shift of finite type (SFT) if there exists a finite alphabet and a

positive integer N such that there is a list of words of length N on this alphabet
such that a doubly infinite sequence x is in the subshift if and only if for every i ∈ Z
the word xi · · ·xi+N−1 is on the list.
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An SFT is also called a topological Markov shift, or topological Markov chain.
This terminology is appropriate because an SFT can be viewed as the topological
support of a finite-state stochastic Markov process, and also as the topological
analogue of such a process [Pa1]. For more on SFTs and their uses, see [DGS, Ki,
LM] and their references.

3. Presentations of SFTs

3.1. Vertex Shifts and 0-1 matrices. We now define vertex shifts, which are
examples of shifts of finite type. Notation: throughout these notes, “graph” means
“directed graph”.
For some n, let A be an n×n zero-one matrix. Regard A as the adjacency matrix

of a graph with n vertices; the vertices index the rows and the columns, and A(i, j)
is the number of edges from vertex i to vertex j. Let Y be the space of doubly
infinite sequences y such that for every k in Z, A(yk, yk+1) = 1. We think of Y as
the space of doubly infinite walks through the graph, where the walks/itineraries
are presented by recording the vertices traversed. The restriction of the shift to Y
is a shift of finite type: a sufficient list of forbidden words is the set of words ij
such that there is no arc from i to j. It is not difficult to check that every shift of
finite type is isomorphic (topologically conjugate) to a vertex shift.

3.2. Edge Shifts and Z+ matrices. Again let A be an adjacency matrix for a
directed graph, but now allow multiple edges: so, the entries of A are nonnegative
integers. Let the set of edges be the alphabet. Let ΣA be the set of sequences y
such that for all k, the terminal vertex of yk is the initial vertex of yk+1. Again,
we can think of ΣA as the space of doubly infinite walks through the graph, now
presented by the edges traversed. The shift map restricted to ΣA is an edge shift
and it is a shift of finite type: a sufficient list of forbidden words is the set of edge
pairs ij which do not satisfy the head-to-tail rule.
In the sequel, unless otherwise indicated an SFT defined by a nonnegative inte-

gral matrix A is intended to be the edge shift defined by A. We denote this SFT
by σA. Any SFT is isomorphic to an edge shift, because the two-block presentation
of a vertex shift is an edge shift.
The edge shift presentation is very useful. One reason is conciseness: an edge

shift presented by a small matrix with large entries is presented as a vertex shift
by a large matrix with a block pattern of zeros and ones which is awkward (e.g.
[AW]).
Another reason is functoriality. Working only with zero-one matrices rules out

some useful matrix operations (such as taking powers) and interpretations. For one
of these, first a little preparation.
If S is a subshift, then we let Sn denote the homeomorphism obtained by iterating

S n times. The homeomorphism Sn is isomorphic to a subshift S [n] whose alphabet
is the set of S-words of length n. An isomorphism from Sn to S[n] is given by the
map f which sends a point x to the point y such that for all k in Z,

yk = [xkn...x(k+1)n−1].

Claim. Suppose an edge shift S is defined by a matrix A. Then the subshift S [n],
after a renaming of symbols, is the edge shift defined by An.
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Proof. Let G be the graph with adjacency matrix A and let G[n] be the graph with
adjacency matrix An. Let these graphs have the same vertex set, so that A(i, j) is
the number of edges from i to j in G and An(i, j) is the number of edges from i to
j in G[n].
An element [e1e2 . . . en] in the alphabet of S

n is a path in G of n edges from some
vertex i to some vertex j. The number of such paths from i to j is An(i, j). So
there is a bijection from the alphabet of S [n] to the alphabet of σAn (i.e., the edge
set of G[n]) which respects initial and terminal vertex. This renaming of symbols
defines a one-block isomorphism from S [n] to σAn .

3.3. Edges shifts and polynomial matrices. The presentation of an SFT as
a vertex shift allows one to extract algebraic invariants from a defining zero-one
matrix. Defining edge shifts with nonnegative integral matrices, one makes a sig-
nificant advance in conciseness and functoriality of presentation.
There is another advance in conciseness and functoriality gained by presenting

SFT’s with polynomial matrices with entries in Z+. Here is an example illustrating
the general situation. Let B be the polynomial matrix

B =

(

2t t3 + t
3t2 0

)

.

To this (2× 2) matrix, we associate a graph G with two distinguished vertices, say
1 and 2. A term tk in B corresponds to a path of length k in G. From the term
2t, G acquires two edges from 1 to 1. From the term t3, G acquires a path of three
edges from 1 to 2. On this path are two new, intermediate vertices which have no
further adjoining edges. Similarly G acquires an edge from 1 to 2 and three paths
of length two from 2 to 1. In addition to the two distinguished vertices, for each
term tk, the graph G gains k − 1 vertices. In this example, altogether the graph
has 7 vertices.
We will letB] denote the adjacency matrix of a graphG derived by this procedure

from a polynomial matrix B over tZ+[t].
Clearly we can describe some very complicated graphs with polynomial matrices

