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1. Markov shifts and shifts of finite type

Notations:

• G is a graph (:= directed graph)

• G has at most countably many vertices

• G has at most finitely many edges between

any two vertices

• A = adjacency matrix of G

• GA := graph with adjacency matrix A

• EA := edges of GA
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• XA is the set of bisequences x = . . . x−1x0x1 . . .
in (EA)Z coming from walks through GA,
topologized with subset top. of product
top. of discrete top.

• σA is the shift homeomorphism,
XA → XA, where (σAx)n = xn+1

By a Markov shift we mean such a top. dyn.
system (XA, σA), where in addition σA is irre-
ducible: there is a path from any vertex of GA
to any other vertex of GA.
I use σA for (XA, σA), σA or XA.

By a shift of finite type (SFT) we mean a
Markov shift σA where GA has only finitely many
vertices and edges (i.e. an SFT is a compact
Markov shift).

SFTs and other Markov shifts have various
uses, in particular for studying invariant mea-
sures of some smooth or piecewise smooth sys-
tems.
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2. Classes of Markov shifts

Given a vertex v in GA:

• fn := number of first-return loops of length
n from v to v

• rn := number of loops of length n from v
to v

• λ := limn |rn|1/n

** λ and (fn) can be used to define some
classes of Markov shifts (next slide).

** Those classes, and the number λ, don’t
depend on the particular vertex chosen.

** Define the topological entropy h(σA) as the
sup of the measure entropies over invariant
Borel probabilities. Then h(σA) = logλ. From
here we always assume λ <∞.
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The classes:

• (T) σA is transient if
∑

fn/λn < 1

• (R) σA is recurrent if
∑

fn/λn = 1

• (PR) σA is positive recurrent if
∑

fn/λn = 1
and

∑
nfn/λn <∞

• (SPR) σA is strongly positive recurrent if
lim |fn|1/n < λ

Above, R contains PR contains SPR. The classes
T/R/PR come from Vere-Jones’ work in the
60’s on infinite nonnegative matrices.
The class SPR was defined independently by U.
Fiebig and B. Gurevic [1996], following work
of I. Salama [1988,1992]. (Gurevic used the
term stable recurrent. We like the progression
of initials R, PR, SPR and also think of SPR
as stable positive recurrent.)
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Theorem [Gurevich 1969] σA has a measure of
maximal entropy iff σA is PR. In this case there
is a unique measure of maximal entropy.

We will be interested only in PR shifts, and
primarily in SPR shifts.

Fix a vertex v and define fn as before (number
of first return loops to v) and then define

f(z) := f1z + f2z2 + f3z3 + · · ·

Given f , define the Markov shift σf whose defin-
ing graph G has a distinguished base vertex V

and for each n fn loops of length n, with dis-
tinct loops intersecting at V and nowhere else.
Then σf is topologically conjugate to σA,v, via
an edge labeling on G.

The Artin-Mazur zeta function of σf is

ζ(z) := exp

 ∞∑
n=1

1

n
|Fix(σf)

n| zn

 =
1

1− f(z)
.
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The following are some of the equivalent con-
ditions on σA characterizing SPR.

1. σA is SPR (i.e. lim |fn|1/n < λ).

2. Any proper subsystem of σA has strictly
smaller entropy.

3. There is a measure of maximal entropy,
and with respect to it the shift is expo-
nentially recurrent.

4. For some (or for any) vertex v, the series
(1 − f(z))/(1 − λz) has radius of conver-
gence > 1/λ.

(1)⇐⇒ (2) [U. Fiebig 1996]

(1)⇐⇒ (3) [BBG 2004] (routine)

(1)⇐⇒ (4) [Gurevich-Savchenko 1998]
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3. Almost isomorphism of Markov shifts

Markov shifts σA and σB are almost isomor-
phic if there exists another Markov shift σC

and injective one-block codes α : σC → σA,
β : σC → σB, each of which has a magic word
(a concept from SFT coding theory).

A magic word for α is a σA-word W such that
for any σA-word WUW ,

• If WUW = (αx)[i, i + |WUW | − 1] and
also = (αy)[i, i + |WUW | − 1],
then x[i + |WU | − 1] = y[i + |WU | − 1].

