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I.1. Shifts of finite type

• Given: A an n× n matrix over Z+,

• view A as adjacency matrix of directed graph

GA on vertices 1,2, . . . , n

A(i, j) = number of edges from i to j

• Let XA be the space of doubly infinite se-

quences x = . . . , x(−1), x(0), x(1), . . . such

that for all n, x(n) is an edge of GA, and

x(n + 1) follows x(n) in GA.

• XA is naturally a compact metrizable space

• σA : XA → XA is the shift homeomorphism,

(σA(x))(n) = x(n + 1).
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The topological dynamical system σA is a shift

of finite type (SFT). It is a mixing SFT if the

matrix A is primitive (nonnegative, with some

An strictly positive). The mixing SFTs (anal-

ogous to primitive among nonnegative square

matrices) are the basic building blocks and the

most important case of SFT.

Two top. dyn. systems S and T are topologi-

cally conjugate, or isomorphic,

S ∼= T

if there is some homeomorphism h such that

hS = Th. Every SFT is isomorphic to some

σA. SFTs play a significant role in dynamical

systems.

To study topological conjugacy of SFTs σA

in terms of the defining matrices A, we must

define some matrix relations.
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I.2. Strong shift equivalence

S := a subset of a ring, containing 0 and 1.

Matrices A, B are elementary strong shift equiv-
alent over S (ESSE-S) if there exist matrices
U, V over S such that A = UV and B = V U .

The relation strong shift equivalence over S
(SSE-S) is the transitive closure of (ESSE-S).

Example.

A =
(
2
)
=

(
1
1

)(
1 1

)
= U1V1

B =

(
1 1
1 1

)
=
(
1 1

)(1
1

)
= V1U1

B =

(
1 1
1 1

)
=

(
1 1 0
0 0 1

)1 0
0 1
1 1

 = U2V2

C =

1 1 0
0 1 1
1 1 1

 =

1 0
0 1
1 1

(1 1 0
0 0 1

)
= V2U2
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So, A and C are SSE-Z+.

A and C are not ESSE-Z+

(or even ESSE-R+): it is easy to see that a

one-by-one real matrix can only be ESSE to a

rank one matrix.

As another example, if A is a real matrix such

that Ak 6= 0 and Ak+1 = 0, then A is SSE-R
to (0) in k elementary steps but not fewer.

SSE is clearly a natural relation to consider for

matrices. But what does it have to do with

symbolic dynamics?
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I.3. SSE and SFTs

THEOREM (Williams, 1973)

σA
∼= σB ⇐⇒ A, B are SSE-Z+

BUT it is still unknown if SSE-Z+ is decidable,

i.e., whether there exists an algorithm which

will take two matrices and decide whether they

are SSE-Z+.

We have no bounds on the sizes of matrices

which might be involved in a chain of ESSE.

So, Williams introduced a more tractable rela-

tion, shift equivalence.
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I.4. Shift equivalence

DEFN Square matrices A, B are shift equiva-

lent over S (SE-S) if ∃ matrices U, V over S
and ` ∈ N such that

A` = UV B` = V U

AU = UB BV = V A

• SE-Z+ is decidable (Kim-Roush)

• SE-Z+ is conceptual – equivalent to iso-

morphism of certain associated ordered mod-

ules (Krieger).

• A, B are SE-Z+ iff

(σA)n ∼= (σB)n for all large n
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SHIFT EQUIVALENCE CONJECTURE (Williams

1974): SE-Z+ implies SSE-Z+.

Counterexamples (Kim Roush 1992,1999) are

few and so far require quite special conditions

on the matrices. Explaining these is beyond

the scope of the talk. Now we want to know,

with what extra assumptions does SE-Z+ im-

ply SSE-Z+?

LITTLE SHIFT EQUIVALENCE CONJECTURE

If A over Z+ has a single nonzero eigenvalue

n, then A and (n) are SSE-Z+.

THEOREM (Kim-Roush, 1990) The last con-

jecture is true with R or Q in place of Z.

