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This will be a thin slice.

For more, see on my website

”Open problems in symbolic dynamics”.
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1. Some definitions.

A square matrix A with nonnegative integer

entries defines a shift of finite type (SFT).

This dynamical system is the shift map SA on a

compact metrizable space of bisequences rep-

resenting itineraries through a directed graph.

When A is nondegenerate, SA is mixing iff A is

primitive. The mixing case is the fundamental

case.

DEFN. Square matrices A, B over Z+ are ESSE(Z+)

if there are matrices R, S over Z+ such that

A = RS, B = SR.

Strong shift equivalence (SSE) is the transitive

closure of ESSE.

THM (Williams) SFTs SA, SB are topologically

conjugate iff A, B are SSE(Z+).
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Williams approached strong shift equivalence

with a more tractable relation, shift equiva-

lence.

DEFN Square matrices A, B are SE(Z+) if there

exist R, S over Z+ and a positive integer ` such

that A` = RS, B` = SR, AR = RB, BS = SA.

As it turns out, the relation SE(Z+) is under-

standable, useful and decidable.

DEFN An automorphism of an SFT S is a

self conjugacy (a homeomorphism h with hS =

Sh). Aut(S) is the group of automorphisms of

S.

3



2. The Classification Problem for SFTs

Conjecture (1974, Williams) If A and B are

SE(Z+), then they are SSE(Z+).

Counterexamples (Kim-Roush):

1992: A, B reducible

1999: A, B primitive

The counterexamples use tr(A) = tr(A2) = 0.

Williams’ Conjecture might be true for matri-

ces defining mixing SFTs with points of all

periods... and possibly there does not exist an

algorithm which decides whether two matrices

are SSE-Z+.

We seem stalled on this mystery.

With matrices over other semirings, there are

SSE/SE classification theories for Markov shifts,

G-shifts, sofic shifts ... they are stalled until

the fundamental SFT case is resolved.
4



3. The Extension Problem for mixing SFTs

Extension Problem. When does an automor-
phism of a subshift of a mixing SFT S extend
to an automorphism of S?

This grew out of a question of Williams (late
70s): if a mixing SFT SA has two fixed points,
must there be an automorphism of SA which
exchanges them?

For Williams, the Question was a test for his
shift equivalence conjecture: perhaps the an-
swer would depend on more than the shift equiv-
alence class of A. (That now seems unlikely.)

Still, tools developed for the Extension Prob-
lem were critical to the Kim-Roush counterex-
amples.

If a problem is hard, that might be one reason
to try to solve it.
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4. Two ingredients for solutions

I. Dimension representation (Krieger)

Given A n × n over Z+, let GA be the direct

limit group

GA = Zn → Zn → Zn → ... .

GA has a natural positive set with which it is

an ordered group (more precisely, a stationary

dimension group). The automorphism of GA

induced by A makes it a module (the ”dimen-

sion module”).

A topological conjugacy φ : SA → SB induces

an isomorphism φ̂ of dimension modules.
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When A = B, the rule φ 7→ φ̂ defines a ho-

momorphism ρA from Aut(SA) to the group

Aut(GA) of automorphisms of the dimension

module. ρA is called the dimension represen-

tation of Aut(SA).

Aut(GA) can be analyzed and often the image

of ρA in Aut(GA) is easily understood.

Ker(ρA) is a large, complicated, still mysterious

countable group.
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II. Sign-gyration homomorphism (B-Krieger,
Kim-Roush-Wagoner)

Given n, pick points xi, one from each S-orbit
of cardinality n. For some permutation π,
U(xi) = Sn(i)xπ(i). Define

signn(U) := 1 if the permutation is even,
signn(U) := −1 if it is odd.
gyn(U) :=

∑
n(i) ∈ Z/n.

Define the sign-gyration homomorphism
SGn : Aut(S) → Z/n by
SGn = gyn + (n/2)

∑
k signn/2k

where the summation is over the positive inte-
gers k such that n/2k is an integer. E.g.,

SG12 = gy12 + (12/2)[sign6 + sign3]
SG3 = gy3 .

