
PUTNAM’S RESOLVING MAPS IN DIMENSION ZERO

MIKE BOYLE

Abstract. A block code from an irreducible shift of finite type can be lifted

canonically through resolving maps to a resolving map. There is an application

to Markovian maps.
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1. Introduction

Let S be the set of 1-to-1 almost everywhere factor maps between irreducible
Smale spaces. Ian Putnam [16] proved the following theorem: given π in S, there
are Smale spaces X and Y , and maps α, β and π̃ in S, such that α and β are
u-resolving, π̃ is s-resolving and the following diagram commutes:

X
eπ //

α

��

Y

β

��
X

π // Y

Putnam’s result was a surprise even in dimension zero, where resolving maps have
been studied extensively. In the zero dimensional case (where a Smale space is a
shift of finite type and a finitely presented system is a sofic shift), we will reinterpret
and extend Putnam’s work. Because a lot is known about resolving maps, this adds
to our understanding of general factor maps. We hope this work will also be relevant
to progress in positive dimension.

We view Putnam’s construction in two stages: first construct the map β, then
construct the diagram by a fiber product argument. For β, we construct a canon-
ically associated map we call π+, the futures cover of π. This map is itself a
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consequence of a more general construction, the full futures cover of π (Section 3).
The fiber product argument is carried out in Section 4, and associates a canonical
lift to π. For these sections, the map π can be any block code from an irreducible
SFT to a sofic shift, even an infinite to one code. In the infinite to one case, the
lift π̃ is only “eresolving”–resolving in the sense of existence (Sec. 2)–but this is
meaningful.

In Section 5, we show that our construction is the unique (up to topological
conjugacy) minimal construction – any other such lift must factor through it. This,
and the generalization to finitely presented range systems, answer (in the zero
dimensional case) the two questions raised by Putnam in [16].

The futures cover arises from an effort to simplify Putnam’s construction. Where
both the futures cover and the map β constructed by Putnam are defined, they and
their associated diagrams are isomorphic (Section 6). The futures cover is also
closely related to a canonical cover of Nasu (Section 6). The three constructions
(futures cover, Putnam cover, Nasu cover) are all isomorphic where they are all
defined (for 1-1 a.e. maps between irreducible SFTs).

An unexpected spinoff of this investigation is some new information about infinite
to one maps. A magic word construction very familiar for finite to one maps turns
out to be meaningful (7.1) and of some use for infinite to one maps. We also learn
that any factor map between irreducible SFTs can after precomposition with a
degree one resolving map be made Markovian (7.2).

This work was begun at the Max Planck Institute in Bonn during the 2004 Ac-
tivity on Algebraic and Topological Dynamics, supported by the European Science
Foundation. I thank MPI for a wonderful working environment, and (with regard
to this paper) for the opportunity to interact with Ian Putnam during the Activity.

2. Background

In this section, we recall and slightly expand some background results and ter-
minology. For further detail, see the texts [8, 11]. We will be concerned with
subshifts (X,T ) where X is a shift-invariant space of doubly infinite sequences over
a finite alphabet, with the usual topology (relative of product of discrete, making
X zero dimensional compact metrizable) and T is the restriction of the shift map
σ to X. (We use the left shift, (σx)i = xi+1.) The alphabet for (X,T ) may be
denoted A(X) or A(T ), and the set of words of length n occurring in points of X
is denoted Wn(X) or Wn(T ). A point x of a subshift (X,S) is left transitive (right
transitive) if for every S-word W there exist negative (positive) integers i ≤ j such
that W = x[i, j]. A point is doubly transitive if it both left transitive and right
transitive. Points x and x′ in a subshift are left asymptotic if there exists n in
Z such that x(−∞, n] = x′(−∞, n]. Systems (X,T ) and (X ′, T ′) are topologically
conjugate if there is a homeomorphism ϕ : X → X ′ such that T ′ϕ = ϕT . An SFT
is a system (X,S) such that there exists n such that a point x is in X if and only
if x[i+ 1, i+ n] ∈ Wn(S) for every i ∈ Z. An SFT is 1-step if this length n can be
chosen to be 2. An edge SFT is a 1-step SFT for which the alphabet is the set of
edges in a nondegenerate directed graph G and EE′ is an allowed word of length
2 if the terminal vertex of E equals the initial vertex E′. An SFT is irreducible if
it has a dense forward orbit. A directed graph is nondegenerate if every vertex has
at least one incoming edge and at least one outgoing edge. An edge SFT defined
by a nondegenerate directed graph G is irreducible iff there is a path in G from
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any vertex to any other. An irreducible component of an SFT is a maximal irre-
ducible subsystem. The entropy of an SFT is the maximum of the entropies of its
irreducible components.

A block code is a map ϕ : (X,S) → (Y, T ) between subshifts such that for
some n there is a map ϕ : W2n+1(S) → A(T ) such that for all x in X and i ∈ Z,
(ϕx)i = ϕ(x[i − n, i + n]). When such an n exists, the block code has range n. If
n = 0, then ϕ is a 1-block code. Every continuous shift commuting map (or code)
between subshifts is given by a block code. If ϕ is a surjective block code, then it
is a factor map. A factor map ϕ from an irreducible SFT onto a subshift Y has
a well defined degree d: the cardinality of the preimage of every double transitive
point in Y is d. In this case we also say that ϕ is d-to-1 almost everywhere. A
surjective code respects entropy if it is finite to one. An irreducible SFT has no
proper subsystem of equal entropy. A sofic shift is a subshift which is the image of
an SFT under a block code. The SFTs are the zero dimensional Smale spaces and
the sofic shifts are the zero dimensional finitely presented dynamical systems (see
[7, 16]).