POSITIVE RATIONAL SHIFT EQUIVALENCE

CONJECTURE If A, B are shift equivalent over

Q and have all entries positive, then A and B

are SSE-Q+.
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I.5. More on SSE as a matrix relation

FACT (Williams) For a unital subring S of R,

primitive matrices are SE-S+ iff they are SE-S.

FACT (Williams,Effros,B-Handelman) For S a

PID or Dedekind domain, SE-S implies SSE-S.

PROBLEM For which other unital subrings S
of R does SE-S implies SSE-S?

At any rate:

for primitive matrices over S = Z or Q,

SE-S+ is equivalent to SSE-S and to SE-S.
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For any nonnilpotent matrix A over a PID S
(e.g. Z or Q), there is an invertible U over

S such that UAU−1 has block form

(
A′ X
0 N

)
where A′ is nonsingular and N is nilpotent tri-

angular (or empty). Given likewise B, B′:

A, B SSE−Q ⇐⇒ A′, B′ SIM−Q
A, B SSE− Z ⇐= A′, B′ SIM− Z

For any unital ring S, we think of SSE-S as

a stabilized version of similarity over S. Here,

the equivalence relation SSE-S is generated by

the following relations on square matrices over

S: similarity over S (A ∼ UAU−1), and(
A X
0 0

)
∼ A ∼

(
A 0
X 0

)
(i.e., if in a matrix row n or column n is all

zero, then we can delete row n and colum n).
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More facts around SSE as a stabilized similar-

ity.

The SIM-Z classes of matrices with a given

irreducible characteristic polynomial with root

λ are in bijective correspondence with the ideal

classes of Z[λ] (Taussky-Todd). Their SSE-Z
classes are in bijective correspondence with the

ideal classes of Z[1/λ] (B-Marcus-Trow).

Suppose A is a square matrix over Z whose

characteristic polynomial has no nonzero re-

peated root. Then the class of matrices SE-Z
to A is a union of finitely many SIM-Z classes.
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I.6. The Spectral Conjectures

Let Λ denote a list of complex numbers and

Λn the list of their nth powers. Let tr(Λ)

be the sum of the entries of Λ. So, if Λ is

the nonzero spectrum ΛA of a matrix A, then

tr(Λn) = trace(An).

[Remark: det(I − tA) encodes ΛA.]

For A over Z+, the trace of An is the number of

fixed points of σn
A. So, ΛA encodes the periodic

point counts of σA. What can these counts be?

SPECTRAL CONJECTURE (B-Handelman 1991)

Suppose S is a subring of R containing 1, and

(λ1, ..., λk) is a list of nonzero complex num-

bers. Then Λ is the nonzero spectrum of a

primitive matrix over S if the following neces-

sary conditions hold.
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1. (Perron condition) λ1 > |λi|, ∀i > 1.

2. (Coefficients condition) The polynomial

(t− λ1) · · · (t− λk) has all coefficients in S.

3. (Trace condition)

• If S 6= Z, then for all k, n ∈ N

– tr(Λn) ≥ 0,

– tr(Λn) > 0 =⇒ tr(Λnk) > 0.

• If S = Z, then for all n ∈ N,∑
k|n

µ(n/k)tr(Λk) ≥ 0

where µ is the Mobius function.
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The Spectral Conjecture is true for S = R
(B-Handelman 1991) and S = Z (Kim-Ormes-

Roush, 2000).

What is a grand analogue realization conjec-

ture for “all” the stable algebraic structure

(not just nonzero spectrum)?

GENERALIZED SPECTRAL CONJECTURE

(B-Handelman 1993) Suppose B is a square

matrix over S and its nonzero spectrum sais-

fies the three conditions of the Spectral Con-

jecture. Then there is a primitive matrix A

over S such that A and B are SSE-S.

The GSC is open for every S. It holds for B

over S = Z if all eigenvalues of B are rational

(B-Handelman 1993).
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I.7. G-SFTs

The relations SSE and SE adapt well to sev-

eral other classification problems in symbolic

dynamics. Here is an example.

