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1. Introduction

This is the first of 8 lectures presenting some open problems in sym-
bolic dynamics. They are a small selection from the open problems
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from the long paper [4]. Most of our time will be spent on statements
and context. There won’t be many proofs.

Our main aim in the first four lectures will be get an idea of the state
of the art for the classification problem for Z shifts of finite type (Z
SFTs).

Lecture I covers elementary background, definitions and statement
of algebraic invariants. This is mostly a truncated version of parts
of Lectures I and II in [2], which contains more detail and proofs.
Other related short topical surveys of mine are [1, 3]. All of these
except [1] are on my website. A thorough introduction to the symbolic
dynamics around SFT’s is the book of Lind and Marcus [5]. This book
is very clear and gives attribution and history. The references [3, 5]
have extensive bibliographies.

2. General Subshifts

2.1. Dynamical Systems. For the purposes of these lectures, a topo-
logical dynamical system will be a continuous map T from a compact
metric space X into itself. We can represent this as (X,T ) or just T .
Apart from occasional remarks, T will be a homeomorphism. I may
use a letter like T to denote the map or its domain, by context.

2.2. Full Shifts. The system which is the full shift on n symbols (also
called the n-shift) is defined as follows. We give a finite set of n elements
— say, {0, 1, ..., n−1}— the discrete topology. (This finite set is often
called the alphabet.) We letX be the product of countably many copies
of this set, with the copies indexed by Z. We think of an element x of
X as a doubly infinite sequence

x = ...x−1x0x1...

where each xi is one of the n elements. X is given the product topology
and thus becomes a compact metrizable space. A metric compatible
with the topology is given by defining, when x is not equal to y,

dist(x, y) = 2−k, where k = min{|i| : xi 6= yi}.

That is, two sequences are close if they agree in a large stretch of
coordinates around the zero coordinate.

A finite sequence of elements of the alphabet is called a word. If W
is a word of length j − i + 1, then the set of sequences x such that
xi...xj = W is called a cylinder set. The cylinder sets are closed and
open, and they give a basis for the product topology on X. Thus X is
zero dimensional.
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There is a natural shift map S sending X into X, defined by shifting
the index set by one: (Sx)i = xi+1. (This is the “dynamics” in symbolic
dynamics.) It is easy to see that S is bijective, S sends cylinders to
cylinders, and thus S is a homeomorphism. The full shift on n symbols
is the system (X,S).

2.3. Subshifts. A subshift (or just shift) is a subsystem of some full
shift (X,T ) on n symbols. This means that it is a homeomorphism
obtained by restriction of T to some compact subset Y invariant under
the shift and its inverse. The complement of Y is open and is thus
a union of cylinder sets. Because Y is shift invariant, it follows that
there is a (countable) list of words such that Y is precisely the set of all
sequences y such that for every word W on the list, for every i ≤ j, W
is not equal to yi...yj. That is, Y is the subset of all sequences which
avoid the forbidden words.

Concisely: any subshift may defined by excluding a countable col-
lection of words.

If Y is a set which may be obtained by forbidding a finite list of
words, then the subshift is called a subshift of finite type, or just a
shift of finite type (SFT).

2.4. Examples. Let S be the subshift defined by restricting the two-
shift to the set Y of sequences in which the word 00 never occurs. (That
is: S is the subshift of the 2-shift defined by excluding the word 00.)
Then S is SFT.

Let T be the subshift defined by excluding all words 100...01 where
the number of zeros is odd. Then T is a subshift, and it is not SFT.
(T is the “even system” of B. Weiss.)

3. Block Codes

3.1. Homomorphisms of subshifts. Suppose (X,S) and (Y, T ) are
subshifts. A map f from X to Y is a homomorphism (of topological
dynamical systems) if it is continuous and intertwines the shifts, i.e.
fS = Tf . If the homomorphism f is surjective, then it is called
a quotient map or factor map or epimorphism of subshifts. If it is
injective, then it is called an embedding or monomorphism of subshifts.
If it is injective and surjective, then it is an isomorphism or conjugacy of
subshifts. This notion of isomorphism is our fundamental equivalence
relation.

3.2. Block Codes. Now suppose F is a function from words of length
2n+1 which occur in S-sequences into some finite set A. This function
F gives a rule for taking an input sequence x of S and producing an
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output sequence fx. The sequence fx is determined by defining each
of its coordinate symbols (fx)i by the rule

(fx)i = F (xi−n · · · xi+n).