Let ϕ denote a factor map from a subshift (X,S) to a subshift (Y, T ). ϕ is right
resolving if it is a 1-block code with the following property: if a0 ∈ A(X), with
image symbol b0 ∈ A(Y ), and if b0b1 is a Y -word, then there exists at most one
a1 ∈ A(X) such that a1 maps to b1 and a0a1 is an X word. ϕ is right closing, or
u-resolving, if for all left asymptotic x and x′ ∈ X, ϕ(x) = ϕ(x′) implies x = x′.
(The terminology “right closing” is standard in symbolic dynamics [8, 11]; Putnam’s
more general terminology “u-resolving” means injective on unstable sets [16], which
in this setting means right closing. We will generally favor Putnam’s terminology.)

Similarly, ϕ is left resolving if it is a 1-block code with the following property:
if a1 ∈ A(X), with image symbol b1 ∈ A(Y ), and if b0b1 is a Y -word, then there
exists at most one a0 ∈ A(X) such that a0 maps to b0 and a0a1 is an X word.
Likewise, ϕ is left closing, or s-resolving, if for all right asymptotic x and x′ ∈ X,
ϕ(x) = ϕ(x′) implies x = x′. Here “s-resolving” means injective on stable sets [16].
We say a map is resolving if it is left, right, u- or s-resolving. A resolving map is
finite to one and therefore its domain and image are subshifts of equal entropy.

We say ϕ is right eresolving if the right resolving condition holds, but with
the uniqueness condition replaced by existence. That is, in the definition of right
resolving, we replace “at most one” with “at least one”. We say ϕ is u-eresolving
if given x in X and y ∈ Y such that ϕ(x) is left asymptotic to y, there exists at
least one x in X such that x is left asymptotic to x and ϕ(x) = y. For block codes,
u-eresolving has been called right continuing [6, Sec. 5]. The terms left eresolving,
left continuing and s-eresolving are defined analogously.

In the next proposition, we record some known facts relating these notions.
Obviously the left/s analogues likewise hold.

Proposition 2.1. Let ϕ be a block code from a subshift (X,S) onto a subshift
(Y, T ).

(1) If ϕ is right resolving, then ϕ is u-resolving (i.e. right closing).
(2) If ϕ is u-resolving, then there is a topological conjugacy ψ and a right re-

solving ϕ′ such that ϕ′ is ψ followed by ϕ.
(3) If ϕ is right eresolving, then ϕ is u-eresolving (i.e. right continuing).
(4) If ϕ is u-eresolving, then there is a topological conjugacy ψ and a right

eresolving ϕ′ such that ϕ′ is ψ followed by ϕ.
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(5) If (X,S) and (Y, T ) are irreducible SFTs of equal entropy, then ϕ is u-
resolving if and only if it is u-eresolving; if in addition these SFTs are
1-step and ϕ is 1-block, then ϕ is right resolving if and only if it is right
eresolving.

(6) If ϕ is u-resolving and (X,S) is an irreducible SFT, then (Y, T ) is an SFT
if and only if ϕ is u-eresolving.

Proof. (1) and (3) are easy observations. (2) is proved in [8, Proposition 4.33]. (4)
is proved in [6, Proposition 5.1]. (5) is partly the result [11, Proposition 8.2.2],
and the rest of (5) and (6) are proved by a similar appeal to the Perron-Frobenius
theory element [11, Theorem 4.4.7]. �

Remark 2.2. Resolving maps from irreducible SFTs onto strictly sofic shifts are
important in the theory of sofic shifts, and such maps cannot be eresolving. On
the other hand, eresolving maps between irreducible SFTs of unequal entropy are
relevant to understanding Markovian codes [6]. In this paper we will encounter
both types of map in the same setting, so for clarity we have introduced the new
term eresolving. Caveat: the term “resolving” has sometimes been used to mean
u-resolving; or, eresolving; or, both resolving and eresolving.

Lemma 2.3. Suppose ϕ : (X,S) → (Y, T ) is a u-resolving block code such that
(X,S) is SFT, (Y, T ) is irreducible SFT, and (X0, S0) is an irreducible component
of (X,S) of maximum entropy.

Then any point of (X,S) which is left asymptotic to X0 is contained in X0.

Proof. This is [8, Lemma 5.1.4] in that case that ϕ is right resolving. The conclusion
then follows from Proposition 2.1(2). �

“Magic words” are an important technical tool in the theory of codes from SFTs.
Let ϕ : (X,S) → (Y, T ) be a surjective one-block code. Above every Y -word
W = W [1, n] of length |W | = n there is a set of X-words W ′ = W ′[1, n] of length
n which by the coding rule are sent to W , i.e. ϕW ′ = W . Given 1 ≤ i ≤ n, set
d(W, i) = |{W ′

i : ϕW ′ = W}|. We define the resolving degree δ(ϕ) of ϕ to be the
minimum of d(W, i) over all Y -words W and 1 ≤ i ≤ |W |. W is a magic word if,
for some i, d(W, i) = δ(ϕ). A magic symbol for ϕ is a magic word of length 1, that
is, an element µ of A(Y ) such that whenever W is a Y -word and Wi = µ, then
d(W, i) = δ(ϕ). (In other words, if µ occurs at a position in W , then “above” W we
see every symbol which maps to µ, and this set of symbols has cardinality δ(ϕ).)
For an irreducible SFT (X,S) and finite-to-one block code ϕ : (X,S) → (Y, T ), the
proof that ϕ has a well defined degree proceeds by showing every doubly transitive
point has exactly δ(ϕ) preimages [8, 11].

We have defined magic words and symbols exactly as in Kitchens’ text [8, p.102
and p.113], except that we do not restrict to the case that ϕ is finite to one.
In particular, our number δ(ϕ) is the number d in [8, p.101]. Two block codes
α, β are topologically conjugate if there are topological conjugacies ψ1, ψ2 such that
ψ1β = αψ2. We introduce the term “resolving degree” because it turns out to be
a conjugacy invariant of infinite to one maps as well as finite to one maps (7.1).
Likewise, the next lemma will be useful to us in the general (not just finite to one)
case.
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Lemma 2.4. A surjective block code ϕ is topologically conjugate to a 1-block code
with a magic symbol. If ϕ is u-resolving, then in addition this code can be required
to be right resolving.