Let G be a finite group. Say a G-SFT is an

SFT together with a continuous free G action

on it which commutes with the shift.

Let ZG denote the integral group ring of G and

let Z+G denote the subset of elements
∑

g ngg

for which every ng is a nonnegative integer.

It turns out (Parry) that square matrices over

Z+G present G-SFTs; SSE-Z+G of A and B

is equivalent to topological conjugacy of the

G-SFTs; SE-Z+G of A and B is equivalent to

eventual topological conjugacy of the G-SFTs;

and so on (B-Sullivan 2005).
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II.1 Polynomial Matrices

A square matrix B over tZ+[t] presents a cer-

tain directed graph GB. In GB: for each term

tk in B(i, j), there is a path of k edges from i

to j. These paths do not intersect except as

required at the beginning and end vertices.

Define σB to be the SFT σD, where D is the

adjacency matrix of GB.

(E.g., if B = tA with A over Z+, then D = A.)

[Remark: det(I −B) = det(I − tD).]

Given a finite matrix B, define the N×N matrix

B∞ =

(
B 0
0 0

)
For notational simplicity, we identify B and

B∞. From here matrices are N × N unless in-

dicated. The matrix I is the N × N identity

matrix.
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II.2 Positive Equivalence

DEFN A basic elementary matrix over a ring R
is a matrix over R equal to the identity except

possibly in a single offdiagonal entry.

DEFN E(R) is the group of matrices gener-

ated by N× N basic elementary matrices.

DEFN Matrices A, B are basic positive equiva-

lent over R if there is a basic elementary matrix

E such that EA = B or AE = B.

DEFN Let M be a set of matrices containing

A and B. Then A, B are positive equivalent

in M over a ring R if there are matrices A =

A0, A1, . . . , An = B, all in M, such that Ai and

Ai−1 are basic positive equivalent over R, 1 ≤
i ≤ n.
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THM∗ Let A, B be matrices in the set M of

matrices over tZ+[t]. Then T.F.A.E.

1. σA
∼= σB

2. I − A and I − B are positive equivalent in

M over Z[t].

This gives a useful “positive K-theory” struc-

ture for studying SFTs. Just as SSE/SE adapts

to several other problems, so does this setup.

Of course (2) implies there are U, V in E(R)

such that

U(I −A)V = I −B .

∗The theorem statement is slightly wrong for

simplicity. See reference 2 listed in Section V.
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II.3 Positive K-theory

Why the name “positive K-theory”?

For any ring R, its stable general linear group

GL(R) is the group of N × N matrices of the

form (
X 0
0 I

)
where X is finite square invertible over R.

The group K1(R) of algebraic K-theory is the

abelianization of GL(R). Elements A, B of

GL(R) are in the same element of K1(R) iff

there exist U, V in E(R) such that UAV = B.

Our setup is similar but more difficult.

(1) Our matrices I −A are not invertible.

(2) Instead of E(R) equivalence, we have the

more complicated relation of composition of

basic positive equivalences.
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III.1 Flow equivalence

Suppose X is a compact metric space and T :

X → X is a homeomorphism.

The mapping torus of T , Map(T ), is the quo-

tient of X × [0,1] by the map which for each x

in X identifies (x,1) and (Tx,0).

Equivalently Map(T ) is the quotient of X ×
R under the map which identifies (x, s) and

(T kx, s + k) for every k in Z.

The suspension flow on Map(T ) corresponds

to (x, t) moving to (x, s + t) at time s.

DEFN T is flow equivalent (FE) to T ′ if ∃
homeomorphism h : Map(T ) → Map(T ′) which

sends flow lines to flow lines respecting the di-

rection of flow (“orientation preserving”).
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III.2 Flow equivalence of mixing SFTs’

The polynomial matrices and positive K-theory

setup really pay off in analyzing flow equiva-

lence of SFTs.

Very roughly: for an SFT presented by a ma-

trix over Z+[t], “t” plays the role of time, and

the flow equivalence class is unaffected by time

changes (changing positive exponents in the

matrix to other positive exponents).

