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1. Introduction

About one fifth of the papers of Hang Kim were joint papers with Fred Roush
addressing problems of symbolic dynamics. They were remarkable problem solvers
who made huge contributions to the topic. This paper reviews those contributions,
at the level of describing main results and giving some context. There isn’t room
for the best part – the ideas behind the results – but I hope this survey is of some
use for appreciating the contributions and knowing where to look to find more.

The bibliography of references to their work lists papers in chronological order;
the supplementary bibliography is ordered alphabetically by author.

Many background definitions are omitted. Most basic background can be easily
found in the very accessible book of Lind and Marcus [55]. I use the notation σA to
represent a shift of finite type defined by a square nonnegative integral matrix A.
For conciseness, I don’t try to reconcile notation or terminology with statements in
the various papers. For exact statements one can consult the originals.

2. Decidability results

Shift equivalence. The first work of Kim and Roush for symbolic dynamics,
begun in the 1979 paper [1] and completed in [3], was to prove that there is a decision
procedure which takes two square matrices over Z+ and determines whether they
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are shift equivalent over Z+. Williams [60] show that if A and B are shift equivalent
over Z+, then σA and σB are eventually conjugate (i.e., σn

A and σn
B are topologically

conjugate for all but finitely many n). Kim and Roush proved the converse holds [1].
Shift equivalence is a very strong equivalence relation, and a very important one in
the study of shifts of finite type.

Stationary dimension groups and modules. This subsection gives some
definitions to set notation used later.

Suppose A is an n × n matrix over Z+. We need to fix a convention of having
A act on row vectors or column vectors; we choose rows. Then let GA denote the
direct limit group defined from A by the action on Zn,

GA = lim−−→
A

Zn = Zn A // Zn A // Zn A // · · · .

An element of the direct limit group is an equivalence class of elements {(v, k) : k ∈
Z+, v ∈ Zn}, with equivalence classes generated by the relation (v, k) ∼ (vA, k+ 1)
for all v and k. So, [(v, k)] = [(w, j)] iff vAn+j = wAn+k for some (hence all
large) n ≥ 0. The group GA becomes an ordered group (specifically, a stationary
dimension group) by the definition that the positive set G+

A is the set of [(v, k)]
such that vAm ≥ 0 for some m ≥ 0 (equivalently, the set [(v, k)] contains some

(w, j) such that w ≥ 0). The matrix A induces an automorphism Â of this ordered

group, defined by Â : [(v, k)] 7→ [(vA, k)]. The ordered group then becomes an
ordered module, MA, over the Laurent polynomials Z[t, t−1], with t acting by

t : [(v, k)] 7→ [(v, k + 1)], and t−1 acting by Â. We call MA the dimension module
of A.

For an SFT σA, Krieger used a Groethendieck style topological construction to
associateMA canonically to σA. He showed that matrices A,B are shift equivalent
over Z+ if and only if they have isomorphic dimension modules.

The most important class of SFT are the mixing SFTs. These are the SFTs
which are topologically conjugate to some σA for which A is a primitive matrix A.
For A,B primitive, MA and MB are isomorphic as ordered modules if and only
if they are isomorphic as unordered modules, and therefore in this case the order
structure is often disregarded.

When A is primitive, the ordered group (GA, G
+
A) is a stationary simple dimen-

sion group.
Closing maps and module epimorphisms. One of the basic coding questions

around shifts of finite type is the following: given mixing SFTs σA, σB is there a
factor map from σA onto σB? The question is answered in the case the SFTs have
different entropy. When both have equal entropy, the question is open, but there
is a very strong partial result due to Ashley [37]: there is a “right closing” factor
map from σA to σB if and only there is an epimorphism from the dimension module
of A to that of B. The factor maps which are right closing or left closing are a
large and useful class, and they are the only factor maps between SFTs of equal
entropy which we know how to construct in some generality [35,37,38,46,55]. The
distinction between right and left closing maps can be described at the matrix level
as the distinction between considering the action of a matrix A on row vectors or
column vectors.
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Given primitive A and B with integer entries, Kim and Roush [4] gave an algo-
rithm which produces an epimorphism from the dimension module for A to that of
B, or determines that none exists.