SGn is a group homomorphism.

The product of these is SG, the sign-gyration
homomorphism.
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5. Solution of the heart of the extension

problem

Theorem (KRW, 1992) SG(U) is determined

by ρA(U). If U is in Ker(ρA), then SG(U)=0.

Theorem By constructions, vanishing of SG is

the only obstruction to extending an automor-

phism U ′ of a subsystem of SA to an element

of Ker(ρA).

(For a given U ′, the obstruction can be checked

by the action of U ′ on finitely many periodic

points.)

The constructions involved a number of people

over the years. The final and hardest construc-

tion was due to KRW (2000).
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6. Range of the dimension representation

For a mixing SFT SA, which automorphisms

of its dimension module are induced by auto-

morphisms of SA?

Solving this problem, and the classification prob-

lem for mixing SFTs, is equivalent to solving

the classification problem for general SFTs.

(Kim-Roush)

Solving this problem (which is understood in

many examples) would also suffice to finish off

the Extension Problem.

Kim, Roush and Wagoner showed that in some

cases ρA is not surjective.
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7. Cartoon outline of the counterexample

scheme

a. Extend the definition of SG to topological

conjugacies (not just automorphisms) defined

by a SSE-Z+ from A to B.

For this, to each A assign an explicit SA. For

each SA and n, choose explicit ordered sets

of representatives of periodic orbits of length

n (with the ordering, regard the k orbits of

length n as simply {1, ..., k}). To each elemen-

tary SSE(Z+) associate an explicit conjugacy,

so the map of length n orbits can be regarded

as a map from {1, .., k} to itself, i.e. a permu-

tation. Now compute with the same formulas

as before.
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b. Show for an SSE-Z+ from A to B that

the induced isomorphism of dimension modules

GA → GB determines the SG for the SSE (!!),

by explicit formulas.

c. Arrange an example for which SA and SB

have no points of period 1 or 2, but the only

SG2 possible (by considering possible dimen-

sion module isomorphisms) is nonzero. Con-

tradiction.

The nonsurjectivity examples for the dimension

representation have the same pattern – a cer-

tain action on dimension could only be induced

by an automorphism with a nontrivial SG2 (but

the example SA has no points of period 1 or

2).
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8. Wagoner’s Strong Shift Equivalence

Spaces

Wagoner topologized the strong shift equiva-

lence relation (1987-1990).

Given a subset Λ of a semiring, containing

{0,1}, he built a certain oriented CW complex,

visualized as an infinite simplex.

A vertex (0-cell) is a square matrix over Λ.

An edge (1-cell) from vertex A to matrix B

is a pair of matrices (R, S) over Λ such that

A = RS, B = SR.

A path along edges from A to B corresponds

to a strong shift equivalence from A to B.
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A 2-cell is a triangle whose edges satisfy certain

matrix equations (the “Triangle Identities”).

Two paths along edges in SSE({0,1}) are ho-

motopic (fixing endpoints) iff their associated

SSE’s define the same topological conjugacy.

Two paths along edges in SSE(Z+) from A to

B are homotopic (fixing endppoints) iff (mod-

ulo ”simple” automorphisms of the shift) they

define the same topological conjugacy from SA

to SB,

Two paths in SSE(Z) from A to B are homo-

topic iff they define the same map GA → GB.

The Kim-Roush-Wagoner obstructions are proved

in the setting of Wagoner’s SSE spaces.
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9. Positive K-theory

(Kim Roush Wagoner; B-Wagoner)

To show SG(U ′) = 0 is the only obstruction to

extending an automorphism U ′ of a subsystem

of SA to an element of Ker(ρA), it was nec-

essary to produce constructions. These de-

veloped in papers by several authors. The

hardest construction (KRW,2000) introduced

”positive K-theory”. Here (skipping a techni-

cal detail):

(i) an SFT SA now is represented by a ma-

trix A with entries in tZ+[t]. A has infinitely

many rows and columns, but only finitely many

entries can be nonzero.