• If z is a point in σA and W occurs in z

infinitely often to the left and also to the
right, then z is in the image of α.

Almost isomorphism is indeed an equivalence
relation on Markov shifts.
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Let α : σC → σA, β : σC → σB be an almost

isomorphism, with W a magic word for α. De-

fine γ = βα−1. So, γ is a Borel bimeasurable

bijection from the image of α to the image of

β. Let us see the map γ is good for measures

(meaning shift invariant Borel probabilities).

First suppose µ ergodic for σA and µW > 0.

Then the α-image of σC has µ-measure 1. Thus

there is a unique ergodic µ′ on σB such that γ

sends µ to γµ := µ′. Moreover, one can check

that if µ has full support in σA (i.e. every

nonempty open set has positive µ-measure),

then the same will hold for µ′ in σB. So:

• γ induces a bijection µ↔ µ′ of ergodic mea-

sures with full support, and simultaneous

isomorphisms of their measurable systems,

γ : (σA, µ)→ (σB, µ′).
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• Each such isomorphism (σA, µ) → (σB, µ′)
is finitary: in each direction, continuous on

a measure 1 set.

Here for this set we use the set of points

which see the magic word infinitely often

to the left and to the right. The points

seeing a word WUW in certain coordinates

form an open set in the relative topology.

• If σA has a measure of maximal entropy, so

does σB. (So PR is invariant under AI.)

• SPR is invariant under AI (because fini-

tary isomorphism respects exponential re-

currence, and exp. rec. of the max. en-

tropy measure characterizes SPR).
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• In the case σA and σB are AI and SPR, they

are entropy conjugate: there is a δ > 0,

and Borel sets FA ⊂ XA and FB ⊂ XB,

with measure 1 for all ergodic invariant

measures of entropy within δ of h(σA) =

h(σB), and an isomorphism of Borel sys-

tems (FA, σA|FA)→ (FB, σB|FB).

If σA is SPR, then there exists ε > 0 such

that any measure supported on the subsys-

tem which misses the magic word W has

entropy at most h(σA) − ε. Likewise there

is ε′ for σA and β. For δ = min(ε, ε′), the

map γ gives an entropy-conjugacy from σA

to σB.

• In the SPR case, for the maximal entropy

measures the map γ has exponentially fast

coding time. (I.e. the measure of the set

of x where x[−n . . . n] does not determine

(γx)[0] goes to zero exponentially in n.)
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The next theorem is very reminiscent of the

Adler-Marcus classification of irreducible shifts

of finite type up to almost topological conju-

gacy.

The classification of (countable state) Markov

shifts up to almost conjugacy is difficult and

unsolved. The relation “almost isomorphism”

seems much better suited to the study of er-

godic measures on countable state Markov shifts.
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4. Main Markov Results

THEOREM 1. For SPR Markov shifts, en-

tropy and period are complete invariants of AI.

COROLLARY. SPR Markov shifts of equal en-

tropy and period are entropy conjugate, and

their maximal-entropy-measure systems are fini-

tarily isomorphic with exponentially fast coding

time.

KEY TECHNICAL REMARK: Let v be a ver-

tex of σA, and let σf be the corresponding loop

shift. The natural one-block code σf → σA is

injective with a magic word (any edge begin-

ning at the vertex v will be one).

So, for studying AI of Markov shifts, we can

restrict to loop shifts σf – a vast simplification

(power series instead of matrices).
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THEOREM 2. Suppose σf and σg are loop
shifts with equal entropy logλ and

(**) the power series (1− f)/(1− g)
has spectral radius > 1/λ .

Then σf and σg are AI (and the AI can be cho-
sen so that the associated finitary Borel map
is an entropy conjugacy).

The condition (**) always holds for SPR loop
shifts of equal entropy [Gurevich-Savchenko]
(elementary complex variables argument, crit-
ical fact for us.)
So, Theorem 1 is a corollary of Theorem 2.

The condition (**) means that

lim
n

∣∣∣∣|On(σf)−On(σg)|
∣∣∣∣1/n

< λ

where On means the set of orbits containing
exactly n points.
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5. Applications

We begin with a list of some systems.

1. Subshifts of quasi finite type

(a generalization of SFT used to describe

some nonuniformly hyperbolic systems)

2. Piecewise monotonic interval maps which

have nonzero topological entropy.