Proof. The first statement is proved in [8, Proposition 4.3.2]. The restriction in the
statement to finite to one codes is not needed in the proof. For the second statement,
after passing to a topologically conjugate code, we may assume ϕ is right resolving.
The recoding construction of [8, Proposition 4.3.2] is easily adjusted to respect the
right resolving property. �

The next lemma says that a u-resolving map from an irreducible SFT onto a
sofic shift is (despite Proposition 2.1(6)) u-eresolving with respect to left transitive
points in the image.

Lemma 2.5. Suppose (X,S) is SFT and ϕ : (X,S) → (Y, T ) is a u-resolving block
code. Suppose y is left transitive in Y , and x is a point in X such that ϕx is left
asymptotic to y.

Then there exists a point x′ in X such that x′ is left asymptotic to x and ϕx′ = y.
Also, if ϕ is right resolving and (ϕx)(−∞, 0] = y(−∞, 0], then x′ can be chosen
such that x′(−∞, 0] = x(−∞, 0].

Proof. After passing to a topologically conjugate map, we can assume without loss
of generality that ϕ is right resolving with a magic symbol µ. Choose n < 0 such
that yn = µ. Because µ is a magic symbol, for all k > 0 there exists an X-word
an · · · an+k such that ϕ(an · · · an+k) = yn · · · yn+k and an = xn. Because ϕ is right
resolving, the word an · · · an+k is uniquely determined by an and y. Define x′ by
setting x′i = xi if i ≤ n and x′i = ai if i > n. �

3. The futures cover of a map

To begin, let π : (X,S) → (Y, T ) be a 1-block code from a 1-step SFT onto a
sofic shift. We will associate to π a surjective right resolving 1-block code π++ :
(Y++, T++) → (Y, T ), where (Y++, T++) is a 1-step SFT. Given y ∈ Y and m ∈ Z,
define the following subset of A(S):

(3.1) Um(y) = {xm : x ∈ X and π(xj) = yj if j ≤ m} .

Define the alphabet of T++ to be

A(T++) = {U0(y) : y ∈ Y } = {Um(y) : y ∈ Y and m ∈ Z} .

Define the allowed T++-words of length two (and thus determine the 1-step SFT
T++) as follows: UU ′ is allowed if U ∈ A(T++) and there exists j in A(T ) such
that

U ′ = {i ∈ A(S) : π(i) = j and i follows some element of U} .
Note, given U, j and U ′ as above, we do have U ′ in A(T++), since there exists a y
in Y with U0(y) = U and y1 = j, and then U ′ = U1(y). Similarly, we see that the
set of all Y++-words is

{U0(y)U1(y) · · ·Un(y) : n ≥ 0, y ∈ Y } .

The one-block code π++ : (Y++, T++) → (Y, T ) is defined by sending a Y++-symbol
U to the Y -symbol which is π(i) for every i in U . The map π++ is clearly well-
defined, surjective and right resolving.
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Finally, we associate to π++ the shift-commuting Borel injection τ++ : Y ↪→ Y++

defined by setting (τ++y)i = Ui(y). The map τ++ is a section to π (πτ++ is the
identity map on Y ).

Definition 3.2. The code π++ (and the SFT (Y++, T++)) is called the full futures
cover of π, and τ++ is called its canonical section.

The next result adapts arguments of Krieger [10].

Proposition 3.3. Suppose π : (X,S) → (Y, T ) and π′ : (X ′, S′) → (Y ′, T ′) are
1-block codes from 1-step SFTs onto sofic shifts. Let η : (X,S) → (X ′, S′) and
κ : (Y, T ) → (Y ′, T ′) be topological conjugacies such that κπ = π′η. Let the full
futures covers and sections for π and π′ be as in Definition 3.2. Then there is a
unique topological conjugacy κ̃ such that the following diagram commutes:

Y++
eκ //___________

π++

��

Y ′++

π′
++

��

X
η //

π
}}zz

zz
zz

zz
X ′

π′
""D

DD
DD

DD
D

Y κ
//

τ++

OO

Y ′

τ ′
++

OO

Proof. The images of the sections τ++ and τ ′++ are dense, and between these images
κ̃ is determined. Thus the uniqueness claim is clear. Let N be a positive integer
such that the block codes η, κ, η−1 and κ−1 have range at most N .

Given y ∈ Y and y′ = κy ∈ Y ′, we claim that U0(y′) is the set of symbols (ηx)0
such that x ∈ X and x satisfies the following two conditions:

(1) xi ∈ Ui(y), −3N ≤ i ≤ −N ,
(2) x[−3N · · ·N ] is an X-word which determines (κπx)[−2N, 0] = y′[−2N, 0].

To prove the claim, first suppose x′ ∈ X ′ and (π′x′)(−∞, 0] = y′(−∞, 0]. Set x =
η−1x′. Then (x′)0 = (ηx)0, and (κπx)(−∞, 0] = y′(−∞, 0]. This shows x[−3N,N ]
satisfies (2). Because y′(−∞, 0] determines (κ−1y′)(−∞,−N ], and κ−1y′ = πx, we
have xi ∈ Ui(y) for i ≤ −N , and x satisfies (1).

Conversely, suppose x ∈ X satisfying (1) and (2). Because x−3N ∈ U−3N (y),
there exists x in X such that (πx)i = yi if i ≤ −3N , and x−3N = x−3N . Because
X is 1-step SFT, without loss of generality we choose x such that in addition to
(1) and (2) we have xi = xi, i ≤ −3N .

Now (κπx)(−∞,−2N ] = y′(−∞,−2N ] (because (πx)i = yi, i ≤ −N), and
(κπx)[−2N, 0] = y′[−2N, 0] (by (2)). Since (κπx)(−∞, 0] = y′(−∞, 0], we have
(ηx)0 ∈ U0(y′). This completes the proof of the claim.