(ii) If A, B are such matrices and E is a basic

elementary matrix over tZ+[t] and E(I −A) =

I −B, or (I −A)E = B, then there is an asso-

ciated topological conjugacy SA → SB
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(iii) All conjugacies SA → SB are compositions

of such elementary conjugacies,

SA → SA1
→ SA2

→ · · · → SB

This gives another approach to construction,

obstruction and classfication. It is more func-

torial than the SSE setting. Like the SSE

setup, it generalizes to other kinds of symbolic

systems. Positive K-theory has been especially

useful for studying flow equivalence of SFTs,

G-SFTs and sofic shifts.

16



10. Why “Positive K-Theory”?

For a ring R, GL(R) is the set of infinite in-

vertible matrices over R which are equal to I

in all but finitely many entries. The map from

GL(R) to K1(R) has kernel generated by the

basic elementary matrices. So, two elements

of GL(R) represent the same class in K1(R) iff

they are in the same double coset under the

action by basic elementary matrices.

Similarly, for the ring R = Z[t, t−1], if matrices

I−A and I−B over R present SFTs as before,

then conjugacy of the SFTs requires that I−A

and I − B be in the same double coset under

the action by basic elementary matrices.
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Two features distinguish the positive-K equiv-

alence relation on the I −A and the K1 equiv-

alence relation. K1.

1. I −A is not invertible.

2. Let M be the set of matrices I −A defining

SFTs. Elements I −A, I −B define conjugate

SFTs iff they are in the same double coset

under multiplication by basic elementary ma-

trices, where each INDIVIDUAL multiplication

must take a matrix in M to a matrix in M .

The matrices I−A and I−B are equivalent by

products of elementary matrices over R

U(I −A)V = I −B,

iff integer matrices presenting the SFTs as

edge SFTs are shift equivalent over Z, which

in the mixing SFT case is equivalent to shift

equivalence over Z+.
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11. Aut(S), S a mixing SFT

Study of Aut(S) started with Hedlund (1969).

Aut(S) is countably infinite and residually fi-

nite, contains copies of free groups, all locally

finite countable groups and many others.

Its finitely generated subgroups have solvable

word problem.

Ryan’s Theorem: the center of Aut(S) is the

set of powers of S.

Aut(S) has many normal subgroups. But apart

from Ryan’s Theorem, we know only two ways

to compute normal subgroups: through the di-

mension represenation, or by actions on finite

subsystems.

And that’s what we know about the algebraic

structure of Aut(S).

19



How much algebraic structure are we missing?

It is another longstanding mystery.

Open: are the automorphism groups of the

2-shift and 3-shift isomorphic?

On the Math ArXiv (24 June 2010):

”The restricted Weyl group of the Cuntz alge-

bra and shift endomorphisms”,

by Conti, Hong and Szymanski.

For S a full shift on a prime number of sym-

bols, they show Aut(S) mod its center is iso-

morphic to a certain subgroup of interest in

the group of outer automorphisms of the as-

sociated Cuntz C∗-algebra.

Could this possibly help?
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11. When is a mixing SFT SB a factor of

a mixing SFT SA ?

Unequal entropy case (B, 1983 ETDS): iff

(*) for all n, tr(An) > 0 =⇒ tr(Bn) > 0.

Equal entropy case:

last big result was (Ashley, 1991 ETDS):

For mixing SFTs SA,SB of equal entropy, TFAE.

1. There is a right closing factor map from SA

onto SB

2. (*) holds, and the dimension module GB is

a quotient of GA.

Conjectured (1993):

For mixing SFTs SA,SB of equal entropy, TFAE.

1. There is a factor map from SA onto SB.

2. (*) holds, and the dimension module GB

is a quotient of a closed (pure) submodule of

GA.
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The condition (2) in the conjecture is known

to be a necessary condition for the factor map,

by Kitchens-Marcus-Trow (1991).