Stationary simple dimension groups and C∗-algebras. Bratteli, Jor-
gensen, Kim and Roush [29,32] gave a decision procedure for determining whether
two stationary simple dimension groups are isomorphic. They also gave a variety
of techniques for computation in special cases [31]. The motivation for this work
came from C∗-algebras: two AF C∗-algebras are stably isomorphic if and only if
their associated dimension groups as ordered groups are isomorphic. Thus the de-
cidability result showed that stable isomorphism of AF C∗-algebras with stationary
Bratteli diagrams is decidable. The decidability result is also meaningful directly to
symbolic dynamics. For example, a necessary condition for topological orbit equiv-
alence of two mixing shifts of finite type σA, σB is that the simple dimension group
generated from each by the range of the measure of maximal entropy on cylinder
sets must be the same [42].

The dimension groups of A and B can be isomorphic even if their dimension
modules are not [24]. The order structure of a simple stationary dimension module
carries no information as an invariant, given the module structure. But, given the
group structure without the module structure, the order structure is a very rich
additional invariant.

Other decidability results of Kim and Roush are described in the Boolean and
sofic sections below. Kim and Roush also proved significant decidability results out-
side of symbolic dynamics, which are reviewed in the article of Kirsten Eisenträger
[48].

3. Shift and strong shift equivalence for Boolean matrices

Let B be the Boolean semiring on two elements, which we denote {0, 1}. Here
0 is the additive identity; 1 is the multiplicative identity; and 1 + 1 = 1. Because
B is the quotient of the semiring Z+ under the map sending positive integers to
1 and zero to 0, the structure of shift equivalence and strong shift equivalence of
matrices over B is relevant to constructions and decision procedures for nonnegative
matrices over Z and other subrings of R. A significant part of their initial work [1]
on decidability of shift equivalence of matrices over Z+ involved the study of their
structure as Boolean matrices.

Kim and Roush showed that all primitive matrices are shift equivalent over B,
but primitive matrices A,B over B are strong shift equivalent over B if and only if
tr(An) = tr(Bn) for all positive integers n [2]. (In particular, for primitive Boolean
matrices, shift equivalence does not imply strong shift equivalence.) They showed
also [2] that for a matrix A over a dense subring S of R, any SSE of the Boolean
image of A to a Boolean matrix B can be mimicked by an SSE over S+ of A to
matrix with a block pattern of positive and zero blocks matching the matrix B.
In particular, every primitive matrix over S with positive trace is SSE over S+ to
a positive matrix (meaning, an entrywise positive matrix). This “positive matrix
lemma” was useful for later work, as indicated below.
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4. Strong shift equivalence of positive matrices over subrings of R

To this day, we do not know a general sufficient condition for strong shift equiv-
alence of matrices over Z+. For example, it is not known whether there exist
algorithms for the following problems:

• Given 2× 2 matrices over Z+, determine whether they are SSE over Z+.
• Given primitive matrices A,B over Z+, each with just one nonzero eigen-

value, which is the same, determine whether they are SSE over Z+.

In the 1990-1992 series of papers [6, 10, 12, 14], also appealing to results from the
Boolean paper [2], Kim and Roush developed path methods to give sufficient con-
ditions for proving SSE of matrices over dense subrings of R. The central result
is the following: if A and B lie on a path of positive matrices from a single con-
jugacy (similarity) class, then A and B are strong shift equivalent over R+. For a
dense subring S of R, by their “positive matrix lemma” mentioned above they could
immediately reduce the question of strong shift equivalence of primitive matrices
over S to the question of strong shift equivalence over positive matrices over S. For
positive matrices, perturbation methods could be applied to deduce theorems over
some rings S as corollaries of results over R. In particular, Kim and Roush were
then able to prove that two primitive matrices over a subfield S of R, with the same
spectral radius and with no other eigenvalue, are SSE over S. This result remains
in dramatic contrast to the lack of a general sufficient condition for strong shift
equivalence over Z+.

A generalized version of essentially the entire theory developed in the cited papers
is presented in [33] with complete supporting proofs and new results.

5. Automorphisms of the shift

The automorphism group Aut(σA) of an SFT σA is the countable group of home-
omorphisms commuting with σA. The study of automorphisms of the shift was
inaugurated by Hedlund [53], in the case of full shifts. As a probe to the classifi-
cation of shifts of finite type, and as a test of his conjecture that shift equivalence
implies strong shift equivalence for matrices over Z+ [60], Williams posed the follow-
ing question: if a mixing SFT has two fixed points, does it have an automorphism
which exchanges them? This evolved [45] into the Finite Extension Problem: deter-
mine when an automorphism of a finite subsystem of a mixing SFT is the restriction
of an automorphism of the shift.