The claim shows that for any y in Y , the Y++-word (τy)[−3N,N ] determines
the Y ′++ symbol τy′[0]. Because the image of τ is dense in Y++, this provides a
function K from Y++-words of length 4N + 1 to A(Y ′++). Define the block code κ̃
on Y++ by setting (κ̃w)0 = K(w[−3N,N ]). Clearly now κ̃τ = τ ′κ. It follows easily
that κ̃ maps Y++ onto Y ′++, and κπ++ = π′++κ̃.

In the same way, construct a block code κ̃−1 from Y ′++ to Y++. The compositions
of κ̃ and κ̃−1 give the identity map on a dense set, hence everywhere. Therefore κ̃
is a conjugacy. �
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Given a block code π : X → Y from an SFT onto a sofic system, let ϕ be a
conjugacy from X to a higher block presentation, (ϕx)0 = x[−k · · · k], where k is
sufficiently large that the composition πϕ−1 is a 1-block map from a 1-step SFT,
so its full futures cover (πϕ−1)++ has been defined. We also say that (πϕ−1)++ is
a full futures cover of π, and (suppressing k) denote it as π++. More generally, we
make the following definition.

Definition 3.4. If p is any u-resolving map from an SFT onto Y and there exists
a conjugacy ϕ such that p = πϕ, where π is a full futures cover as defined above,
then we say that p is a full futures cover of π.

By Proposition 3.3, if p and p′ are two different full futures covers of π, then
there is a conjugacy ϕ such that p′ = pϕ. Thus given π we have a distinguished
class of u-resolving maps from SFTs onto Y .

Next we consider the special case which is our main interest.

Definition 3.5. Suppose π is a one block code from a 1-step irreducible SFT (X,S)
onto a sofic shift (Y, T ). Let (Y+, T+) be the unique maximum entropy irreducible
component of the SFT (Y++, T++), and let π+ be the restriction of π++ to this
component. We call π+ (or (Y+, T+)) the futures cover of π. The restriction of
τ++ to the left transitive points of Y is denoted τ+.

The next proposition shows the definition makes sense and lists some basic prop-
erties of the futures cover.

Proposition 3.6. Suppose π : (X,S) → (Y, T ) is a 1-block code from an irreducible
1-step SFT onto a sofic shift.

(1) The full futures cover of π has a unique irreducible component of maximal
entropy (denoted Y+).

(2) The futures cover π+ is surjective right resolving with degree 1, and τ+ :
Y ↪→ Y+.

(3) Y+ is a 1-step SFT and the set of allowed Y+-words is

{U0(y)U1(y) · · ·Un(y) : n ≥ 0, y is left transitive in Y }
(4) After removal of the section maps τ++ and τ ′++, Proposition 3.3 remains

true if each ++ is replaced by +.

Proof. The claim (1) and the rest of (2) do not depend on the conjugacy class of
π++; so, on account of Proposition 3.3 and Lemma 2.4, to prove them we may
assume that π has a magic symbol, µ. Let µ̃ denote π−1{µ}. If π++x = y and
yn = µ, then xn must equal µ̃. Because π++ is right resolving, for any n in Z
the conditions y = π++x and xn = µ̃ determine x[n,∞). Consequently, if y is
left transitive in Y , then y has a unique preimage under π++. Because π++ must
map any irreducible component of Y++ of maximum entropy onto Y , it follows that
there is only one such component. We let Y+ denote this component and we let π+

denote the restriction of π++ to Y+.
The claim (2) is now clear.
The image of τ+ is a dense subset of Y+, and we have already seen that the set

of all Y++-words is

{U0(y)U1(y) · · ·Un(y) : n ≥ 0, y ∈ Y } ,
i.e., it is the set of words (τ++y)[0, n], y ∈ Y . This proves (3).
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The existence claim of (4) follows from (1) and Proposition 3.3. The uniqueness
claim holds because κ̃ is uniquely determined on a dense set, the image of τ+. �

As with the full futures cover, we make a definition which gives us a canonical
conjugacy class.

Definition 3.7. Given a block code π from an irreducible SFT onto a sofic shift, we
say that a map p is a futures cover of π if it is conjugate to the restriction of a full
futures cover of π to its unique irreducible component of maximum entropy.

4. A resolving lift of a block code

To begin, let π be a one block code from an irreducible 1-step SFT (X,S) onto
a sofic shift (Y, T ). Let π+ be the futures cover Y+ → Y of Definition 3.5. We
will apply a fiber product construction to produce (in the zero dimensional case) a
generalization of Putnam’s resolving lift.

The fiber product (a.k.a. fibered product, or pull-back) of π : (X,S) → (Y, T )
and π+ : (Y+, T+) → (Y, T ) is the subsystem of (X × Y+, S × T+) with domain
F = {(x,w) : π(x) = π+(w)}. The coordinate projections p1 : (x,w) 7→ x and
p2 : (x,w) 7→ w give a commuting diagram of surjective maps

F
p1

����
��

��
�� p2

  A
AA

AA
AA

X

π
��?

??
??

??
? Y+

π+
~~}}

}}
}}

}

Y

We view F as a subshift, with alphabet

A(F ) = {(xj , wj) : (x,w) ∈ F}
⊂ {(i, U) ∈ A(X)×A(Y+) : π(i) = π+(U)} .

The subshift F is a 1-step SFT, because X and Y+ are 1-step SFTs, and π and
π+ are one-block codes. Because π+ is finite to one, so is p1; so an irreducible
component of F has maximum entropy (which is equal to that of X) if and only its
image under p1 is all of X. If there were two such components, then there would be
a left transitive point x in X with two preimages in F , so the left transitive point
πx would have two preimages under π+ in Y+, which is impossible. Thus F has a
unique irreducible component of maximum entropy in F , which we denote F0; and
the restriction ρ1 of p1 to F0 has degree one. Let ρ2 similarly denote the restriction
of p2 to F0. We have a commuting diagram of surjective maps

F0

ρ1

��~~
~~

~~
~~ ρ2

  A
AA

AA
AA

A

X

π
  A

AA
AA

AA
A Y+

π+
~~||

||
||

||

Y

Because π+ is right resolving, so is p1, and therefore so is ρ1.
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Lemma 4.1. A(F0) = {(i, U) ∈ A(X)×A(Y+) : i ∈ U} .