Again, we seem to be stalled.
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12. Zd shifts of finite type

The world of multidimensional SFTs (Zd SFTs,

d > 1) is vastly richer and more varied than Z-

SFTs. We are still exploring the landscape.

There is a deep and satisfactory theory of Zd

SFTs given as automorphisms of compact abelian

groups (Schmidt + ..... ). For general Zd

SFTs, the algebraic structure central to the Z

case disappears.

Long appreciated: “typically”, if there is a

property of interest for Zd SFTs (d > 1), an

algorithm to decide it in general won’t exist.

Recently, systematic constructions have led to

Zd SFT results of the following flavor: a gen-

eral recursion theoretic obstruction is the only
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obstruction to realization of some phenomena.

Quickly, two examples:

Example 1: (Hochman-Meyerovitch) TFAE for

a real number α.

1. α is the Zd entropy of a Zd SFT.

2. There is a Turing machine which produces a

decreasing sequence of positive rational num-

bers αn such that limαn = α.

Example 2 (Hochman) Supose d > 2, d an in-

teger, α a real number. TFAE.

1. α is the entropy of a d-dimensional c.a.

2. There is a Turing machine which produces a

sequence of positive rational numbers αn such

that lim inf αn = α.

There is a more done and continuing. It is

a good period for multidimensional symbolic

dynamics.
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9. Nasu’s Textile Systems

This is a kind of calculus of Wang tilings which

Nasu has developed to study dynamics of endo-

morphisms and automorphisms of SFTs (and

more). For a quick-to-state example of results:

Theorem (Nasu)

Suppose U is a homeomorphism commuting

with a onesided full shift on n symbols.

Then U is topologically conjugate to a two

sided SFT which is shift equivalent to a full

shift.

Moreover, if log k is the entropy of U , then k

and n are divisible by the same primes; and if

a prime p divides n, then p2 divides k.
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Nasu’s machine also cranked out an example

of two commuting mixing SFTs which do not

have a common measure of maximal entropy,

and whose defining matrices have no algebraic

relations.

Conjecture (B). If S and T are nontrivial mix-

ing SFTs, then given any sufficiently large k, m

there exist commuting maps S′, T ′ which are

topologically conjugate respectively to Sk and

Tm.

26



10. Symbolic extensions and entropy struc-

ture

Let T be a finite entropy homeomorphism of

a compact metrizable space. When is T the

factor a subshift – i.e when does T have a

symbolic extension? What is the symbolic ex-

tension entropy hsex(T ) (:= the infimum of the

entropies of such subshifts)?

To approach this question, Downarowicz [ETDS

2001] took the essential step of considering

a sequence (hn) of functions on the Choquet

simplex of invariant Borel probablities for T . It

turns out that hsex(T ) is computed in terms of

a transfinite procedure applied to (hn), when

(hn) is in a suitable (very large) equivalence

class. Various subtle related problems have ex-

act functional analytic characterizations.
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The theory of symbolic extension entropy is

at the heart of the Entropy Structure theory

of Downarowicz, which unifies and extends the

classical entropy theory of continuous maps on

compact metric spaces, and represents some

kind of rigorous theory of the emergence of

complexity on refining scales.

There were other contributors to the general

development (B, Fiebigs, Serafin, Weiss...), and

then a large effort to understand the constraints

intermediate smoothness places on hsex(T ), be-

gun by Downarowicz and Newhouse and con-

tinued by Asaoka, Downarowicz-Maass, Bur-

guet, Diaz-Fisher, Cowieson-Young, Diaz-Fisher-

Pacifico-Vietez, Gang-Viana-Yang ...

In particular, there is support for the Cr Sex

Entropy Conjecture of Downarowicz and New-

house. This gives a formula for a finite upper

bound to hsex(T ) when T is Cr, 1 < r < ∞.
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Downarowicz has written a book:

”Entropy in dynamical systems”

Cambridge University Press

(Spring 2011)

It covers the entropy structure theory and more.

This year he was awarded Poland’s Banach

Prize for his mathematics. His university an-

nounced it on its home page ...
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