1. Let
$$A = \begin{bmatrix} -1 & 2 & 0 \\ -4 & 5 & 0 \\ 2 & -2 & 1 \end{bmatrix}$$

- (a) Compute the characteristic polynomial of A and show that $\lambda = 1$ and $\lambda = 3$ are eigenvalues of A.
- (b) Diagonalize the matrix A.
- 2. (a) Show that the matrix $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ is not diagonalizable.
 - (b) Show that if $n \times n$ matrices A and B are similar, then A^2 and B^2 are similar too.
- 3. (a) Find the quadratic form corresponding to the symmetric matrix $A = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 7 \end{bmatrix}$.
 - (b) Classify the quadratic form $Q(\vec{x}) = 2x_1^2 + 10x_1x_2 + 2x_2^2$ as positive definite, negative definite or indefinite.
 - (c) Give P and D which orthogonally diagonalize the matrix $B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.
- 4. (a) Use the Gram-Schmidt process to find an orthonornal basis for

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\5\\1\\-2 \end{bmatrix}, \begin{bmatrix} -2\\0\\1\\4 \end{bmatrix} \right\}$$

(b) Find the least-squares solution of $A\vec{x} = \vec{b}$ when $A = \begin{bmatrix} 3 & 0 \\ 1 & 2 \\ 2 & -1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$.

- 5. (a) Find the inverse of the matrix $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & 0 & 3 \\ -2 & 2 & 3 \end{bmatrix}$.
 - (b) Determine if each of the following sets of vectors is linearly independent or not. Justify each answer carefully:

$$S_1 = \left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 1\\4 \end{bmatrix} \right\}, \quad S_2 = \left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\2 \end{bmatrix}, \begin{bmatrix} -4\\0\\-2 \end{bmatrix} \right\}, \quad S_3 = \left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}$$

(c) The following matrices are row equivalent:

	1	2	3	3	2 -] Г	1	2	0	0	-1]
	-1	-2	-2	-3	0		0	0	1	0	2
A =	2	4	4	7	-1	B =	0	0	0	1	-1
	1	2	2	5	-2		0	0	0	0	0
	1	2	4	2	5] [0	0	0	0	0

Find the following:

- i. A basis for Row(A)
- ii. The dimension of $\operatorname{Col}(A)$
- iii. A basis for Nul(A)
- 6. (a) Recall that $\mathbb{P}_2(\mathbb{R})$ denotes the vector space of all polynomials of degree less than or equal to 2.

Given the linear transformation $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(a_0 + a_1t + a_2t^2) = \begin{bmatrix} a_0 + 3a_2 \\ 2a_1 \end{bmatrix}$$

Find the matrix representation of T relative to the basis $\mathcal{B} = \{1, t, t^2\}$ for $\mathbb{P}_2(\mathbb{R})$ and the standard basis for \mathbb{R}^2 .

(b) Let $\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\left(\vec{b}_{1}\right) = 2\vec{b}_{1} + \vec{b}_{2}$$
 and $T\left(\vec{b}_{2}\right) = -\vec{b}_{1} + 3\vec{b}_{2}$

- i. Explain why $\mathcal{B} = \left\{ \vec{b}_1, \vec{b}_2 \right\}$ is a basis of \mathbb{R}^2 .
- ii. Find $[T]_{\mathcal{B}}$ (the matrix for T relative to the basis \mathcal{B}).
- iii. Find M, the standard matrix of T (that is M such that $T\vec{x} = M\vec{x}$ for all \vec{x} in \mathbb{R}^2).