Proof. First, suppose (i, U) ∈ A(F0). Then (i, U) must occur as z0 in some point
z of F0 which maps (via πρ1 = π+ρ2) to a left transitive point y in Y . Because
(ρ1z)0 = i and π(ρ1z) = y, we have i ∈ U0(y). Because (ρ2z)0 = U and π+(ρ2z) = y
and y has a unique preimage under π+, which is the sequence (Um(y))m∈Z, we have
U = U0(y). Thus i ∈ U .

Next, suppose U ∈ A(Y+) and i ∈ U . Then there exists a left transitive y in
Y and an x in X such that π(xj) = yj for j ≤ 0, and U0(y) = U and x0 = i.
Thus (x, y)i = (xi, Ui(y)) for i ≤ 0, and for some n ≤ 0 the sequence (x, y)(−∞, n]
is a sequence from F0. By Lemma 2.3, there are no paths exiting from F0, so
(i, U) ∈ A(F0). �

Proposition 4.2. Let (X,S) be an irreducible 1-step SFT. Let π : (X,S) → (Y, T )
be a surjective one-block code with a magic symbol. In the associated fiber product
diagram

F0

ρ1

��~~
~~

~~
~~ ρ2

  A
AA

AA
AA

A

X

π
  A

AA
AA

AA
A Y+

π+
~~||

||
||

||

Y

all maps are surjective one-block; ρ1 and π+ are right resolving; and ρ2 is left
eresolving. If π is finite to one, then ρ2 is left resolving.

Proof. The claims before “ρ2 is left eresolving” are already established. Now sup-
pose (i1, U1) ∈ A(F0) and U0U1 is a word of length two in Y+. To show ρ2 is left
eresolving, we must show there exists (i0, U0) in A(F0) which can precede (i1, U1)
and which maps to U0. Because (i1, U1) ∈ A(F0), we have i1 ∈ U1; because U1

follows U0, we may choose i0 in U0 such that i1 follows i0 in X. Because i0 ∈ U0, we
have (i0, U0) ∈ A(F0). Let (i0, U0) = (i0, U0). We have shown ρ2 is left eresolving.

The final claim follows from Proposition 2.1(5): a map between equal entropy
irreducible SFTs is left resolving if and only if it is left eresolving. �

We can now assemble a presentation-invariant version of our zero dimensional
generalization of Putnam’s theorem.

Theorem 4.3. Suppose π : (X,S) → (Y, T ) is a block code from an irreducible
SFT onto a sofic shift. Then there are surjective block codes α, β, γ from irreducible
SFTs which give a commutative diagram

γ //

α

��
β

��π //

such that α and β are 1-1 a.e. u-resolving and γ is s-eresolving. If π is finite to
one, then γ is also s-resolving.

Such a diagram will be produced if β is a version of the futures cover π+ for
π and α, γ are the restrictions to the unique maximal entropy component of the
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projections from the fiber product of π and β. In this case, the constructed diagram
is canonically associated to π: if (α, β, γ, π) and (α′, β′, γ′, π′) are two such diagrams
and subshift conjugacies η, κ effect a conjugacy of π and π′, then there will be a
unique pair of subshift conjugacies η̃, κ̃ such that the following diagram commutes:

γ′ //

α′

��
β′

��

α

��

γ //
eηjjjjj

44jjjjj

β

��

eκjjjjj

44jjjjj

π′ //

ηjjjjjjjjj

44jjjjjjjjj

π //
κjjjjjjjjj

44jjjjjjjjj

Proof. The conclusions of Theorem 4.3 are invariant under replacement of π by a
topologically conjugate map. By Lemma 2.4, the map π is topologically conjugate
to a map which satisfies the conditions of Proposition 4.2, and this proves the
existence claims of Theorem 4.3. That the construction is canonical then follows
from Proposition 3.6(4), because the fiber product construction is canonical for a
given pair π, π+. �

Remark 4.4. A (mostly) weaker version of Putnam’s result in zero dimension was
stated some time ago in [9, before Theorem A]. Given π bounded to one between
irreducible SFTs, [9] provides a factorization πα = βπ̃, with all maps between
irreducible SFTs, with π̃ left resolving and β right resolving. However, here the
map α need not be in any way resolving, and the maps α, β need not have degree
one.

The overlooked resolving possibilities for α probably had to do, at least in part,
with the nature of fiber products. In Proposition 4.2, if F0 is replaced by the full
fiber product F (π, π+), then the projection F (π, π+) → Y+ will be u-resolving (s-
resolving) if and only if π is already u-resolving (s-resolving). Thus it is surprising
(at least, without the guidance of Putnam’s theorem) that the restriction to F0 has
any resolving property independent of π, and this is perhaps part of the reason that
Putnam’s theorem had no zero dimensional precursor.

5. The canonical mapping property

In this section we will restrict attention to maps in the category C of surjective
finite to one block codes from irreducible SFTs to sofic shifts. For c1, c2 in C, the
composition c1c2 is left/right/u/s -resolving if and only if both c1 and c2 are [5,
Propositions 4.10 and 4.11].

Definition 5.1. Given π ∈ C, we define D(π) to be the category of commutative
diagrams D = (a, b, c, π) of the form

c //

a

��
b

��π //

which satisfy the following conditions:
(1) a, b and c are in C;
(2) a and b are u-resolving;
(3) c is s-resolving.
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Note that the domains of a, π and c are irreducible SFTs.
For D = (a, b, c, π) and D′ = (a′, b′, c′, π′) in D(π), a morphism D′ → D is a pair

(ϕ,ψ) such that {ϕ,ψ} ⊂ C, and the following diagram commutes (i.e., D′ factors
through D).

c′ //

ϕ

��
a′

��

ψ

��
b′

��

c //

a

��
b

��π //

We may write such a morphism as (ϕ,ψ) : D′ → D. Note that ϕ and ψ here are
forced to be u-resolving. Diagrams D,D′ are isomorphic in this category (they are
“conjugate over π”) if there are topological conjugacies ϕ,ψ such that (ϕ,ψ) : D′ →
D. The conjugacy class of D is the set of all D′ in D(π) which are conjugate over
π to D. A diagram D is minimal in a subset E of D(π) if D ∈ E and D′ → D
for every D′ in E . For technical reasons we will be particularly concerned with the
following subcategory of D(π).