A positive equivalence over Z[t] corresponds

to conjugacy of I − A(t) and I − B(t); under

modest conditions, a positive equivalence over

Z[1] = Z of I −A(1) and I −B(1) corresponds

to flow equivalence.

If A(t) is tC with C over Z+, then A(1) = C.
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THEOREM Suppose A and B are nontrivial

primitive matrices over Z. TFAE.

(1) σA and σB are FE.

(2) I−A and I−B are pos. equivalent over Z.

(3) I −A and I −B are equivalent over Z.

Given a matrix C over Z, there are matrices

U, V in E(Z) = SL(Z) such that UCV is a di-

agonal matrix D with D(k + 1, k + 1) dividing

D(k, k) and all entries nonnegative except per-

haps D(1,1). This list of diagonal entries is a

complete invariant for equivalence over E(Z).

This is a complete invariant of dreamlike sim-

plicity.

[It was long known (Parry, Sullivan, Bowen,

Franks) that (1) is equivalent to det(I −A) =

det(I −B) and cok(I −A) ∼= cok(I −B).]
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III.3 Equivariant flow equivalence for

G-SFTs’

Let G be a finite group and A a matrix over

Z+G. Recall A presents a G SFT, σA. The

mapping torus of σA carries an induced free G

action commuting with the suspension flow.

Two G-SFTs are G-flow equivalent if there

is a homeomorphism between their suspension

flows, sending flow lines to flow lines respect-

ing the direction of the flow, and intertwining

the G-actions.

The classification of mixing G-SFTs up to G-

flow equivalence reduces to the following theo-

rem (in which the “weights group” is an easily

computed invariant we won’t discuss). It is the

G-SFT/ZG analogue of the SFT/Z theorem.
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THEOREM Suppose A and B are nontrivial

primitive matrices over ZG. TFAE.

(1) σA and σB are FE.

(2) I − A and I − B are pos. equivalent over

ZG.

(3) I −A and I −B are equivalent over ZG.

Of course the hard direction is (3) =⇒ (2).

In contrast to the Z case, there is nothing like

a simple, general complete invariant for equiv-

alence over ZG.

Example. Let G = Z/2 = {e, g} and

A =

(
e + g e− g

0 2e + 2g

)
.

Then A is not GL(ZG) equivalent to its trans-

pose.
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Example. Let G = Z/2 = {e, g} and

B =

(
e + g e− g
e− g 2e

)
.

Then B is not GL(ZG) equivalent to a trian-

gular matrix.

For simple proofs, see Sec. 8 in (B-Sullivan

2005), where there are also some positive facts.

PROBLEM For a finite group G, when are two

matrices over ZG equivalent over E(ZG)?
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IV. Flow equivalence of sofic shifts

Given an edge shift of finite type σA : X → X,

and a map Φ from the symbols (edges) to

some finite set, and x ∈ X, define a dou-

bly infinite sequence φx by the rule (φx)(n) =

Φ(x(n)). Let S be the shift map on Y = {φx :

x ∈ X}. Then S is a sofic shift. Every sofic

shift is obtained in this way.

To a sofic shift a cover φ of this type can be

canonically associated. We say S is n-sofic if

it has a canonical cover φ for which no point

has more than n preimages.

For sofic shifts, the flow equivalence relation

is far more complicated. Soren Eilers, Toke

Carlsen and I have work in progress to classify

all 2-sofic shifts up to flow equivalence. (3-

sofic is beyond us.)
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The classification of 2-sofic shifts requires the

full force of the classification of mixing G-SFTs

up to FE (for the case G = Z/2); the full

force of the classification of general (reducible)

SFTs up to flow equivalence by Danrun Huang

(for which the general complete invariant in-

cludes isomorphism of a complicated diagram

of group homomorphisms); and more.

CONCLUSION: The study of symbolic dynam-

ical systems leads to interesting and difficult

algebraic problems, especially problems involv-

ing matrices.
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