An automorphism U of an SFT σA induces a canonical automorphism Û of the
dimension module of σA. (Here “induces a canonical” can be explained by Krieger’s
original construction or by an argument of Wagoner in the setting of his Strong

Shift Equivalence Space [58].) The map U 7→ Û defines a group homomorphism
ρA : Aut(σA) → Aut(MA) which is called the dimension representation for the
SFT σA. The inert automorphisms of σA are the automorphisms in the kernel of
ρA.

The first (and by far more important) part of the Finite Extension Problem is to
determine how the inert automorphisms can act on finite subsystems. The second
part (still open in general), understanding how a noninert automorphism can act,
to a large extent amounts to determining the range of the dimension representation
[44, 45]. Roughly: the action of the kernel on finite subsystems is qualitatively
much the same for different mixing SFTs; the kernel is the large, combinatorial and
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poorly understood part of the automorphism group. The action on the dimension
group varies from SFT to SFT, involves algebra and is well understood in many
cases [45].

Constraints on inert automorphisms. The automorphism group of an SFT
has its dimension representation, and also a second representation which has been
useful. This is the sign-gyration-compatibility homomorphism (SGCC), a map from
Aut(σA) into

∏
n∈N Z/nZ. For U ∈ Aut(σA), the nth coordinate of SGCC(U) is

determined by the action of U on points in σA-orbits of length less than or equal
to n.

Following earlier work by several authors, a central issue emerged: must SGCC
vanish on inert automorphisms? Kim and Roush proved this in their 1991 paper [9],
with an appeal to a “positive cocyles” lemma of Wagoner. This paper established
the first constraints on the action of the automorphism group of a mixing shift of
finite type on its finite subsystems, and in particular at last resolved the Williams
fixed point question (in the negative). Along with earlier work, it also proved that
not all inert automorphisms are compositions of inert automorphisms of finite order.

Sharper constraints on inert automorphisms. Kim, Roush and Wag-
oner [17] followed [9] with a much sharper result, providing explicit formulae for
computing the SGCC homomorphism from the entries of matrices giving a strong
shift equivalence. This argument takes place within the Strong Shift Equivalence
Space algebraic topological framework developed by Wagoner.

The range of the dimension representation. A necessary ingredient for the
complete classification of the possible actions of automorphisms of an SFT σA on
finite subsystems is a characterization of the range of the dimension representation
for σA. As part of their paper [17], Kim, Roush and Wagoner gave an example
of a mixing SFT whose dimension module (as an ordered module) admitted an
automorphism which could not be in the range of the dimension representation.

Constructed actions by inert automorphisms. The characterization of
the action of the group of inert automorphisms on finite subsystems of a mixing
SFT was completed when Kim, Roush and Wagoner proved that vanishing SGCC
is the only obstruction to extending an automorphism of a finite subsystem to an
automorphism of the shift [21,25,26]. Constructions had been made in many rather
general cases by earlier authors; however, the Kim-Roush-Wagoner work handling
the final remaining cases was extremely difficult, and introduced a new general
techniqe for constructing topological conjugacies between SFTs. This technique is
the heart of the “positive K-theory” discussed below.

Earlier counterexamples. In [11] Kim and Roush gave an example of a mixing
SFT of entropy strictly less than log 2 with an automorphism interchanging two
fixed points. This example could not be simple in the sense of Nasu. It therefore
refuted two conjectures of Wagoner [57] and clarified the structure of the Finite
Extension Problem.

Subgroups of the automorphism group. Hedlund in [53] showed that the
automorphism group of a full shift contained copies of all finite groups. This was
generalized to mixing shifts of finite type and extended to some other classs of
group in [45]. Among other results, in [7] Kim and Roush show that for every
nontrivial mixing shift of finite type the following groups embed as subgroups of
the automorphism group: any countable locally finite residually finite group; any
graph group; the fundamental group of any 2-manifold; the automorphism group
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of any full shift. They also proved the following. Let an denote the number of
automorphisms of a mixing shift of finite type with positive entropy log λ which
have a defining block code depending only on coordinates {0, 1, . . . , n − 1}. Then
limn(1/n)(log log an) = log λ.

Automorphisms of onesided shifts and λmatrices. The paper [13] includes
a study of inert automorphisms of onesided shifts of finite type and the quotient
groups for a filtration of onesided inert automorphisms. There is a related, nearly
contemporaneous paper by Ashley [36].

6. The nonzero spectra of nonnegative integral matrices

Since at least the 1940s, there has been work on the following problem: what
can be the spectrum of a real matrix with nonnegative entries? A variant asks,
what can be the nonzero spectrum of a nonnegative matrix? For precision, given
an n-tuple Λ = (λ1, . . . , λn) of complex numbers, let pΛ(t) denote the polynomial∏n

i=1(t − λi). Then Λ is the nonzero spectrum of a matrix A if its characteristic
polynomial is tkpΛ(t) for some k ≥ 0.