Definition 5.2. D(1)(π) is the full subcategory of D(π) whose objects are the di-
agrams D = (a, b, c, π) in D(π) such that the SFT F (b, π) (the fiber product of b
and π) has a unique irreducible component of maximum entropy.

The condition of Definition (5.2) is satisfied whenever the degree of b is 1. A “full”
subcategory of D(π) is simply one whose morphisms are all the D(π) morphisms
between its objects. When a fiber product F (b, π) contains a unique irreducible
component of maximum entropy, we will denote that component as F0(b, π).

The next proposition shows that much of the structure of a diagram D =
(a, b, c, π) in D(π) is dictated by the pair (b, π).

Proposition 5.3. Suppose D is the following diagram in D(π).

V
c //

a

��

W

b

��
X

π // Y

Then there is an irreducible component V ′ of maximum entropy in F (π, b) and a
constant to one map ϕ : V → V ′, such that the following diagram D′

V ′
p2 //

p1

��

W

b

��
X

π // Y

is in D(π), and (ϕ, Id) : D → D′. Here p1 and p2 denote the restrictions to V ′ of
the usual projections (x,w) 7→ x, (x,w) 7→ w from F (π, b) to X and W .

Proof. For v ∈ V , define ϕ(v) = (av, cv). Then ϕ maps V into F (π, b). Because V
is irreducible, the image of ϕ must be contained in an irreducible component V ′ of
F (π, b). Then h(V ) = h(ϕV ) ≤ h(F (π, b)) = h(X) = h(V ), so V ′ has full entropy
in F (π, b) and πV = V ′.
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Because p1ϕ = a is u-resolving, so are p1 and ϕ; because p2ϕ = c is s-resolving,
so are p2 and ϕ. The resolving properties for p1 and p2 show that D′ = (p2, p1, b, π)
is in D(π). The map ϕ is constant to one because it is a u-resolving and s-resolving
map between irreducible SFTs [8, Proposition 4.3.4]. Clearly (ϕ, Id) : D → D′. �

Given π ∈ C, let Dπ be the element of D(π) constructed as for Proposition 4.2,
i.e. Dπ is the diagram

F0
ρ2 //

ρ1

��

Y+

π+

��
X

π // Y

where F0 = F0(π, π+), all maps are 1-block codes, and the three SFTs F0, Y+ and
X are irreducible 1-step. We will characterize the conjugacy class of Dπ with a
mapping property (answering a question in [16]).

Theorem 5.4. Suppose π ∈ C.
(1) If D ∈ D(1)(π), then there exists a unique morphism (ϕ1, ϕ2) : D → Dπ.
(2) D is minimal in D(1)(π) if and only if D is conjugate over π to Dπ.

Question 5.5. Is 5.4(1) true with D(π) in place of D(1)(π)?

Proof. To prove (1), suppose we have D ∈ D(π) as below.

V
c //

a

��

W

b

��
X

π // Y

Without loss of generality, we suppose the SFTs are 1-step and the maps in the
diagram are 1-block codes.

By Proposition 5.3, without loss of generality we may assume V = F0(π, b), with
(a, c) = (p1, p2) where p1, p2 are the projection maps from F0(π, b) to X and W .
Again without loss of generality, by Proposition 2.1(2), we may suppose that b is
right resolving. Because a then arises from the fiber product construction, a is also
right resolving. The map c is at this point still only s-resolving (i.e. left closing).

We will find (ϕ,ψ) : D → Dπ. We first give the rule for ψ. For w left transitive
in W , define ψw by

(ψw)m = Um(bw) ,m ∈ Z ,

where Um(y) was defined in (3.1). This is a shift-commuting rule and the left
transitive points are dense; so, to show the rule determines a block code, it suffices
to show the map w 7→ U0(bw) is uniformly continuous on left transitive points w.

Because c : V →W is s-eresolving (by Proposition 2.1(5)), we may choose N ≥ 0
such that if v ∈ V and (cv)i = (w′)i for i ≥ −N , then there exists ṽ in V such
that cṽ = w′ and ṽi = vi for i ≥ 0 [6, Proposition 5.1]. Now, suppose w and
w are left transitive points in W , w[−N, 0] = w[−N, 0] and i ∈ U0(bw). We will
show i ∈ U0(bw). For a point (biinfinite sequence) z, we will use the notations
z− = z(−∞, 0] and z+ = z[0,+∞).

Because i ∈ U0(bw), we may choose x in X such that x0 = i and (πx)− = (bw)−.
Because bw is left transitive and b is right resolving and (bw)− = (πx)−, by Lemma
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2.5 there is a w′ in W such that (w′)− = w− and bw′ = πx. Therefore (x,w′) is
a point in the fiber product F (π, b). Because w′ is left transitive, the point (x,w′)
must be in the irreducible component of maximum entropy, i.e. (x,w′) ∈ V . Define
w′′ in W by w′′(−∞, 0] = w(−∞, 0] and w′′[−N,∞) = w′[−N,∞). Note, the
overlapping definition is consistent. Now

(c(x,w′))[−N,∞) = w′′[−N,∞) ,

so there exists ṽ = (x̃, w̃) such that cṽ = w′′ and ṽ[0,∞) = (x,w′)[0,∞). Therefore
(πx̃)(−∞, 0] = (bw)(−∞, 0], x̃0 ∈ U0(bw) and x̃0 = x0. We have shown that our
rule gives a block code ψ : W → Y+.