It is easy to see that the map f produced in this way will be con-
tinuous and commute with the shift. That is, such a map f defines
a homomorphism (called a block code, or sliding block code, or just
code) from S into the full shift on the alphabet A (or into any subshift
which contains the image of f).
Example. The shift map itself is given by the code (fx)i = xi+1.
Here F (xi−n · · ·xi+n) = F (xi−1xixi+1) = xi+1. Example. Let S be the
twoshift and F (ijk) = j + k (mod 2), that is (fx)i = xi + xi+1 (mod
2). Then at a sample point x we see

x = . . . x0x1 . . . = . . . 01101011...
fx = . . . (fx)0(fx)1 . . . = . . . 1011110 ...

It is often convenient to abuse notation and use the same symbol for
the maps we call f and F above.

The “Curtis-Hedlund-Lyndon Theorem”asserts that every homomor-
phism of subshifts is a block code.

3.3. Higher Block Presentations. A subshift S is isomorphic to
many different subshifts. For example S is isomorphic to its “n-block
presentation” S[n] in which symbols are grouped in blocks of size n. A
word of length n for S becomes a symbol in the alphabet for the n-
block presentation. For example with n = 3 a point x in S corresponds
to a point y in its 3-block presentation as follows:

x = . . . x0x1 . . . = . . . 01230...
y = . . . y0y1 · · · = . . . [x0x1][x1x2] . . . = . . . [012][123][230] ...

4. Edge Shifts of Finite Type

4.1. Edge Shifts. Let A be an adjacency matrix for a directed graph
(if A is n× n, then the graph has n vertices, with A(i, j) from vertex i
to vertex j. Let the set of edges be the alphabet. Let Y be the set of
sequences y such that for all k, the terminal vertex of yk is the initial
vertex of yk+1. We can think of Y as the space of doubly infinite walks
through the graph, presented by the edges traversed. The shift map
restricted to Y is an edge SFT; the map (and by context its domain)
is denoted SA. Any SFT is isomorphic to an edge shift.

Remark: the edge SFT SAn is conjugate to (SA)n (where Sn denotes
the homeomorphism obtained by iterating S n times).
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4.2. Matrices. Because any SFT is isomorphic to an edge SFT SA,
all information about the dynamics of SA is determined by the matrix
A.

Note: matrices of arbitrarily large size can define isomorphic SFTs.
For example, the n-block presentation of an edge shift SA will be an
edge shift SB; if SA contains infinitely many points, then the size of B
goes to infinity as n goes to infinity.

5. Matrix Invariants for SFTS

There is a dictionary between various dynamical properties of and
edge SFT SA and properties (mostly algebraic) of the matrix A. To
avoid trivialities, A below is assumed to be nondegenerate (no zero row
and no zero column).

Dynamics of SA Matrix A

2. Transitivity [irreducible]
3. Mixing [primitive]

4. Entropy [spectral radius]
5. |Fix(SA)n|) [trace of An]
6. Zeta function [nonzero spectrum]

7. Isomorphism [SSE]
8. Eventual isomorphism [SE]
9. Flow equivalence [cok(I − A) + sign]

5.1. Nonnegative Matrices. The matrix A is irreducible if for every
(i, j) there exists n > 0 such that A(i, j) > 0. (This n can depend
on (i, j) — consider a cyclic permutation matrix.) The matrix A is
primitive if there exists n > 0 such that An has all entries strictly
positive. The matrix A is reducible if it is not irreducible.

Most problems about SFTs SA can be reduced easily to problems
for the case that A is primitive (i.e. SA is mixing). This is analogous
to the situation with nonnegative matrices, which one understands by
first understanding the primitive case.

5.2. Entropy. The premier numerical invariant of a dynamical system
S is its (topological) entropy, h(S). For a subshift S,

h(S) = lim sup
n

1

n
log(#Wn(S))

where Wn(S) is the set of words of length n occuring in sequences of
S. That is, the entropy is the exponential growth rate of the S-words.
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For a full shift on n symbols, the entropy is log(n). For an SFT SA,

h(S) = log(λA)

where λA is the spectral radius of A. This follows from the spectral
radius theorem because the number of words of length n is the sum of
the entries of An, which is the L1 norm of An.

5.3. Isomorphism. The basic, fundamental result, due to Williams,
is that SA and SB are isomorphic if and only if the matrices A and
B are strong shift equivalent over Z+. This is completely general,
nondegeneracy of A and B need not be assumed.

Let S be a subset of a semiring containing 0 and 1. (E.g. S could
be Z,Z+,Q, . . . ; usually S will be Z+ = {0, 1, 2, . . . }. Matrices A and
B are elementary strong shift equivalent over S, i.e.

