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Abstract

In this paper, we prove the existence of traveling wave solutions for an incom-
pressible Darcy’s free boundary problem recently introduced in [6] to describe
cell motility. This free boundary problem involves a nonlinear destabilizing
term in the boundary condition which describes the active character of the
cell cytoskeleton. By using two different methods, a constructive method via
a graph analysis and a local bifurcation method, we prove that traveling wave
solutions exist when the destabilizing term is strong enough.

1 Introduction

In this paper we study the existence of traveling wave solutions for the following
two-dimensional free boundary problem, which models the dynamics of a living cell:

∆P = 0 in Ω(t),

P + βf(V ) = γκ(t) on ∂Ω(t),

V = −∇P · n on ∂Ω(t),

Ω(t = 0) = Ω0.

(1.1)

The set Ω(t) ⊂ R2 describes the domain occupied by a cell (at time t) whose bound-
ary ∂Ω(t) moves with normal velocity V . This velocity is determined together with
the unknown function P , which represents the pressure inside the cell. In (1.1), Ω0 is
a bounded domain of R2 (the initial configuration of the cell), κ is the mean curvature
(positive for a circle) of the evolving free-boundary ∂Ω(t), n is the outwards-pointing
unit normal on ∂Ω(t) and γ, β > 0 are some parameters. The given non-linearity
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f : R → R plays a crucial role in the paper and satisfies assumptions (A1)-(A4)
listed below.

This model was derived in a recent work by the authors [6] as a sharp interface limit
of a phase-field model to describe the motion of a cell on a 2D substrate. It can also
be seen as the first order perturbation of a coupled free boundary model that shares
similarities with the model introduced in [13] (see Section 2).

Throughout the paper, we assume that f satisfies the following assumptions:

(A1) f is C2(R), monotone increasing and odd (so f(0) = 0),
(A2) lim

x→+∞
f(x) = 1 and lim

x→−∞
f(x) = −1,

(A3) f ′(0) > 0, f ′′(0) = 0,
(A4) f ′′(x) ≤ 0 ∀x > 0 and f ′′(x) ≥ 0 ∀x < 0.

These assumptions are satisfied in particular by the nonlinearity f(V ) = −Fτ (V )
that we derived in [6] from the phase-field model (2.1) (for the double-well potential
W (ρ) = ρ2(1−ρ2)). A prototype example of a function satisfying these assumptions
is f(x) = tanhx.

The originality of the problem (1.1) is in the boundary condition (1.1)2 which de-
scribes the effects of polymerization. Indeed, unlike in the classical Hele-Shaw equa-
tion with surface tension (which corresponds to β = 0) the perimeter P(Ω(t)), de-
fined by P(Ω(t)) =

∫
∂Ω(t) dσ is not a Lyapunov functional for (1.1). Using a classical

computation [17], we see that

d

dt
P(Ω(t)) =

∫
∂Ω(t)

κV dσ = −1

γ

∫
∂Ω(t)

P∇P · n dσ +
β

γ

∫
∂Ω(t)

V f(V ) dσ

= −1

γ

∫
Ω(t)
|∇P |2 dx dy +

β

γ

∫
∂Ω(t)

V f(V ) dσ, (1.2)

where dσ denotes the infinitesimal length element of ∂Ω(t). Assumption (A1) implies

V f(V ) ≥ 0,

and so the two terms in the right-hand side of (1.2) have opposite effects. We thus see
that the quantity βf(V ) in the boundary condition (1.1)2 has a destabilzing effect.
It models a force exerted on the membrane of the cell by the cytoskeleton which is
responsible for the appearance of protrusions which in turn make the displacement
of the cell possible (see [19, 12] for biological details).

On the other hand, we note that the model (1.1) is still area preserving:

d

dt
|Ω(t)| =

∫
∂Ω(t)

V dσ = −
∫
∂Ω(t)

∇P · n dσ = −
∫

Ω(t)
∆P dx dy = 0 , (1.3)

and since f(0) = 0, it admits the disk as unique stationary solution (rest state) with
constant pressure

P ∗ =
γ

R0
, (1.4)
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where R0 > 0 is such that |B(0, R0)| = |Ω0|.

A remarkable feature of cell motility is the occurrence of sustained motion in a given
direction without exterior impulse. This phenomenon, known as self-polarization [7],
is mathematically described by the existence of traveling wave solutions and is the
main topic of this paper.