of small size. Just as Z+ matrices allow much more concise presentations than 0−1
matrices, so also do polynomial matrices allow much more concise presentations
than Z+ matrices. For example, if C is a nonnegative integral matrix, then there is
a 2× 2 polynomial matrix A such that the spectral radius of A] equals the spectral
radius of C [Pe]; moreover, if the matrix C is primitive, then the matrix A] can be
chosen primitive [BL]. (So, 2 × 2 polynomial matrices are rich enough to present
mixing SFTs of all possible entropies.) The matrix A can be chosen 1 × 1 if and
only if the spectral radius of C (which is an algebraic integer) has no conjugates
over Q which are positive real numbers [Ha]. For more on polynomial matrices and
their history, see [B1].
The polynomial matrices also allow one to introduce analytic methods in the

construction of matrices A over Z+ with prescribed properties, such as the nonzero
spectrum of A]. This was the setting in which Kim, Ormes and Roush characterized
the nonzero spectra of nonnegative matrices with integer entries [KOR].

3.4. Path shifts. The path shifts are a class of model SFTs better suited to the
polynomial matrix presentation than edge shifts. They are developed in the next
section.
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4. Elementary isomorphisms and path shifts

4.1. Elementary isomorphism. To an n × n matrix A over tZ+[t] we have as-
sociated a directed graph G with adjacency matrix A] and a set V ′ (a rome) of
n primary vertices in the graph. Let a route be a finite path of edges e1 . . . ek in
the graph which hits the rome V ′ exactly twice, at the initial vertex of e1 and the
terminal vertex of ek. Because V

′ is a rome, any point x in the sequence space ΣA
can be written as a concatenation of routes.
By a basic elementary matrix we will mean a matrix E which is equal to the

identity matrix except in at most one entry, say E(i, j), which must be an offdiag-
onal entry. Suppose A and B are n×n matrices over tZ+[t], E is basic elementary
with E(i, j) = tk, and E(I − A) = (I − B). Then B is obtained by applying the
following operations to A: subtract tk from A(i, j), and add tk(row j of A) to row
i of A. (It follows that if A(i, j) =

∑

nrt
r, then nk > 0.)

For an example, set i, j, k = 1, 2, 3 and

A =

(

t t2 + t3

t4 t5

)

, B =

(

t+ t7 t2 + t8

t4 t5

)

and then we have

E(I−A) =

(

1 t3

0 1

) (

1− t −t2 − t3

−t4 1− t5

)

=

(

1− t− t7 −t2 − t8

−t4 1− t5

)

= (I−B) .

Now choose a route r′ of length k from i to j in GA. Define a set R
′ of paths in

GA as follows:

R′ = (RA \ {r
′}) ∪ {r′r : r ∈ RA and r

′r is a path in GA} .

Every point in ΣA has a unique decomposition as a concatenation of paths in R
′.

Also, clearly there is a bijection β : R′ → RB which respects length, initial vertex
and terminal vertex. (Often the choice of β is unique.) The chosen bijection induces
a toplogical conjugacy σA → σB . We likewise construct a family of conjugacies
induced by right multiplications (I − A)E = (I − B), in this case setting R′ =
(RA \ {r

′}) ∪ {r′r}.

4.2. NZC and A]. The construction of the last subsection, due to Kim, Roush
and Wagoner, gives an important method for constructing conjugacies of SFTs
[KRW1, KRW2, KRW3] and leads to a new framework for classification problems
in symbolic dynamics, in which topological conjugacies are given by compositions of
elementary conjugacies [BW]. For this framework, first, we regard our polynomial
matrices A as N × N matrices, by embedding the finite matrix as the upper left
corner of an otherwise zero matrix. Similarly, we use N × N elementary matrices
E (which agree with the infinite identity matrix except perhaps for one offdiagonal
entry). This is not enough, because there are matrices which define conjugate SFTs
and which cannot be related by moves with the elementary matrices over tZ+[t]

described so far. For an example, consider the matrices A = (2t) and B =

(

t t
t t

)

.

To arrange that all topological conjugacies arise as compositions of conjugacies
arising from elementary matrix multiplications, it suffices to slightly enlarge the
class of presenting polynomial matrices, to the class of matrices A = A(t) over
Z+[t] which satisfy the no-zero-length-cycles condition NZC: the matrix A(0) over
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Z+ defined by setting t equal to 0 satisfies tr(A
n) = 0 for all positive integers n.

For example, below C and D satisfy the NZC condition and F does not:

C =

(

t3 4 + t5

t 0

)

D =

(

t3 + 4t t5

t 0

)

F =

(

t3 4 + t
1 0

)

.

To a matrix A over Z+[t] satisfying NZC we will associate a matrix A] over
Z+. To begin the construction of A

], let B = A(0) − I; so, the nonzero entries
of B are the nonzero offdiagonal entries of A. Say i(0)i(1) . . . i(k) is a B-path if
Bi(0)i(1)Bi(1)i(2) · · ·Bi(k−1)i(k) 6= 0. Set Mij =

∑

Bi(0)i(1)Bi(1)i(2) · · ·Bi(k−1)i(k),
where the sum is over all B-paths such that

• i = i(0) and j = i(k),
• column i of A has an entry of positive degree, and
• row j of A has an entry of positive degree.