We summarize our situation with the following commuting diagram

V
c //

a

��

  

W
ψ

~~||
||

||
||

b

��

F0
ρ2 //

ρ1

~~}}
}}

}}
}}

Y+

π+

  B
BB

BB
BB

B

X π
// Y

in which F0 denotes F0(π, π+) and V = F0(π, b). The dotted arrow V → F0 is the
map ϕ we need but have not yet defined. The maps a, ψc factor through π, π+ and
therefore can be factored through F (π, π+) by some map ϕ : V → F (π, π+). The
image of ϕ must be F0; ϕ defines the dotted arrow. Now (ϕ,ψ) : D → Dπ. There
can be only one morphism (ϕ,ψ) : D → Dπ because it is uniquely determined on
the dense set of transitive points, because π+ and ρ1 are one to one on transitive
points. This proves (1).

On to (2). It is obvious that a diagram conjugate over π to a minimal element
of D(1)(π) (such as Dπ) will also be a minimal element of D(1)(π). Now suppose
D = (a, b, c, π) is a minimal element of D(1)(π). We have (ϕ1, ψ1) : Dπ → D,
which forces a and b to have degree 1. We also have (ϕ2, ψ2) : D → Dπ, so
(ϕ1ϕ2, ψ1ψ2) : D → D. By uniqueness of the morphism, ϕ2ϕ1 and ψ2ψ1 must be
identity maps, as must ϕ1ϕ2 and ψ1ψ2. Thus D and Dπ are conjugate over π. �

Remark 5.6. Suppose π ∈ C. The characterization of the conjugacy class of π+ by a
minimal mapping property is analogous to the characterization of the right Fisher
cover of a sofic system by a minimal mapping property [4]. Similarly, the relation
of the futures cover of π to the full futures cover is analogous to the relation of the
Fisher cover to the Krieger cover [10].

6. The maps of Nasu and Putnam

Let π : X → Y be a block code from an irreducible SFT onto a sofic shift.
Without loss of generality (after recoding if necessary), we take the code to be one-
block and the SFT to be 1-step. In Proposition 4.2, we associated to π a certain
diagram Dπ = (ρ1, ρ2, π, π+). In this section we will explain the relationship of Dπ

to the construction of Putnam, and the relation of π+ to a canonical cover defined
by Nasu.

Putnam. Given a surjective 1-1 a.e. morphism π between irreducible Smale
spaces, Putnam constructed a commuting diagram D̃ = (α, π̃, β, π),
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X
eπ //

α

��

Y

β

��
X

π // Y

with all of the maps 1-1 a.e. surjective morphisms π between irreducible Smale
spaces, with α and β u-resolving, and with π̃ s-resolving.

Theorem 4.3 and Putnam’s theorem overlap in the case that π is a surjective,
1-1 a.e. block code between irreducible SFTs. We claim in this case that the two
diagrams D and D̃ are conjugate over π. To show this, we first find a conjugacy
of subshifts ψ : Y+ → Y such that π+ = βψ. Without loss of generality, we may
presume π is a one block map and X is a 1-step SFT.

Putnam constructed Y as the completion in a certain metric δY of the set π(W )
of points left asymptotic to the orbit of a chosen periodic point y0, where y0 has
a unique preimage x0 under π, and W is the set of points in X left asymptotic to
the orbit of x0. Our desired map ψ must agree with the natural injection ι from
(π+)−1(π(W )) to π(W ). We claim that ι is uniformly continuous (with respect in
the domain to the restriction of a metric giving the usual topology on Y+, and with
respect in the range to the metric δY ).

For brevity, we will not define all the terms and facts we use from the subtle
construction of [16]. Let y and y′ be in π(W ), with z = π−1

+ (y) and z′ = π−1
+ (y′)

in Y+. Now suppose that N > 0 and z[−N,N ] = z′[−N,N ]. By definition of Y+,
we have y[−N,N ] = y′[−N,N ] and moreover there exists a bijection ν : π−1(y) →
π−1(y′) such that (νw)[−N,N ] = w[−N,N ], for all w in π−1(y). Define a point
y′′ in Y by y′′(−∞,∞) = y(−∞,−N ]y′[−N + 1,∞). Then for large enough N ,
the path (y, y′′, y′) is a rectangular path from y to y′′ ([16, Definition 2.13]), whose
length is the sum dist(y, y′′) + dist(y′′, y′), which is at most 2−N+1, and which is
an upper bound for δ0Y (y, y′) ([16, Definition 2.14]). Then for a number r with
0 < r < 1 and the uniform constant C = max δ0Y , we get

δY (y, y′) ≤
N∑
k=0

rk2−N+k +
∞∑

k=N+1

Crk .

This quantity goes to zero with N .
Thus ι is uniformly continuous, and extends to a continuous map ψ : Y+ → Y .

This map commutes with the shift on a dense set, hence everywhere, and is thus
a block code. There is also by Theorem 5.4 a block code ψ′ : Y → Y+ such that
β = π+ψ

′. Clearly ψ and ψ′ are inverse to each other, so ψ is a conjugacy, and β
is a version of π+. Thus by Proposition 5.3, the map α is the map ρ1 preceded by
some constant to one factor map; because the degree of α is one, the constant to
one map is a conjugacy of subshifts. This completes the proof.

Nasu.
In [12], given a one-block code π : X → Y from an edge SFT onto a sofic system,

Masakazu Nasu associated to π a map he called the induced right resolving cover
of π. (This cover appears as an important tool in [9].) This cover is a one-block
code we will denote η+ : N+ → Y . Here N+ is another edge SFT.