Before stating our results about the existence of traveling wave solutions of (1.1),
let us briefly comment on the literature. Moving interface problems have raised
many interesting and challenging mathematical issues. A well known example is the
Stefan problem which describes the dynamics of the boundary between ice and water.
In the biophysical community, we find a large number of free boundary models to
describe tumor and tissue growth, cell motility and other phenomena. We refer to
[19, 14] for a review. Most of them are formulated through a fluid approach with
surface tension. Some tumor growth models (e.g. [8, 9, 10]) resemble our model
(1.1). However, there is an important difference: tumor growth naturally involves
expanding domain while we consider here incompressible solutions. In the context
of the motility of eukaryotic cells on substrates, various free boundary problems
have been derived and studied, see [1, 2, 3, 15, 4, 16]. The models presented in
[1, 2, 3, 15, 16] present some similarities with our model, but they are obtained as
the limit of a second order equation of Allen-Cahn type while we obtain ours as the
limit of a fourth order equation of Cahn-Hilliard type. The model recently proposed
in [4] involves a coupled Hele-Shaw/ Keller-Segel type free boundary problem. The
existence of traveling wave solutions for these models is proved in [1, 3, 4]. We note
finally that traveling wave solutions for a moving boundary problem of Hele-Shaw
type have been studied in the case with kinetic undercooling regularization [11].

Traveling wave solutions of (1.1) correspond to a fixed shape domain moving by
translation with constant velocity in a given direction, that is

Ω(t) = Ω0 + ctu, (1.5)

for some speed c and direction of motion u.

It is the goal of this paper to prove the existence of non-trivial traveling wave solu-
tions of (1.1) and thus validate the interest of this model to describe cell motility.
In the sequel we refer to (Ω0, c) as a traveling wave solution of (1.1) if the set Ω(t)
defined by (1.5) is a solution of (1.1). The stationary solution BR0 is a traveling
wave solution with zero speed. It is referred to as trivial solution of (1.1).

Note that the problem is isotropic so we will always consider u = ex = (1, 0) and
c > 0. In that case, the boundary velocity of Ω(t) given by (1.5) satisfies V = c ex ·n,
and a traveling-wave solution to (1.1) is defined as follows:

Definition 1.1. A traveling wave solution to (1.1) is given by a domain Ω0 ∈ R2,
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a positive real number c and a function P (·) defined on Ω0 satisfying
−∆P = 0 in Ω0,

P = γκ− βf(c ex · n) on ∂Ω0,

−∇P · n = c ex · n on ∂Ω0.

(1.6)

Remarkably, condition (1.6) imposes that the entire fluid bulk flows at a uniform
speed, that is ∇P = −(c, 0) in Ω0. Indeed, the function P+cx solves{

−∆P = 0 in Ω0,

−∇[P + cx] · n = 0 on ∂Ω0

and thus satisfies P+cx = λ in Ω0. We deduce the following characterization of
traveling wave solutions:

Proposition 1.2. Any traveling wave solution to (1.1) moving with velocity c > 0
in the x-direction is given by a domain Ω0 ⊂ R2 and a real number λ such that the
following condition holds

λ− cx = γκ− βf(cex · n) on ∂Ω0. (1.7)

Remark 1.3. In this problem, the set Ω0 and the speed c must be found together.
The parameter λ can be seen as a Lagrange multiplier for the volume of Ω0, but the
problem is invariant by translation and any translation of Ω0 leads to a solution of
(1.7), with the same c but a different value of λ.

Our first result is the following:

Theorem 1.4. Assume that f satisfies assumptions (A1) – (A4). For all γ, λ > 0,
there exists a one parameter family of traveling wave solutions of (1.1) (with u = ex)
(Ωβ, cβ) parametrized by β ∈ [ γ

λf ′(0) ,∞) and satisfying:

(i) cβ > 0 when β > β∗ := γ
λf ′(0) and cβ → cβ∗ = 0 when β → β∗.

(ii) The set Ωβ is a convex set with C2,1 boundary of the form

Ωβ = {(x, y) ; xL < x < xR, −h(x) < y < h(x)}

with xL < 0 < xR and for some C3 function h satisfying h′(0) = 0.

(iii) At the point m = (0, h(0)) ∈ ∂Ωβ the normal vector n is the vertical vector (0, 1)
and the curvature is κ(m) = λ/γ. Furthermore, Ωβ∗ is a disk of radius Rc = γ/λ.

Property (i) guarantees in particular that we are constructing non-trivial traveling
wave solutions (i.e. not stationary solutions) when β > β∗. Property (ii) fixes the
natural invariance by translation of the model. Property (iii) relates the value of
the parameter λ to some geometric property of Ωλ. It proves that each value of λ
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yields of different family of traveling waves and it suggests that increasing values of λ
correspond to sets with decreasing volume (something that we can check numerically
but are not presently able to prove).