(The empty sum is zero.) Then define a matrix A′′ by setting

A′′
i,j = Aij −Bij +

∑

k

Mij(Ajk −Bjk) .

Now A′′ is a matrix over tZ+[t]. The basic idea is that biinfinite A-paths can be
factored uniquely as concatenations of A-paths which are positive length A-routes
preceded by some (possibly empty) concatenation of zero-length A-routes; and there
is a bijection (respecting length, initial vertex and terminal vertex) from these A-
paths to the routes of A′′. We define A] to be (A′′)] (the ] construction was defined
earlier for matrices over tZ+[t]). For example, in the previously displayed example
we have C] = D].
We will associate to A the topological conjugacy class of the edge SFT defined

by A]. However, to associate definite elementary conjugacies of the corresponding
edge SFTs to equations like E(I − A) = (I − B) for NZC matrices A and B,
we would have to work through a somewhat complicated and unnatural analysis
of cases. So, we will instead associate to an NZC matrix A a path SFT PA on
which our elementary conjugacies will be induced in an obvious and natural way.
Roughly, a point in PA will correspond to a concatenation of routes as before, but
with some routes (corresponding to degree zero terms) traversed in “zero time”. In
this setting, an equation E(I − A) = (I −B) or (I − A)E = (I −B) will induce a
topological conjugacy PA → PB just as in the previous description, by a bijection
R′
A → RB . The price for this simplicity is that we must write down some technical
definitions to make the intuition precise. We do this next.

4.3. Path shifts. Let A be an N × N matrix over Z+[t] which satisfies NZC and
has only finitely many nonzero entries. For each nonzero entry Aij , write Aij =

t`(1)+ · · ·+t`(n), where n = Aij(1). Let Rij = {(i, j, k, `) : 1 ≤ k ≤ n, ` = `(k)}. We
think of (i, j, k, `) as representing a route r from i to j, with length (time-to-traverse)
equal to `. Let R = ∪ijRij and define an alphabet A = {(i, j, k, `, t) : (i, j, k, `) ∈
R, t ∈ Z} and an associated bisequence space

Σ = { . . . s−1s0s1 · · · ∈ A
Z : ∀n, if sn = (i, j, k, `, t) and sn+1 = (i

′, j′, k′, `′, t′),

then j = i′ and t′ = t+ `} .

Informally, we think of an element of Σ as representing an infinite itinerary through
a graph whose edges are routes. A symbol (i, j, k, `, t) indicates that at time t, the
traveller is at vertex i and is about to travel along route (i, j, k, `) to vertex j.
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Finally, we say two elements s, s′ of Σ are equivalent (s ∼ s′) if there exists
M in Z such that sn+M = s′n for all n. We give A the discrete topology, A

Z the
product topology, Σ the relative topology and Σ/∼ the quotient topology. Let L
be the maximum length of a route in R. Then the restriction of h to the compact
set of bisequences s for which s0 = (i, j, k, `, t) with 0 ≤ t ≤ L is still surjective,
so Σ/∼ is compact. The shift action on Σ/∼ is induced by replacing each symbol
sn = (i, j, k, `, t) with (i, j, k, `, t − 1). The path shift PA is Σ/∼ with this shift
action.
To check that PA as a topological dynamical system is SFT, we define a topolog-

ical conjugacy to the edge SFT defined from A]. Let W be the set of words w with
the following properties: w = s1 · · · sr for some s in Σ such that s0 has positive
length (i.e. s0 = (i0, j0, k0, `0, t0) with `0 > 0), sr has positive length, and si has
zero length if 0 < i < r. Let W be the set of words obtained from W by dropping
the time coordinate (applying symbolwise the map (i, j, k, `, t) 7→ (i, j, k, `)). Be-
cause A satisfies the NZC condition, the setW is finite. The alphabet of the target
subshift will be W and an additional symbol zero. The map h : s 7→ s from Σ is
defined as follows: if sn+1 . . . sn+r ∈ W and sn+r = (i, j, k, `, t), then s[t, t + `] is
the symbol W followed by `− 1 zeros. The map h defines a continuous map from
Σ onto its image Σ; and Σ with the shift map is topologically conjugate to the
edge SFT associated to A]. The map Σ→ Σ/∼ is open, so h induces a continuous
map h : Σ/∼ → Σ. A continuous bijective map from a compact space to a compact
Hausdorff space is a homeomorphism. Finally, the shift action on Σ is intertwined
with a shift action on Σ/∼.
The path space presentation is the topological space PA together with its shift

action. Now equations E(I−A) = (I−B) and (I−A)E = (I−B) (with A,B NZC
matrices over Z+[t] and E basic elementary as before with E(i, j) = tk) induce
elementary topological conjugacies PA → PB by the correspondence of routes al-
ready described in the previous subsection. More generally, we allow that nonzero
entry E(i, j) to be any element of Z+[t]: we can still make the natural corre-
spondence of routes (which amounts to the correspondence one would obtain by
composing the conjugacies induced by matrices Es such that Es(i, j) = tk(s) and
∑

sEs(i, j) = E(i, j)).
It is proved in [BW] that every conjugacy of path SFTs is a composition of such

elementary conjugacies.