3. The multi-dimensional β-transformations.

([0,1]d → [0,1]d by x 7→ Bx mod Zd, where

B is expanding affine.)

4. C∞ smooth entropy-expanding maps, e.g.

smooth interval maps with nonzero topo-

logical entropy.
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Our applications follow from work of Buzzi

which reduce the entropy-conjugacy classifica-

tion of certain systems, including those on the

list, to the classification of SPR Markov shifts.

THEOREM 3 (from earlier work of Buzzi)

The following measurable dynamical systems

have natural extensions entropy-conjugate to

the disjoint union of finitely many SPR Markov

shifts of equal entropy.

Moreover, the entropy conjugacy can be cho-

sen to preserve the hyperbolic structure in some

of these cases:

• (1) and (3)

• (2), when each of the monotonic branches

is discontinuous at all endpoints other than

0 and 1.

16



COROLLARY Two systems from the list have

natural extensions which are entropy conjugate

if and only if they have equal entropy and for

each p the same number of ergodic maximal

entropy measures of period p.

COROLLARY Two topologically mixing piece-

wise monotonic interval maps are entropy con-

jugate if and only if they have the same en-

tropy.
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6. Proof.

A BASIC MOVE

Suppose f = f1z + fxz2 + f3z3 + · · · is a power

series for a loop shift and f = h+k with h and

k nonzero with coefficients in = Z+. Set

F = h + hk + hk2 + hk3 + · · · = h/(1− k)

which by an easy computation implies

1

1− F (z)
=

1− k

1− f
.

The series F defines another loop system. There

is a natural one-block code (edge labeling) which

gives an injection σF → σf , as in the following

example, where we take h to be a single term

zN .
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EXAMPLE

Let f = z2 + z3. Choose k = zN = z2. Then

h = z3 and F must be

z3 + z3(z2) + z3(z2)(z2) + z3(z2)(z2)(z2) + · · ·

There are two first return loops (to the base

vertex) for σf , a loop a = a1a2a3 corresponding

to z3 and a loop b = b1b2 corresponding to z2

(the ai and bj are distinct edges). The display

of F corresponds to certain concatenations of

a and b:

a + ab + abb + abb + abbb + · · ·

This lets us choose an edge labeling ` (by the

ai and bj), of the first return loops for σF ,

which gives a map from the first return loops

of σF to certain concatenations of loops in σf .

Points of σf and σF correspond to doubly in-

finite concatenations of first return loops, and

` induces an injection ` : σF → σf .
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Note

• The injective one block code ` does have

a magic word – any edge which does not

lie on the “deleted loop” b.

• The only periodic orbit of σf not in the im-

age of ` is . . . aaaaaa . . . , an orbit of length

N . So,

|On(F )| = |On(f)| if n 6= N , and

|ON(F )| = |ON(f)| − 1.
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IDEA OF THE PROOF

We have series f =
∑

fnzn and g =
∑

gnzn

defining loop systems with entropy logλ. We
will perform basic moves recursively on these
series until in the limit we have changed each
into the same series c. Then we’ll get maps
σc → σf , σc → σg giving the AI.

The algorithm. Let f = f(0) and g = g(0).
Given f(k) and g(k):

1. If f(k) = g(k), set c = f(k).

2. Otherwise, choose the smallest N such that
f
(k)
N 6= g

(k)
N . If g

(k)
N < f

(k)
N :

• Set g(k+1) = g(k).

• Apply the basic move (“remove an N-
loop”) to f(k) to get f(k+1), i.e.
f(k+1) = (f(k) − zN)/(1− zN).
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If f
(k)
N < g

(k)
N in case 2 above, of course we

reverse the roles of f and g. This finishes the

description of the algorithm.

As k →∞, the smallest N for which f
(k)
N 6= g

(k)
N

also goes to infinity. We define c as the power

series produced in the limit. This c defines

a loop shift. We want an injective one-block

code σc → σf with a magic word.

We have our injective one-block maps with

magic words,

σf ← σ
f(1) ← σ

f(2) ← σ
f(3) · · ·

Composing finitely many such maps gives an-

other. So in the case that for some k we get

f(k) = g(k), we are done.