A ∼ESSE
S B ,

if there are matrices U, V with entries from Z+ such that A = UV and
B = V U . For example, we have

(
2
)
∼ESSE

Z+

(
1, 1
1, 1

)
∼ESSE

Z+

1, 1, 0
0, 0, 1
1, 1, 1


because (

2
)

=
(
1, 1
)(1

1

)
(

1, 1
1, 1

)
=

(
1
1

)(
1, 1
)

and (
1, 1
1, 1

)
=

(
1, 1, 0
0, 0, 1

)1, 0
0, 1
1, 1


1, 1, 0

0, 0, 1
1, 1, 1

 =

1, 0
0, 1
1, 1

(1, 1, 0
0, 0, 1

)
.

**NOTE**: the relation ESSE is not transitive (for example the
matrix

(
2
)

cannot be be ESSE over Z+, or even over Q) to a matrix
of rank greater than 1). So we define matrices A and B to be strong
shift equivalent over S,

A ∼SSE
S B ,
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if they are linked by a finite chain of elementary strong shift equiva-
lences. Thus (

2
)
∼SSE

Z+

1, 1, 0
0, 0, 1
1, 1, 1


Theorem 1. (Williams 1973) Let A,B be square matrices over Z+.
The following are equivalent.

(1) The edge SFTs SA and SB are conjugate.
(2) A and B are SSE over Z+.

We will prove (at the board) the easy implication, (2) =⇒ (1). To
every SSE over Z+,

A = UV , B = V U

we will associate a topological conjugacy c(U, V ) from SA to SB. This
conjugacy c(U, V ) will be uniquely determined by the matrices U, V
when U, V have all entries in {0, 1}. In general, c(U, V ) will be uniquely
determined up to composition by a one-block map defined by a graph
automorphism of leaving all vertices fixed.

Note: the inverse of the homeomorphism c(U, V ) is not c(V, U). The
composition c(U, V ) followed by c(V, U) equals SA.

Theorem 2 (Decomposition Theorem). Every conjugacy of edge SFTs
is a composition of conjugacies of the form c(U, V ) and (c(U, V ))−1.

There is a very clear proof of the Decomposition Theorem in Lind
and Marcus [5].

5.4. Difficulties with strong shift equiuvalence. Strong shift equiv-
alence over Z+ is easy to define, but it is very difficult to understand
completely.

Open Problem 1. Does there exist an algorithm which, given square
matrices A,B over Z+, decides whether their edge SFTs are topologi-
cally conjugate?

So, Williams introduced another matrix relation, shift equivalence.

5.5. Shift equivalence. Matrices A and B are shift equivalent over S
(SE-S) if there are matrices U, V over S and a positive integer ` (called
the lag) such that the following equations hold.

A` = UV B` = V U
AU = UB BV = V A.

We will understand below the goodness and tractability of shift
equivalence.
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Conjecture 1. (Williams 1974) Shift equivalence over Z+ implies
strong shift equivalence over Z+.

This conjecture was finally disproved in the 90’s. We will see how.
Shift equivalence remains fundamental to attacking the classification
problem. The question of when shift equivalence implies strong shift
equivalence is still VERY poorly understood. For example:

Open Problem 2. Suppose A is a square matrix over Z+ with just one
eigenvalue, n, and this eigenvalue is a simple root of the characteristic
polynomial. Then A is SE over Z+ to the one-by-one matrix

(
n
)
. Must

A be SSE over Z+ to the one-by-one matrix
(
n
)
?

Open Problem 3. Let A be “Ashley’s eight-by-eight”, the 8× 8 ma-
trix which is the sum of the permutation matrices for the permutations
which in cycle notation are (12345678) and (1)(2)(374865). Then A
is SE-Z+ to [2]. Is A SSE-Z+ to [2]?

Open Problem 4. Suppose A and B are 2× 2 and SE over Z+ with
detA = detB < −1. Must A and B be SSE over Z+?

Open Problem 5. Given k ≥ 2 ∈ N, define the matrices

Ak =

(
1 k

k − 1 1

)
and Bk =

(
1 k(k − 1)
1 1

)
.

Then Ak is SE-Z+ to Bk, but for k ≥ 4 it is not known if Ak is SE-Z+
to Bk [5, Example 7.3.13]

6. Shift equivalence is good

Immediate remarks:

• SE (unlike ESSE) is an equivalence relation.
• There is an algorithm known (Kim and Roush) which decides

whether two matrices are shift equivalent over Z+.
• There is a dynamical characterization of shift equivalence (“even-

tual isomorphism”).
• Shift equivalence is meaningful, tractable and useful, particu-

larly in its “dimension” manifestation.

Two systems S and T are eventually isomorphic if Sn and T n are
isomorphic for all but finitely many n.

Theorem 3. For matrices A and B over Z+, the following are equiv-
alent.