The given map π is presented by a labeled graph G, where the unlabeled graph
defines the edge SFT and the label (by symbols from A(Y )) defines the one-block
code. Nasu defined his cover by constructing another labeled graph, G+. For a
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subset V of vertices of G, and a Y -word x, let S+(V, x) denote the set of terminal
vertices S+(V, x) of the paths labeled x that go from some vertex in V . A right
compatible set of G is a set S+(V, x) where V is a singleton. Nasu defined the vertex
set of G+ to be the set of all maximal right compatible sets and their nonempty
sucessors. For each vertex S in G+, a unique edge labeled a goes from W to
S+(W,a) if S+(W,a) is nonempty. This defines the edge set of G+, and thereby the
edge SFT N+ and the one block map η+ : N+ → Y . Clearly η+ is surjective and
right resolving. Nasu showed [12, Theorem 3.1] that η+ is canonically associated to
π, in the sense that any conjugacy from π to another one-block code π′ : X ′ → Y ′

(such a conjugacy by definition is given by conjugacies X → X ′, Y → Y ′ which
intertwine π and π′) lifts to an isomorphism of η+ and η′+:

N+
//

η+

��

X ′
+

η′
+

��

X //

π

}}||
||

||
||

X ′

π′

!!C
CC

CC
CC

C

Y // Y ′

Nasu’s cover η+ (like the futures cover π+) is well defined even if the domain SFT
is not irreducible or the map π is not finite to one. If X is irreducible, then both
N+ and Y+ will be irreducible, and the degrees of π+ and η+ are well defined. Here
the map π+ will always have degree one, but η+ might have greater degree. For
example, if π is itself right resolving, then clearly (as noted by Nasu [12, p.569]) η+
will equal π.

Now restrict to the case that X is irreducible and the degree of π is one. In this
case, there is a conjugacy ψ between the domains of π+ and η+ such that η+ = π+ψ.
To see this we simply note that in the degree one case, the symbols U0(y) in A(Y+)
are maximal compatible sets from the unique preimage symbol of a magic symbol
for π. Thus the identity map embeds Y+ into N+, and because the irreducible SFT
N+ has no proper subsystem of equal entropy, this embedding is surjective. In
particular, our diagram Dπ, produced using F0(π, π+) will be conjugate over π to
the diagram produced in the same way using F0(π, η+). Each of the diagrams is
another version of Putnam’s diagram in dimension zero.

It is naturally to ask whether Nasu’s right resolving cover must factor through
the futures cover. This is not always the case, as we see in the next example.

Example 6.1. Let π be the map given in [2, Example 1 on p. 491]. This map π can
be defined by the following labeled graph G.

β

a
ww

b

��
αb 99

a

77

γ
a

kk
b

WW

Forgetting the labels in the graph gives an unlabeled graph, with adjacency matrix1 1 0
1 0 1
1 1 0

, which defines an irreducible edge SFT (X,S). The edge labeling
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defines a 1-block code π from (X,S) to a shift (Y, T ), which is the full 2-shift on
symbols a, b. A labeled graph G++ defining a full futures cover (Y++, T++) of π
as an edge SFT, and the 1-block code π++, can be computed as follows. Vertices
of G++ are sets of vertices of G. Begin with the vertex v = {α, β, γ}. The set of
G-paths labeled a starting from v end in the set {α, β}. Add this set as another
vertex and draw an edge labeled a from v to v′. Continue in this fashion until
reaching a graph such that no new vertices can be added. Reduce to the maximal
subgraph such that each vertex has an incoming edge and an outgoing edge. This
produces the following G++.

α, β, γ b||
a

��
α, βa
11

b
,, α, γ

b

ll

a

ee

The futures cover (Y+, T+) is obtained by restricting this graph to the irreducible
component of maximum entropy, which as an unlabeled graph has adjacency matrix(

1 1
2 0

)
. Because π is right resolving, the associated right resolving cover η+ of

Nasu is equal to π. Consequently, in this example there is no factor map ϕ such
that η = π+ϕ, for the following reason. There is a fixed point x such that π(x) is
the fixed point b∞, and ϕ could only map x to a fixed point y such that π+(y) = b∞;
but there is no such fixed point y in the domain of π+.

7. Resolving degree and Markovian maps

In this section we point out that the resolving degree is an invariant of topology
conjugacy for block codes from irreducible SFTs. (This is well known when the code
is finite to one; then resolving degree equals degree.) We also give an application
of Theorem 4.3 to Markovian codes.

Proposition 7.1. Suppose π and π′ are topologically conjugate maps from irre-
ducible SFTs. Then they have the same resolving degree.

Proof. Suppose that π is a one block code with a magic symbol µ. Let η+ and π+

be the Nasu and futures covers associated to π. Form the fiber product diagram

F0

p1

}}||
||

||
|| p2

  A
AA

AA
AA

A

N+

η+
!!C

CC
CC

CC
C

Y+

π+
~~||

||
||

||

Y

Here F0 denotes the unique irreducible component of maximum entropy in the
fiber product (it is unique because π+ has degree 1). The projections p1 and p2 are
surjective. Clearly {µ} is a magic symbol for the map p2 and the cardinality of its
preimage, which is the degree of p2, is the cardinality of π−1(µ). Because η+ and
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π+ are canonically associated to π, so is the fiber product diagram and in particular
the degree of p2. Therefore this number will be the same for π and π′. �

A surjective block code between irreducible SFTs is Markovian if any (equiva-
lently every) fully supported ergodic Markov measure on the range space lifts to a
fully supported ergodic Markov measure on the domain [6, 15]. From the current
paper, we find that any block code between irreducible SFTs is in a certain sense
not far from Markovian.

Proposition 7.2. Suppose ϕ : (X,S) → (Y, T ) is a surjective block code between
irreducible SFTs. Then there is a u-resolving degree 1 block code α from an irre-
ducible SFT onto (X,S) such that ϕα is Markovian.

Proof. By Theorem 4.3, there is an α of the desired form such that ϕα equals an
s-eresolving code followed by a u-resolving code, both between irreducible SFTs.
Such codes (and their compositions) are Markovian [6]. �

Question 7.3. It is an open problem since [6] to provide a decision procedure to
determine whether a surjective block code between irreducible SFTs is Markovian.
Do the constructs around the futures cover provide clues?
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