In the remaining case, we can track the edge

labellings up the chain of graphs Gk associated
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to the f(k), and produce an induced labeling
on the loop graph G∞ associated to σc. This
will be an injective one-block code. We have
to show our choices of deleted loops can be
made such that this code has a magic word.

REDUCTION: after reducing to the mixing
case and applying a construction (which we
skip here), we can assume that we began with
f and g such that there exists M such that

1. fm = gm if m < M , and

2. min(fm, gm) > |Om(f)−Om(g)| if m ≥M .

Main step in the reduction: a technical lemma
(we skip) gets the fm, gm with growth rate near
λ. Then condition 2 holds for large m by our
key assumption,

limn

∣∣∣∣|On(σf)−On(σg)|
∣∣∣∣1/n

< λ.
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KEY OBSERVATION

In our inductive construction, we recursively

“remove” terms zN (and a corresponding or-

bit of length N), for N = N1, N2, . . . .

Suppose m = Nk for k minimal (we will “re-

move” a term zm for the first time in forming

f(k+1), g(k+1) from f(k), g(k)).

Then for j ≤ k, in forming f(j) we only re-

moved orbits of length smaller than m. So,

|Om(σ
f(k))| = |Om(σf)| and |Om(σ

g(k)) = |Om(σg)|.

Because f
(k)
j = g

(k)
j for j < m, it follows that∣∣∣∣(f(k))m − (g(k))m

∣∣∣∣ = ∣∣∣∣|Om(σf)| − |Om(σg)|
∣∣∣∣ .

So! The terms we must change along the in-

ductive construction are controlled by the orig-

inal zeta functions of σf and σg.
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Now pick any first return loop W of length M
for σf . We claim that we can make choices
in the inductive construction such that W is a
magic word for the map σc → σf .

The maps f(0) ← f(1) ← f(2) · · · produce for
k ≥ 1 one block codes f(0) ← f(k) and associ-
ated labeled graphs G(k), where for each k, all
of G(k) except the distinguished loop chosen for
deletion is a subgraph of G(k+1). The condition
2 of the reduction tells us that at every stage,
going from f(k) to f(k+1), we may choose that
distinguished loop to be a loop corresponding
to a first return loop of G(0) (that is, a first
return loop in the graph G(0) minus those first
return loops deleted at earlier stages of the
construction).

This means that at every stage of the con-
struction, if W occurs as the label of a path in
G(k), then W begins with an edge with initial
vertex the base vertex of G(k). This property is
inherited by G(∞) and gives the required magic
word.
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7. The positive K-theory aspect.

Since “algebra” is in the activity title along

with “topological dynamics”, I mention an al-

gebraic aspect.

“Positive K-theory” is a framework for various

classification problems in symbolic dynamics,

and sometimes constructions. In the frame-

work a symbolic system is presented by an

N × N matrix A over a suitable ordered ring,

with all entries nonnegative and only finitely

many nonzero, and isomorphisms of systems

are induced by multiplications of matrices of

the form I − A by basic elementary matrices

satisfying a positivity condition (i.e., “positive

paths of elementary multiplications”).

There is a “positive K-theory” expository pa-

per on my website.
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Also Mike Sullivan will give a talk in which the

ring is ZG for a finite group G and the classi-

fication is of G-SFTs up to G-equivariant flow

equivalence.

The good finitary isomorphisms we’ve induced

with magic words are magic word isomorphisms.

Surprisingly, the classification of Markov shifts

with a Markov measure up to isomorphism by

magic word isomorphisms can be put in this

postive K-theory framework. Here the under-

lying ring is the ring of power series with co-

efficients in ZG, where G is the positive real

numbers under multiplication. This is due to

Ricardo Gomez [ETDS, 2003].

Our result then gives conditions for the exis-

tence of positive paths of elementary multi-

plications when the presenting matrices corre-

spond to the measure of maximal entropy.
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Some open questions.

1. If two positive recurrent Markov shifts have

the same finite entropy, must they be entropy

conjugate?

[The map giving the entropy conjugacy must

be nasty, not even finitary.]

2. Is SPR an invariant of entropy conjugacy?

3. Classify positive recurrent Markov shifts up

to almost isomorphism.

4. Consider Markov shifts together with some

Markov measure. Are these methods useful for

the good finitary classification of Markov shifts

with Markov measures?

28