While the proof of this theorem is constructive, it does not clearly identify what
happens for a cell of fixed volume when the value of β increases. Our next theorem
will make this more precise: Using a bifurcation argument, we will prove that, for
a fixed volume, a branch of traveling wave solutions with non zero speed emerges
from the trivial solution BR0 at β = R0

f ′(0) .

Theorem 1.5. Let f satisfy assumptions (A1) – (A4) and assume furthermore that
f ∈ C3 and f ′′′(0) < 0. The problem (1.1) has a branch of traveling wave solutions
with volume |BR0 | (in the x-direction) bifurcating from the radial solution BR0 at
β = R0

f ′(0) . The bifurcation is a pitchfork bifurcation, with:{
β(s) = R0

f ′(0) + αs2 + o(s2),

c(s) = s + o(s),
(1.8)

where α > 0 and the parameter s takes value in an interval (−δ, δ). For each s, the
corresponding traveling wave solution solves (1.7) with λ = λ(s) = γ

R0
+ o(s2).

This theorem shows that when β ∈ ( R0
f ′(0) ,

R0
f ′(0) + η) (for some η > 0), there ex-

ist traveling wave solutions with volume |BR0 | moving with positive speed (in any
direction).

We note that our two theorems construct different families of traveling waves, since
the first result fixes the Lagrange multiplier λ while the second one fixes the volume.
But if we take fix λ > 0 in Theorem 1.4 and choose R0 = γ/λ in Theorem 1.5,
then both theorems prove the existence of non trivial traveling wave solutions for
β > β∗ = R0

f ′(0) = γ
λf ′(0) , which converge to BR0 when β → β∗.

The rest of the paper is organized as follows. In Section 2 we briefly recall the
biological justification of problem (1.1). In Section 3 we give the proof of Theorem
1.4 and in Section 4 we prove Theorem 1.5. Finally we give some conclusions in
Section 5. Several technical computations are presented in appendix.

2 Biological justification of (1.1)

In this part, we briefly describe the biological origins of the problem (1.1). On the
one hand, it is obtained as a sharp interface limit of a Cahn-Hilliard model describing
the motion of a cell on a 2D substrate, see [6]. On the other hand it is the first order
perturbation of a coupled free boundary model similar to the model introduced in
[13].
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2.1 Sharp interface limit of the phase field model introduced in [6]

In [6], we introduced the following phase-field model to describe the motion of a cell
on a 2D substrate:{

∂tρ = div
(
ρ∇
[
γ
(
−ε∆ρ+ 1

εW
′(ρ)
)

+ φ
])
,

∂tφ− ε∆φ = 1
ε (βρ− φ) ,

(2.1)

with ε > 0, γ > 0, β ≥ 0 and W a double-well potential satisfying

W (0) = W (1) = 0, W (ρ) > 0 if ρ 6= 0, 1 (2.2)

(for instance W (ρ) = ρ2(1− ρ)2).

From a modeling point of view, the system (2.1) is very simple. Two quantities are
used to describe the cell: the phase field (or order parameter) ρ, describing every-
thing that lies inside the cell (cytoskeleton, solvent, molecular motors...), and the
myosin II, a molecular motor that assembles in minifilaments, interacts with actin,
behaves as active crosslinkers and generates contractile or dilative stresses in the
cytoskeleton network, whose concentration is denoted by φ. The main assumptions
that lead to (2.1) are the following: (i) the cell velocity, v is given by the local actin
flow, (ii) myosin II in the bulk is slowly diffusing, (iii) actin filaments undergo uni-
form bulk polymerization and depolymerization, (iv) the osmotic pressure involved
in the network stress acts to saturate the linear instability causing gel phase sep-
aration and to smooth the interface between cytosol-rich and cytosol-poor regions.
The underlying processes are: friction of the cytosol on the substrate together with
the active character of the myosin II.

When ε� 1, we showed in [6] that this model is close to the free boundary problem
(1.1) in which the cell is described by a set Ω(t) (so ρε(x, t) ∼ χΩ(t)(x)).

2.2 First order perturbation of a coupled free boundary model

Consider the cytoplasm as a confined viscous droplet that is driven by an active force
induced by the cytoskeleton on its boundary (the cell membrane). Biologically, such
a force can be generated either by polymerization of actin against the membrane
or by contraction of cortical actomyosin filaments, which adhere to the membrane.
We suppose that the active force is controlled by a diffusive chemical solute which is
advected by the internal cytoplasmic flow. More precisely, we consider the following
2D free-boundary problem

∆P = 0 in Ω(t) , (2.3)

P + βf(−∇φ · n) = γκ on ∂Ω(t) , (2.4)

V = −∇P · n on ∂Ω(t) . (2.5)

where φ solves an advection-diffusion equation

∂tφ+ (a− 1)∇P · ∇φ−∆φ = 0 in Ω(t), (2.6)

∇φ · n = aφ∇P · n on ∂Ω(t), (2.7)
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where a ∈ [0, 1) is a given constant.

