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I. Background: symbolic extensions and

entropy.

• All spaces are compact metrizable.

• (X, T ) denotes a homeomorphism,

T : X → X, with htop(T ) < ∞.

• MT is the space of T -invariant Borel prob-

abilities.

• A subshift (Y, S) is the restriction of the

full shift on a finite alphabet to a closed

invariant subsystem.

• A symbolic extension of (X, T ) is a subshift

(Y, S) with a continuous surjection

ϕ : Y → X such that Tϕ = ϕS.
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Definition.

The (topological) residual entropy of T is

hres(T ) = inf{htop(S)} − htop(T )

where the inf is over the symbolic extensions

of T .

Theorem. [BFF, D1]

Given 0 < α < ∞ and 0 ≤ β ≤ ∞, there exists

T with htop(T ) = α, hres(T ) = β.

The intuition: hres(T ) > 0 reflects nonuniform

emergence of entropy on refining scales.

To understand this it is essential to consider

symbolic extensions in terms of invariant mea-

sures.
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Extension entropy. Consider a homeomor-

phism T of a compact metric space X. Given

a symbolic extension ϕ : (Y, S) → (X, T ) define

its extension entropy function

h
ϕ
ext : MT → [0,∞)

µ 7→ max{h(S, ν) : ϕν = µ} .

Symbolic extension entropy. Given (X, T ),

we define its symbolic extension entropy func-

tion to be the function hT
sex : MT → [0,∞]

which is the infimum of all h
ϕ
ext arising from

symbolic extensions ϕ of (X, T ).

(hT
sex ≡ ∞ if no symbolic extension exists.)

Abbreviate:

symbolic extension entropy = sex entropy.

When some symbolic extension exists, hT
sex is a

bounded function, and hT
sex(µ) gives a quanti-

tative measure of the emergence of complexity

on finer scales “near” the support of µ.
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Entropy structure. An entropy structure for
(X, T ) is an allowed nondecreasing sequence of

nonnegative functions hn on MT , converging
to the entropy function h.

Example of an entropy structure.
Suppose the system (X, T ) admits a refining

sequence of partitions Pn with small bound-

aries (the boundary of the closure of each par-

tition element has µ-measure zero for every µ
in MT ), and with the maximum diameter of

elements of Pn going to zero as n → ∞. De-
fine hn(µ) = h(µ, Pn). The sequence (hn) is an

entropy structure for (X, T ).

• (hn) reflects emergency of complexity on
refining scales.

• The meaning of “allowed” is part of a deeper

theory of entropy [D2].

• Every system has an entropy structure [BD1].
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Superenvelopes. Below: (hn) is an entropy
structure with h0 ≡ 0 and all hn − hn−1 u.s.c.
A bounded function E on MT such that ev-
ery E − hn is nonnegative u.s.c. is called a
superenvelope of the entropy structure. (Also
allow the constant function E ≡ ∞ as a su-
perenvelope.)

Sex Entropy Theorem [BD1].
Let E be a bounded function on MT . T.F.A.E.

1. E is the extension entropy function of a
symbolic extension of (X, T ).

2. E is affine and a superenvelope of the en-
tropy structure.

(The statement does not depend on the choice
of entropy structure.)

Functional analytic characterization of hsex.
hsex is the minimum superenvelope of the en-
tropy structure (hn).
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Inductive Characterization of hsex.

Let g̃ denote the u.s.c. envelope of a function

g (the inf of the continuous functions larger

than g). Convention: g̃ ≡ ∞ if sup g = ∞.

Let H = (hn) be an entropy structure, hn → h.

Begin with the tail sequence τn = (h − hn),

which decreases to zero. We will define by

transfinite induction a transfinite sequence uH

of functions uα on MT . Set

• u0 ≡ 0

• uα+1 = limk( ˜uα + τk)

• uβ = the u.s.c. envelope of sup{uα : α < β},

if β is a limit ordinal.

THEOREM uα = uα+1 ⇐⇒ uα + h = hsex,

and such an α exists among countable ordinals

(even if hsex ≡ ∞).

The convergence above can be transfinite, and

this indicates the subtlety of the emergence of

complexity on ever smaller scales.
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Sex entropy and smoothness

If (X, T ) is C∞, then [Buzzi following Yomdin]

T is asymptotically h-expansive, and [BFF] there-

fore hsex = h.

Theorem [DN] A generic C1 non-hyperbolic

(i.e. non-Anosov) area preserving diffeomor-

phism of a compact surface has no symbolic

extension (i.e. residual entropy = ∞).

Theorem [DN] For r > 1 and any compact

Riemannian manifold of dimension > 1, there is

a Cr-open set of Cr diffeomorphisms in which

the diffeomorphisms with positive topological

residual entropy are a residual set.

Theorem [A] For a smooth compact manifold

M with dim(M) ≥ 3, there is an open subset

of Diff1(M) in which generic diffeomorphisms

have no symbolic extension.
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The DN/A proofs involve complicated iterated

constructions using genericity arguments and

persistent homoclinic tangencies. We’ll give

concrete Cr examples (1 ≤ r < ∞) a little later.

The main open problem. For a Cr diffeo-

morphism T , 1 < r < ∞, is it possible that T

has infinite residual entropy?