5. Strong shift equivalence theory

5.1. Definition. Let S be a semiring with additive and multiplicative identities
0 and 1. An elementary strong shift equivalence over S from A to B is a triple
(A, (U, V ), B) such that A,U, V,B are finite matrices over S satisfying A = UV
and B = V U . (The matrices A and B must be square but may have different
size.) A strong shift equivlance over S is a concatenation of elementary strong
shift equivalences. We use sse to abbreviate strong shift equivalence or strong shift
equivalent. Two matrices are sse over S if there exists a concatenation of elementary
sse’s over S between them.

5.2. Shifts of finite type. Strong shift equivalence was introduced by Williams
[Wi] who proved the central result that A and B are sse over Z+ if and only if they
define topologically conjugate (edge) SFTs. In fact, one can associate a definite
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topological conjugacy to an elementary strong shift equivalence, and show that
any topological conjugacy of edge SFTs is a composition of conjugacies induced by
elementary strong shift equivalences [Wi, W2].

5.3. Cocycles. Let G be a group, which for simplicity we will assume is abelian.
Let ZG be its integral group ring, with positive set Z+G. An element of ZG is a
formal sum

∑

g ng[g] with the g in G and the ng in Z and all but finitely many ng
zero. Addition is given by

∑

g ng[g]+
∑

gmg[g] =
∑

g(ng+mg)[g] and multiplication

is given by
∑

g ng[g]
∑

h nh[h] =
∑

(g,h)(ngnh)[g + h] where g + h is computed in

G. Z+G is the set of elements
∑

g ng[g] with each ng ≥ 0.

Suppose A is a matrix with entries in Z+G. Replacing an entry
∑

g ng[g] with
∑

ng produces a nonnegative integral matrix, which in this section we will denote
A(0), and its associated edge SFT σA(0), which we will also denote by σA. We view
an entry ng[g] as defining a labeling of edges by elements of G and then defining
the locally constant function fA from the SFT into G which sends a point x to the
label of the edge which is its zero coordinate symbol x0.
The function fA can be used to define a skew product system. This is the map

σAnf on ΣA×G defined by the rule (x, g) 7→ (σAx, g+fA(x)). Two skew products
σAnf and σBng are called isomorphic if there is a topological conjugacy σAnf →
σB n g of the form (x, g) 7→ (ϕ(x), g + r(x)). (In other words, the topological
conjugacy commutes with the action of G given by g : (x, h) 7→ (x, h+ g).)
We say two locally constant functions f, f ′ from an SFT σA into G are cohomol-

ogous if there is a locally constant function h into G such that f = f ′+ h− h ◦ σA.
We write f ∼ f ′ if f and f ′ are cohomologous. In the case that the SFT σA is
irreducible, the cohomology class of the locally constant function f is determined
by the map on finite σA-orbits O defined by

O 7→
∑

x∈O

f(x).

Proposition [Pa2] The following are equivalent for matrices A,B over Z+G and their
associated skew product systems σA n fA, σB n fB .

• A and B are sse over Z+G.
• There is a topological conjugacy ϕ : σA → σB such that fA ∼ fB ◦ ϕ.
• The skew product systems σA n fA and σB n fB are isomorphic. ¤

We won’t prove the proposition here, but the proof is a natural outgrowth of the
Z+ sse theory developed by Williams, Parry and others. In particular, there are
related proofs in Appendix 2 of [BHa], which considers strong shift equivalence for
“labeled” SFTs.
The classification of the skew products σA n f with a fixed base SFT σA is a

difficult and very open problem. In this regard, a fundamental open question of
Parry is the following:

Question [Pa2] Let G be a finite abelian group. Is it possible for there to exist
infinitely many matrices A1, A2, . . . over Z+G[t] satisfying the following conditions:

• for all i, j, the edge SFTs defined by Ai(0) and Aj(0) are topologically
conjugate irreducible SFTs;

• for all distinct i, j, the skew product systems defined by Ai and Aj are not
isomorphic (i.e. the matrices Ai, Aj are not sse over Z+G); and

• there is a polynomial p(t) in ZG[t] such that for all i, det(I − tAi) = p(t) ?
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The discussion of this subsection was based on communications from Bill Parry
[Pa2]. Strong shift equivalence over Z+G has also been used by Michael Sullivan in
his study of twistwise flow equivalence, with special emphasis on the caseG = Z/2Z,
and there are related ideas in his papers [Su1, Su2, Su3].