The original problem reduces to knowing for primitive matrices the possible
nonzero spectra and the minimal number of zeros which must be added for realiza-
tion [8]. For S a unital subring of R, the Spectral Conjecture of [8] conjectured that
an n-tuple Λ = (λ1, . . . , λn) of complex numbers is the nonzero part of the spec-
trum of a primitive matrix with entries from S if Λ satisfies three simple necesssary
conditions. Let tr(Λk) =

∑n
i=1(λi)

k, and let trn =
∑

k:k|n µ(n/k)tr(Λk), where µ

is the Mobius function. Then the three conditions are the following.

(1) There is an i such that λi > |λj | if j 6= i.
(2) The polynomial pΛ has its coefficients in S.
(3) (a) If S 6= Z, then for all n and k in N,

• tr(Λn) ≥ 0, and
• tr(Λn) > 0 =⇒ tr(Λnk) > 0.

(b) If S = Z, then for all n in N, trn ≥ 0.

The conjecture was proved in [8] for S = R, and in many other cases, but not in
general, and especially not for Z, the most difficult case.

Kim, Ormes and Roush proved the conjecture for the case S = Z in [27].
This result has the consequence for symbolic dynamics of providing a character-

ization of the zeta functions of mixing SFTs, because the zeta functions of mixing
SFTs are the reciprocals of the polynomials

∏n
i=1(1 − λiz) such that (λ1, . . . , λn)

is the nonzero spectrum of a primitive integral matrix. By routine reductions, one
then knows the possible zeta functions for all SFTs [8].

In an appendix by Boyle, Handelman, Kim and Roush to the paper [8], the
verification of the Spectral Conjecture is extended from R to all S not equal to
Z in the case that tr(Λ) > 0 (i.e., the candidate spectrum has positive trace). A
key ingredient of that argument is the “positive matrix lemma” mentioned in the
Boolean section above.

7. The classification problem for shifts of finite type

Reducible SFTs. In 1974, Williams conjectured that for matrices over Z+,
shift equivalence over Z+ implies strong shift equivalence over Z+. This conjecture
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was finally refuted in the 1992 paper [16] of Kim and Roush, which gave a coun-
terexample consisting of two reducible matrices. Their argument involved a clever
appeal to their proof with Wagoner [17] that the dimension representation for a
mixing shift of finite type in general need not be surjective.

General SFTs via irreducible SFTs. Enlarging on the idea behind their
reducible counterexample, Kim and Roush described how the classification prob-
lem for general (possibly reducible) SFTs could be reduced to two problems: the
problem of classifying mixing SFTs up to topological conjugacy, and the problem
of determining the range of the dimension representation for mixing SFTs [15].

Irreducible SFTs. The Williams Conjecture in the case of mixing SFTs was
finally refuted, by Kim and Roush, in their 1999 Annals of Math paper [20,22]. This
argument, like the automorphisms paper [17] with Wagoner, takes place in the
framework of Wagoner’s Strong Shift Equivalence Space. Wagoner gave another
counterexample argument, using K2 of the dual numbers, in [28], to which Kim
and Roush contributed an appendix. The reviews [23] and [59] of the classification
problem for shifts of finite type give a nice overview of all this, with open problems.

8. Classification of free Zp actions on mixing SFTs

Let G be a finite group. A G-SFT is an SFT with a continuous G action which
commutes with the shift. These are natural objects of study for symbolic dynamics,
which have been approached in different ways [34,47,49]. Let Zp denote the group
Z/pZ. A natural question then is whether, given a prime p and a mixing SFT
S, there is a free Zp action on the SFT, commuting with S. This seems to be a
question for another generation.

What Kim and Roush did do in [19] is to answer a closely related question. Let
G = Zp. The orbit space of a free G-SFT Y is the SFT whose points are the
G-orbits in Y . Given a mixing SFT X, they determined easily computed necessary
and sufficient conditions (involving only the zeta function of X) for there to exist
a G-SFT Y , shift equivalent as an SFT to X, such that the orbit space of Y is
X. Further progress will probably require a deeper understanding of how shift
equivalence refines strong shift equivalence over Z+.

A very interesting feature of [19] is that the proof requires the proof technique
method of “positive K-theory” introduced in [25, 26]. In both cases, the technique
makes possible a difficult proof, where without it we would have no proof at all.