Conjecture [DN]. Suppose 2 ≤ r < ∞ and T

is a Cr diffeomorphism. Then

hsex(T ) ≤
[
R(f)dim(X)

] r

r − 1
,

where R(f) := limn(1/n) logmax ||(Tn)′|| .
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II. Functoriality of sex entropy.[BD2]

Powers. For 0 6= n ∈ Z,

(1) The restriction of hTn

sex to MT equals |n|hT
sex.

(2) hsex(Tn) = |n|hT
sex.

Flows. For T a flow and a, b nonzero in R,

(1) hsex(T a, µ) = |a/b|hsex(T b, µ),

. for all µ ∈ MT a ∩MT b.

(2) hsex(T a) = |a/b|hsex(T b).

Products. Suppose (X, T ) is the product of

finitely or countably many systems (Xk, Tk) such

that
∑

k hsex(Tk) < ∞, and µ ∈ MT . Let µk be

the coordinate projection of µ. Then

(1) hsex(T, µ) ≤
∑

k hsex(T, µk) .

(2) If µ is the product measure
∏

k µk, then

. hsex(T, µ) =
∑

k hsex(T, µk).

(3) hsex(T ) =
∑

k hsex(Tk) .
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Fiber Products. Let (X, T ) be the fiber prod-

uct of (X ′, T ′) and (X ′′, T ′′) over their common

factor (X, T ′′′). Then

(1) hsex(T, µ) ≤ hsex(T ′, µ′)+hsex(T ′′, µ′′)−h(T ′′′, µ′′′)

where µ ∈ MT and the other measures are its

projections.

(2) If above µ is the relatively independent join-

ing of µ′ and µ′′, and T ′′ is asymptotically h-

expansive, then

hsex(T, µ) ≥ hsex(T ′, µ′)+hsex(T ′′, µ′′)−hsex(T ′′′, µ′′′)

(3) If above h(T ′′′) = 0 and T ′′ is asymptoti-

cally h-expansive, then

hsex(T, µ) = hsex(T ′, µ′) + hsex(T ′′, µ′′).

We need (3) for our explicit examples.

The proofs for products and fiber products

use the (transfinite) inductive characterization

and also the Downarowicz entropy structure

defined from continuous functions [D2].
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III. Examples.

Given 1 ≤ r < ∞, Misiurewicz (1973) manip-

ulated several vector fields to construct a Cr

system D : V × S1 → V × S1 with no mea-

sure of maximal entropy (the first smooth ex-

amples with no such measure). (Dim(V )=3.)

Features of the example, given r:

• Each V × {t} is D-invariant. Let

Vt = V × {t}

Dt = D|Vt

S1 = (−1/2,1/2].

• htop(D0) = 0.

• Restriction of D to ∪t≥εVt is C∞ with en-

tropy < h(D).

• lim supt→0 h(Dt) = h(D) > 0.
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It turns out that the sex entropy function hD
sex

is simply the u.s.c. envelope h̃ of the entropy

function h on MD.

The proof of this [BD2] uses the functional an-

alytic characterization of the sex entropy func-

tion, and a study of the lift of hsex from MD to

a function on the Bauer simplex whose bound-

ary is the closure of the ergodic measures in

MD.

Sex Entropy Variational Principle [BD1].

The topological sex entropy is the max of its

sex entropy function.

So for D, the topological sex entropy equals

its topological entropy.
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Another Misiurewicz example.

Another (much easier) Misiurewicz example (1971):

a smooth system (W ×S1, R) with the entropy

function on MR not lower semicontinuous:

• R is C∞

• Each W × {t} := Wt is R-invariant

Rt : Wt → Wt

• h(Rt) = 0 if t 6= 0

• h(R0) > 0 .
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Because W is C∞, it is asymptotically h-expansive.

The sex entropy function on MW is simply the

entropy function, and the residual entropy is

zero.

We will combine the two Misiurewicz exam-

ples in a fiber product to get an explicit exam-

ple of a Cr diffeo with positive topological sex

entropy.
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Smooth examples with positive residual

entropy.

• Set X = V × W × S1.

• Define T : X → X,

T : (v, w, t) 7→ (Dt(v), Rt(w), t).

• htop(Rt) = 0 if t 6= 0, and

htop(D0) = 0.

• Thus htop(T ) = max{htop(D), htop(R)}.

• To prove T has positive topological residual

entropy: by the Sex Entropy Variational

Principle, it suffices to show the sup of hT
sex

is larger than the max above.
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• T : (v, w, t) 7→ (Dt(v), Rt(w), t).

• T is a fiber product of V and W over S1.

Apply the functorial fiber product result (3)

to µ ∈ MT with projections µD, µR:

hsex(T, µ) = hsex(D, µD) + hsex(R, µR)

= h̃(µD) + h(µR)

where we used hR
sex(µR) = h(µR), which

holds because R is asymptotically h-expansive,

which holds because R is C∞.

• Now choose a µD and µR on V0 and W0

to maximize the h̃(µD) and h(µR) above,

respectively at htop(D) and htop(R), and

let µ be their product measure on V ×W ×

{0}. We get

hT
sex(µ) = htop(D) + htop(R)

> max{htop(D), htop(R)} .

This finishes the proof.
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