5.4. Markov chains. Let R∗
+ be the group of positive real numbers under multi-

plication; then ZR∗
+ is the associated integral semigroup ring, with positive cone

Z+R∗
+ as in the previous subsection. Parry and Tuncel [PT] developed a classifi-

cation scheme for irreducible Markov chains. In their setup, an irreducible matrix
A over Z+R∗

+ determines a shift of finite type σA with a shift-invariant Markov
measure µA (actually, they worked not with Z+R∗

+ but with an isomorphic semir-
ing, Z+[exp]). For example, if P is an irreducible stochastic matrix P of tran-
sition probabilities for a Markov chain, and A is the matrix over Z+R∗

+ defined
by A(i, j) = [P (i, j)], then A defines the Markov measure µA one would normally
associate with P .
Parry and Tuncel (building on earlier work of Williams and Parry [PW]) showed

two such matrices A,B are strong shift equivalent over Z+R∗
+ if and only if there is

a topological conjugacy σA → σB which sends µA to µB , and developed the other
natural generalizations of the Z theory. Subsequently Parry and Schmidt [PS]
showed how to reduce the classification problem in a canonical way to the strong
shift equivalence problem over Z+G for canonically associated finitely generated
groups G (the ratio and weights groups). This Markov chain sse theory was the first
satisfactory extension of Williams’ sse theory to a further dynamical classification
problem, but we see that at the level of strong shift equivalence it is a special case
of the cocycle classification discussed in the previous subsection.
For a clear introduction to this theory for Markov chains, we recommend [MT]

(also see [Tu1] and its references for later developments).

5.5. Other classifications with SSE. There are also rather satisfactory shift
equivalence theories for the classification of sofic systems up to topological conju-
gacy [N1, N2, HN, BK, KR1] and the classification of locally compact countable
state Markov chains up to uniformly continuous topological conjugacy [W1]. In
both these cases, the defining relation of strong shift equivalence is applied not
to finite matrices but to morphisms in another category. In the sofic case, the
morphisms are elements of a complicated ring (the integral semigroup ring of the
semigroup of finitely supported N×N zero-one matrices with all row sums at most
1). In the other case the morphisms are infinite matrices over Z+ with all row
and column sums finite. There is also a far-reaching generalization of the shift
equivalence theory to arbitrary subshifts due to Matsumoto [Ma].
We mention these theories for context; we do not now know a generalized positive

K-theory framework into which any of these theories might be integrated.

5.6. Wagoner’s SSE theory. Let S+ be a semiring with 0 and 1. Beginning
with the case S+ = Z+, Wagoner took the following approach to studying SSE
over S+. He built a CW complex SSE(S+) whose 0-cells are matrices over S+

and whose 1-cells are elementary strong shift equivalences over S+. The 2-cells
were defined by the “Triangle Identities”, natural identities chosen so that in the
case S = Z+ homotopy classes of paths from A to B correspond bijectively to
topological conjugacies from σA to σB . A meaningful exposition of this theory is
beyond the scope of this paper; we refer to the survey [W2] and its references,
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and the recent note [BaW]. However, the development of this complex, and the
extension by Wagoner and Kim and Roush of existing theory into this framework,
is the essence of recent progress on the classification of shifts of finite type such as
the refutation by Kim and Roush of the Williams’ conjecture [KRW1, KR2, KR3].

6. Algebraic invariants of strong shift equivalence

To appreciate the appeal of the “positive K-theory” framework we will say (just)
a little bit about the algebraic and dynamical structure around strong shift equiv-
alence. For a more thorough exposition of the algebra around strong shift equiva-
lence, we refer to [B2] or [B1].

6.1. SSE over a ring as a stabilized similarity. In this subsection, we assume
that S is a ring and following [MS] we show that sse over S is then a stabilized
version of similarity over S.
Suppose A is a square matrix. Refer to square matrices with a block form

(

A X
0 0

)

or

(

0 X
0 A

)

as nilpotent extensions of A. Note A is sse over S to its nilpotent extensions, for
example

(

A X
0 0

)

=

(

I
0

)

(

A X
)

and A =
(

A X
)

(

I
0

)

.

If U is invertible over S and B = U−1AU , then A is sse over S to B via A =
(AU)U−1, B = U−1(AU). On the other hand, if A = UV and B = V U , then A
and B have nilpotent extensions which are similar over S, since

(

I 0
V I

)(

A U
0 0

)

=

(

0 U
0 B

)(

I 0
V I

)

So, sse over S is the equivalence relation generated by nilpotent extension and
similarity over S.

6.2. Periodic points and det(·). Suppose T is a self homeomorphism of a space
and for all n, there are only finitely many T orbits of cardinality n. These counts
are generally recorded with the (Artin-Mazur) zeta function of T ,

ζT (t) = exp

∞
∑

n=1

|Fix(Tn)|

n
tn.

For T = σA, with A a matrix over Z+,

ζT (t) = exp

∞
∑

n=1

tr(An)

n
tn = [det(I − tA)]−1 .

6.3. Flow equivalence. Two homeomorphisms are flow equivalent if they are cross
sections of a common flow. Two irreducible matrices A,B over Z+ which are
nontrivial (determine SFTs with more than one orbit) define flow equivalent SFTs
if and only if (i) det(I − A) = det(I − B) and (ii) the cokernel groups cok(I − A)
and cok(I −B) are isomorphic [F, PSu].
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6.4. Shift equivalence. Let S be a semiring with 0 and 1. Two matrices A and
B are shift equivalent over S if there are matrices U, V over S and a positive integer
` (called the lag) such that the following equations hold.