9. Topological orbit equivalence of shifts of finite type

One of the dramatic developments in topological dynamics over the last two
decades was the emergence of topological orbit equivalence and ordered cohomol-
ogy in the study of Cantor minimal systems and their associated C∗ crossed product
algebras (e.g. [50, 51]). The topological orbit equivalence and ordered cohomology
were then studied for shifts of finite type in [42] and the paper [30] of Kim, Roush
and Susan Williams, who introduced several new tools, including a dual notion
of ordered homology. They also showed that a homeomorphism between SFTs
resepecting periodic points and their periods need not be a topological orbit equiv-
alence (i.e., need not induce a bijection of orbits). They also showed for mixing
SFTs that an isomorphism of ordered cochain groups respecting coboundaries is
equivalent to existence of a homeomorphism between them which sends orbit clo-
sures to orbit closures. Still open is the question of whether the unital ordered
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cohomology is a complete invariant of orbit equivalence of mixing SFTs up to flip
conjugacy.

Here is an unusual result from [30]. Suppose n > 3 and S is an irreducible SFT
and Sn is the full shift on n symbols. Let R be the integral group ring of the
automorphism group of the Sn. Then the unital ordered cohomology of the SFT
S × Sn, as an R-module, determines the topological conjugacy class of S.

It will be remarkable if this result becomes useful, since the the ordered coho-
mology of an SFT is fantastically complicated, and there is no classification known
for either the automorphism group or the ordered cohomology. However the for-
mulation of such an invariant reflects the energy and audacity of the authors (and
perhaps a certain sense of humor).

10. Sofic shifts

Recall from Section 2 that Kim and Roush gave a decision procedure for deter-
mining whether two shifts of finite type are eventually conjugate. They did the
same for sofic shifts.

We’ll give a very sketchy background for this. The sofic shifts are the subshifts
which are topological factors (quotients) of shifts of finite type. A fundamental step
toward their classification up to topological conjugacy was taken by Krieger [54],
who showed that certain SFT covers (derived from follower or predecessor sets)
were canonically associated to a sofic system: a conjugacy between two sofic shifts
lifts to a unique conjugacy of its right Krieger cover (constructed from follower
sets), and the same holds for the left Krieger cover (constructed from predecessor
sets).

Nasu [56] introduced a notion of strong shift equivalence of “representation ma-
trices” for SFT covers, and with Hamachi [52] proved two covers have strong shift
equivalent “representation matrices” if and only if the covers are topologically con-
jugate. So, for a class of canonical covers, topological conjugacy of the sofic shifts
is equivalent to topological conjugacy of the representation matrices of the covers.
These ideas were extended to a notion of shift equivalence for sofic shifts [43].

Let G be the semigroup (under matrix multiplication) of zero-one, N×N, finitely
supported, zero one matrices which have at most a one 1 in each row. Let R+ =
Z+G denote the semiring inside the integral semigroup ring of G consisting of formal
integral combinations with all coefficients nonnegative integers, modulo multiples
of the zero matrix in G. Define shift equivalence and strong shift equivalence of
elements in R+ using the defining equations of shift equvalence and strong shift
equjivalence. (We do not consider matrices with entries from R+ – just elements
of R+.) To any sofic shift S, one can associate an element MS of R+, derived from
the right Krieger cover. Now sofic shifts S, T are topologically conjugate if and
only if MS and MT are strong shift equivalent in R+; and the sofic shifts S, T are
eventually conjugate if and only if Ms and MT are shift equivalent in R+.

Kim and Roush proved that shift equivalence in R+ is decidable [5].
In [18], Kim and Roush introduced a dimension group for sofic shifts (which is

a dimension group in the usual sense, together with additional structure) whose
isomorphism class is a complete invariant for shift equivalence of the sofic shifts.
Again, this developed the theory for sofic shifts to parallel that for shifts of finite
type.
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Examples of near Markov shifts were given in [18] to show that eventual conju-
gacy does not imply conjugacy and that such a Markov shift need not be equivalent
to its time reversal.

11. Positive K-theory

Williams introduced the framework of strong shift equivalence of matrices over
Z+ provide a framework for studying the classification of shifts of finite type and the
isomorphisms (topological conjugacies) between them. In [25,26], Kim, Roush and
Wagoner introduced a new kind of basic unit for topological conjugacies between
shifts of finite type σA and σB : for example, under some conditions, if E is a basic
elementary matrix with off-diagonal entry a monomial in t, and E(I−tA) = I−tB,
then there is induced a topological conjugacy from σA to σB . This is expanded to
a classification theory emulating Williams’ theory in [39] (also see [40]).
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