(1) The edge SFTs SA and SB are eventually isomoprhic.
(2) A and B are SE over Z+.
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We’ll prove the easy implication, (2) =⇒ (1). Given the equations
above, we see that A` and B` are strong shift equivalent. Moreover, so
are higher powers, since for any positive integer n,

U(V An) = A`+n and (V An)U = (BnV )U = B`+n .

Let us appreciate the tractability of shift equivalence.:

(1) For primitive matrices, SE-Z implies SE-Z+.
(2) SE-Z implies SSE-Z.
(3) A square matrix over Z is SSE-Z to a nonsingular matrix.

What is particularly important is that for primitive matrices the
relations SE-ZZ+, SE-ZZ, SSE-ZZ+ are all the same.

Now some finer points for the algebraically inclined. In the list of
implications above:

• in (1), Z can be replaced by any unital subring of the reals.
• in (2), Z can be replaced by any Dedekind domain.
• in (3), Z can be replaced by any principal ideal domain.

Open Problem 6. For what rings S does SE over S imply SSE over
S? Does this implication hold for every integral domain with finite
cohomological dimension?

7. The meaning of SSE over a ring

Let S be a ring (by which we always mean a ring with 1). Square
matrices A,B are similar over S (SIM-S) if there is an invertible U
over S such that A = UBU−1.

The equivalence relation on square matrices given by SSE- S is a
kind of stabilized version of the relation SSE-S.

Proposition 4. Let S be a ring (by definition, containing 1). The
equivalence relation SSE- S is the equivalence relation ∼ on square
matrices over S which is generated by SIM-S and the following relations
among square matrices with the given block forms:

A ∼
(
A,P
0, 0

)
∼
(

0, Q
0, A

)
Above, the zero blocks and the blocks P,Q need not be square. The

Proposition’s easy-to-check proof is spelled out in [3]. We remark that
∼ above also satisfies

A ∼
(
A, 0
R, 0

)
∼
(

0, 0
S,A

)
.

Every singular square matrix over a PID S is similar over S to a
matrix in block triangular form with bottom row zero, and thus is
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SSE–S to a smaller matrix. Thus over a PID (such as Z or any field),
every square matrix A is SSE–S to some nonsingular matrix B, and
the SSE–S of A can be identified with the similarity class of B.

8. Dimension Modules

Let A be an n× n matrix over Z. Our convention is to let matrices
act on row vectors, and thus write composition of matrix maps left to
right. Define

VA = ∩k>0{vAk : v ∈ Qn}
= {vAn : v ∈ Qn} = QnAn

GA = {v ∈ VA : ∃k > 0 such that vAk ∈ Zn} .
When A is an n× n matrix over Z+, we also define

G+
A = {v ∈ VA : ∃k > 0 such that vAk ≥ 0} .

• Here A maps Zn to Zn and GA is simply a concrete presentation of
the associated direct limit group Zn → Zn → Zn · · · .

• For A over Z+, GA is an ordered group, with G+
A as its positive

set. An ordered group (GA, G
+
A) of this form is called a stationary di-

mension group.

• Note: for k > 0, GA = GAk and G+
A = G+

Ak . .

• Let Â denote the isomorphism GA → GA given by v 7→ vA. The
direct limit module of A is given by the pair (GA, Â).

• For square matrices A,B over Z, the following are equivalent:

(1) A and B are SE-Z.

(2) (Â, GA) ∼= (B̂, GB), meaning there is a group isomorphism ψ :

GA → GB such that Âψ = ψB̂.

If A and B are SSE-Z via A = RS,B = SR, then w 7→ wR defines
a group isomorphism R̂ such that R̂B̂ = ÂR̂. I.e. R̂ is an isomor-
phism of modules, (GA, Â) → (GB, B̂). Every module isomorphism

(GA, Â) → (GB, B̂) arises as R̂ for some matrix R over Q such that

AR = RB. Here, when A and B are primitive, R̂ sends G+
A onto G+

B if
and only if R sends a positive eigenvector for A to a positive eigenvec-
tor for B.

• For A over Z+, the dimension module of A is given by the triple
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(GA, G
+
A, Â). (Formally, (GA, G

+
A) is an ordered module for the ordered

Laurent ring (Z[t, t−1],Z+[t, t−1]), where the action of t is by Â−1.) Ma-
trices are SE-Z+ if and only if they have isomorphic dimension modules.
Matrices are SE-Z if and only if they have isomorphic direct limit mod-
ules.

• Examples.

(1) If A is n× n with |detA| = 1, then GA = Zn.
(2) If A =

(
2
)
, then GA = Z[1/2] = {m2k : k ∈ Z}.
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