A` = UV , B` = V U
AU = UB , BV = V A.

These equations define an equivalence relation whereas the relation UV ∼ V U
merely generates one. If A and B are shift equivalent over S, then for all but
finitely many positive integers n, An and Bn are strong shift equivalent over S.
When S is a PID or even a Dedekind domain, matrices are shift equivalent over S
iff they are strong shift equivalent over S; and primitive matrices over Z+ are shift
equivalent over Z+ if and only if they are shift equivalent over Z. Shift equivalence
is a very strong invariant of strong shift equivalence, and it also has a rich and
useful algebraic structure.
However, irreducible matrices over Z+ can be shift equivalent over Z+ but not

strong shift equivalent over Z+ [KR1, KR2], and this fundamental gap in the clas-
sification problem is still very poorly understood.

7. Positive K-theory

7.1. Definitions. Let S be a ring containing a semiring S+ which contains the
additive and multiplicative identities 0 and 1. Let E(S+) be the set of N × N
matrices E which agree with the identity matrix I in all except at most one entry
E(i, j), with i 6= j and E(i, j) ∈ S+.
Let M be a collection of N × N matrices over S which differ from the identity

matrix in at most finitely many entries. We will define a category C(M, S+) whose
objects areM. In this category, we define a forward elementary positive equivalence
to be a triple (C, (U, V ), D) such that

• C and D are inM;
• UCV = D;
• one of U and V is I;
• U and V are in E(S+)

A backward elementary positive equivalence is a triple (D, (U−1, V −1), C) such that
(C, (U, V ), D) is a forward elementary isomorphism. An elementary positive equiv-
alence is a forward or backward elementary positive equivalence. A positive equiv-

alence is a concatenation of elementary positive equivalences. We may also use
“S+-positive equivalence” in place of “positive equivalence” for emphasis or clarity.
The S+-positive equivalences are the morphisms of the category C(M, S+). We

let K+
1 (M, S+) denote the set of equivalence classes of C(M, S+) (where two ele-

ments ofM are equivalent if there is a positive equivalence between them).
Definition NZC(S+[t]) is the set of N × N matrices with entries in S+[t] of the

form I −A, where

• all but finitely many entries of A are zero
• if A(0) denotes the matrix over S+ obtained by setting t = 0, then there
exists a permutation matrix P such that P−1A(0)P has only zero entries
on or below the diagonal.
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(For the examples of interest to us, the second condition above is equivalent to
trace(A(0)n) = 0 for all nonnegative integers n.) WhenM = NZC(S+[t]), we use
C(S+[t]) to denote C(M, S+[t]), and we use K

+
1 (S+[t]) to denote K

+
1 (M, S+[t]).

The notation K+
1 above is chosen by analogy. The K1 group of a ring R is the

abelianization of its stabilized general linear group GL(R), the N×Nmatrices which
agree with the identity in all but finitely many entries and which are invertible over
R. For the ring S[t], the group K1(S[t]) is equal as a set to K

+
1 (GL(S[t]), S+[t]),

if we choose the semiring S+ to be all of S. For an arbitrary K+
1 (M, S+), we

are considering a class of matrices M which need not be invertible, and we are
generating equivalence from a restricted class of elementary equivalences.

7.2. From SSE to positive K theory.
Proposition [BW] Let ZG denote the integral group ring of a group G. Then the

following are equivalent for matrices A,B in NZC(Z+G[t]):

• There is a Z+G[t]-positive equivalence from A to B.
• The matrices A], B] are strong shift equivalent over Z+G. ¤

The correspondence established in [BW] is more detailed than this: for matrices
C,D over Z+G, there is an explicit rule which associates to a strong shift equivalence
over Z+G from C to D a positive equivalence from I − tC to I − tD. (These
postive equivalences then induce topological conjugacies of associated path space
SFTs, which in the cocycle and Markov chain cases have the appropriate additional
structure, which is respected by the conjugacy.) In fact, the objects of our category
C(M, S+) become the 0-cells of a CW complex, in which the elementary forward
positive equivalences are the oriented 1-cells, and the 2-dimensional cells can be
defined from a positive version of the Steinberg relations for the algebraic K-theory
group K2 (compare [W3]). The aim is to carry over the success of the Wagoner
theory into this positive K framework, where we hope to obtain new insight. This
effort is still in its early stages.

7.3. Algebraic invariants from I−A. We’ll give without proof the presentation
of the algebraic invariants above in terms of the I − A presentation (for A in
NZC(Z+[t])). For a more thorough discussion of all this, see [B1].
First, the reciprocal of the zeta function of the SFT σA is equal to det(I −A).
Next, we prepare to describe shift equivalence. For a ring R, let L(R) denote the

Laurent ring of polynomials in t, t−1 with coefficients in R. Let L(R)N denote the
(countably generated free ) L(R)-module consisting of 1 × N column vectors over
L(R) with all but finitely many entries zero. For a matrix I −A in NZC(S+[t]), let
cok(I −A) denote the cokernel L(S)-module L(S)N/(I −A)L(S)N.
Now let I − A and I − B be matrices in NZC(S+[t]). Then the matrices A

]

and B] are shift equivalent over S if and only cok(I − A) and cok(I − B) are
isomorphism L(S)-modules. Shift-equivalence-over-S+ can be characterized as the
isomorphism of ordered L(S)-modules (after putting an appropriate order structure
on the cokernel module).
Finally, the flow equivalence invariants arise in this setting by “setting t equal to

1”. For emphasis we write A as A(t). The Parry-Sullivan invariant is det(I−A(1)).
The Bowen-Franks group is the Z-module cok(I−A(1)), which is obtained from the
Z[t, t−1]-module cok(I − A(t)) by setting t equal to 1 (more formally, by applying
the coinvariants functor). In the next section we will understand more precisely
how flow equivalence arises naturaly in the positive K-theory setting.
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Why should I−A give strong information about the associated SFT so naturally?
This is probably a question too ill posed to have an answer, still we want to repeat a
remark of Tuncel [Tu2] which may make “I−A” more plausible: we have (I−A)−1 =
I + A+ A2 + . . . (this is well defined by the NZC condition), so we can regard an
entry (I − A)−1(i, j) as recording the number of finite paths from i to j of length
k, for all k.

7.4. Using K2. There is an example (currently the only example) of a serious
application of algebraic K-theory in the positive K-theory. Wagoner [W3] used the
positive K-theory setup to define for any positive integer m a homomorphism

π1

(

SSE(Z) , SSE2m(Z+)
)

→ K2

(

Z[t]/(t2m) , (t)
)

and used this with van der Kallen’s computation [vdK] of the range group to gen-
erate new counterexamples to Williams’ conjecture that matrices shift equivalent
over Z+ must be strong shift equivalent over Z+. In this equation, the left hand side
denotes the homotopy classes of paths in SSE(Z+) with endpoints in SSE2m(Z+);
SSE2m(Z+) is the subcomplex of SSE(Z+) consisting of the connected components
containing 0-cells A with trace(Ak) = 0 for 1 ≤ k ≤ 2m; and the relative K2 group
which is the the right hand side is the kernel of the split surjective homomorphism

K2

(

Z[t]/(t2m)
)

→ K2(Z)

which comes from setting t equal to zero. For an explanation of how all this works,
we refer to [W3].

8. Flow equivalence

One of the appealing aspects of the “positive K-theory” setup is that flow equiv-
alence and conjugacy appear naturally in the same framework.
Let Z[t∗] be the commutative ring of elements m+ nt∗ with

• m and n in Z,
• (m1 + n1t

∗) + (m2 + n2t
∗) = (m1 +m2) + (n1 + n2)t

∗ ,
• (m1 + n1t

∗) · (m2 + n2t
∗) = (m1m2) + (m1n2 + n1m2 + n1n2)t

∗ .

In other words, Z[t∗] is a presentation of the integral semigroup ring ZB of the
Boolean semigroup B = {0,+}, just as Z[t] is a presentation of ZZ+. There is an
obvious homomorphism Z[t] → Z[t∗] (sending t to t∗) and we’ll use ∗ to denote
any map induced by this homomorphism. We define NZC(Z+[t

∗]) as we defined
NZC(Z+[t]) in (7.1), except that we set t

∗ = 0 rather than setting t = 0 in the
second condition. Then as in the polynomial case we use K+

1 (S+[t
∗]) to denote

K+
1 (NZC(S+[t

∗]), S+[t
∗]).

Now consider for example the matrices (t3 + t) and (2t). They present flow
equivalent SFTs because there is an obvious continuous time change sending the
mapping torus of one to the other. The equivalence relation of flow equivalence of
SFTs is generated by topological conjugacies and such time changes. This has the
following consequence: if I −A and I −B are in NZC(Z+[t]), then A and B define
flow equivalent SFTs if and only if I − A∗ and I − B∗ lie in the same element of
K+

1 (Z+[t
∗]). In other words, for SFTs the consolidation of topological conjugacy

classes into flow equivalence classes is exactly described by the surjection

K+
1 (Z+[t])→ K+

1 (Z+[t
∗]) .
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There is no analogue to this in the pure SSE theory.
Let MZ denote the N × N matrices over Z with all but finitely many entries

agreeing with the identity. To obtain computable invariants we consider the map
Z+[t

∗] → Z induced by sending t∗ to 1. The corresponding map K+
1 (Z+[t

∗]) →
K+

1 (MZ,Z+) is not injective: for an example (with only upper left corners given
and with the matrices elsewhere agreeing with I), take

I −A∗ =

(

1 0
−t∗ 1− t∗

)

→

(

1 0
−1 0

)

,

I −B∗ =

(

1− 2t∗ 0
−t∗ 1− t∗

)

→

(

−1 0
−1 0

)

,

(

1 2
0 1

)(

1 0
−1 0

)

=

(

−1 0
−1 0

)

.

To produce in our framework the full Huang [H1, H2, H3, H4] flow equivalence
classification by Z invariants (and obtain further information), we use the structure
A acquires through its irreducible components [B3, BH]. This becomes complicated,
so we will only state a result for the irreducible case (which is the central result of
the theory). Let Mirr denote the set of matrices I − A in NZC(Z+[t]) such that
A has a unique maximal irreducible submatrix and this submatrix is nontrivial.
(“Nontrivial” here means that the associated SFT is not a single finite orbit.)
For a matrix A over Z[t] or Z[t∗], let A1 denote the matrix over Z induced by

t 7→ t∗ 7→ 1. The central result is the following: for every I − A and I − B in
Mirr, every SL(Z) equivalence U(I − A1)V = I − B1 lifts to a positive Z+[t

∗]-
equivalence from I −A∗ to I −B∗. (The content of this result is contained in [B3],
without explicit reference to matrices over Z[t∗].) With an appropriate definition
for a flow equivalence, one can restate this as follows: for matrices derived from
Mirr, every SL(Z) equivalence lifts to a flow equivalence. This result lets one
recover (and perhaps “explain”) the Franks classification [F] of flow equivalence of
nontrivial irreducible SFTs, because cok and det are complete invariants of SL(Z)
equivalence.
To express this classification in our framework, letMZ denote the N×Nmatrices

over Z with all but finitely many entries agreeing with the identity. Then for irre-
ducible nontrivial SFTs the consolidation of conjugacy classes into flow equivalence
classes is exactly described by the map

K+
1 (Mirr,Z+[t])→ K+

1 (MZ,Z)

and this map is well known to be surjective. The lifting result also provides new
topological information about the mapping class group of the mapping torus of an
irreducible SFT [B3].

9. Good finitary isomorphism for Markov chains

In this section we describe the bare bones of the Gomez positive K-theory clas-
sification scheme [G] for good finitary isomorphism of positive recurrent irreducible
countable state Markov shifts.
A countable state Markov chain is defined just as we defined a shift of finite type,

but using a countable alphabet rather than a finite alphabet. The Markov measure
is likewise defined as in the finite state case, but with the countable alphabet.
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A finitary isomorphism of Markov shifts is a measure preserving map ϕ inter-
twining the shifts such that ϕ and ϕ−1 are continuous on the complements of null
sets. A magic word for ϕ is a word W such that for any word U , there is a word
U with length equal to the length of U such that almost surely, if x is in the
domain of ϕ with x−n · · ·x−1 = W , x0 · · ·xk = U and xk+1 · · ·xk+n = W , then
(ϕx)0 · · · (ϕx)k = U . The map ϕ is a magic word isomorphism if ϕ and ϕ−1 have
magic words. The appropriateness of this class and its context in the study of
Markov chains is discussed in [G].
We regard an element of the integral group semiring Z+R∗

+ as a formal sum
∑

α∈R+

nα[α]; nα ∈ Z+, α ∈ R+; nα = 0 for all but finitely many α .

Let Z+[[R∗
+]] be the semiring defined in the same way, except that nα may be

nonzero for countably many α. Then let Z+[[R∗
+]][[t]] denote the semiring of formal

power series
∞
∑

k=0

akt
k , ak ∈ Z+[[R∗

+]] .

Now recall how a matrix I −A in NZC(Z+[R∗
+]) presented a finite state Markov

chain. In the most direct case, in which A has a unique irreducible component and
the derived real matrix is stochastic, a summand [α]tk of Aij represents a path with
transition time k and transition probability α. In the countable state case, Aij is
allowed to be a sum of countably many terms [α]tk, and we simply regard A as a
matrix over Z+[[R∗

+]][[t]].
For A over Z+[[R∗

+]][[t]], we let A
′ denote the matrix over R+[[t]] obtained by

applying entrywise the coefficients map Z+[[R∗
+]]→ [0,+∞] induced by

∑

nα[α] 7→
∑

nαα. Let A
′(1) denote the evaluation of A′ at t = 1. For the rest of this section,

letM denote the set of matrices I −A such that

• A ∈ NZC(Z+[[R∗
+]][[t]]),

• the chains corresponding to the irreducible components of A′(1) are positive
recurrent, and

• there is a unique irreducible component with the maximum Perron value.

In the presence of the first two conditions the last condition is equivalent to the
smallest positive root of the power series det(I − A′) being a simple root. Call
this unique irreducible component the maximum component. Let Amax denote the
matrix which agrees with A in entries of this component and is zero elsewhere. The
Markov shift σA associated to A inM is by definition the Markov shift associated
to Amax. We can regard this shift as a path shift with a certain measure, or as a
standard countable state Markov shift. For any irreducible countable state positive
recurrent Markov chain, there is a magic word isomorphism to such a chain. We
omit the details of these constructions.
Next we define the category C(M,Z+[[R∗

+]][[t]]). This is the category obtained
by adding into C(M,Z+[[R∗

+]][[t]]) one more generating positive equivalence: I−A
is equivalent to I −Amax.
Gomez associated to each elementary positive equivalence a magic word isomor-

phism of the associated Markov shifts, and he showed that for I−A and I−B inM,
every magic word isomorphism from σA to σB is induced by a positive equivalence
from I −A to I −B in C(M,Z+[[R∗

+]][[t]]).
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