Equation (2.3) is an incompressibility condition (conservation of volume). The nor-
mal force balance on the droplet boundary ∂Ω(t) is given in (2.4). Note that the
Young-Laplace condition is perturbed in this model by an active force, f(∇φ · n)n
which is locally controlled by the normal derivative of the concentration of an in-
ternal solute, φ. The kinematic condition states that the normal velocity of the
sharp interface, V , is given by the normal velocity of the fluid on ∂Ω(t). In the
convection-diffusion dynamics given in (2.6), the total (convective + diffusive) so-
lute flux is j = (1 − a)(−∇P )φ − ∇φ. In (2.7), we impose zero solute flux on the
moving boundary, i.e., j · n − V φ = 0, where we insert the kinematic condition,
Eq. (2.5). Simply put, the solute is convected at a slower velocity than that of
the fluid. Hence, its concentration decreases (increases) towards an advancing (re-
tracting) front. Note that a similar coupled free boundary model of polarization,
migration and deformation of a living cell has recently been introduced in [13].

The problem (2.3) – (2.7) possesses a unique radially symmetric solution of pre-
scribed area and total solute concentration with both P = P ∗ and φ = φ∗ being
constant.

If we consider a small perturbation of φ and P around φ∗ and P ∗, that is

φ(t, x, y) = φ∗ + εφ̃(t, x, y) +O(ε2) and P (t, x, y) = P ∗ + εP̃ (t, x, y) +O(ε2),

then we have
∇φ(t, x, y) = ε∇φ̃(t, x, y) +O(ε2),

and
φ(t, x, y)∇P (t, x, y) = εφ∗∇P̃ (t, x, y) +O(ε2),

hence, at order O(ε), the boundary condition (2.7) writes

∇φ̃(t, x, y) · n = aφ∗∇P̃ (t, x, y) · n,

which yields the problem (1.1).

2.3 Biophysical meaning of the term βf(V ) for (1.1)

For each t > 0, we define the center of mass CΩ(t) of Ω(t) by

CΩ(t) =
1

|Ω(t)|

∫
Ω(t)

(x, y) dx dy =
1

|Ω0|

∫
Ω(t)

(x, y) dx dy ,

by using the area preservation (1.3).

The velocity uC(t) of the center of mass of Ω(t) is given by

uC(t) =
d

dt
CΩ(t).
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From incompressibility (1.1)1 and boundary condition (1.1)2, we deduce that:

d

dt

∫
Ω(t)

x dx dy =

∫
∂Ω(t)

xV dσ = −
∫
∂Ω(t)

x∇P · n dσ

= −
∫

Ω(t)
div (x∇P ) dx dy = −

∫
Ω(t)
∇P · ∇x dx dy

= −
∫

Ω(t)
div (P∇x) dx dy = −

∫
∂Ω(t)

P∇x · n dσ

= −
∫
∂Ω(t)

(γκ+ βf(V ))nx dσ

and similarly
d

dt

∫
Ω(t)

y dx dy = −
∫
∂Ω(t)

(γκ+ βf(V ))ny dσ

Using the fact that
∫
∂Ω(t) κndσ = 0, it follows that

uC(t) = − β

|Ω0|

∫
∂Ω(t)

f(V )n dσ . (2.8)

We recognize that (2.8) represents the external force balance on the droplet Ω(t).
This justifies the model which describes the deformation of the cell membrane under
the action of an active force modeled by f(V )n and describing the activity of the
cytoskeleton, see [19, 12, 18] for a more precise biological description.

3 Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4 and gives a constructive proof of
the existence of traveling wave solutions to (1.1) for a certain range of parameters.
We note that this constructive approach can be used to find these traveling wave
solutions numerically, see Figure 1.

Given γ, λ, β > 0, we look for a set Ω, solution of (1.7), in the particular form:

Ω = {(x, y) ∈ R2 ; xL < x < xR, −h(x) < y < h(x)}, (3.1)

for some function h(x) defined and positive on an interval (xL, xR) and satisfying:
h(xL) = h(xR) = 0,

h′(xL) = +∞,
h′(xR) = −∞.

(3.2)

We can further fix the invariance by translation in the ex direction by requiring that

xL < 0 < xR, h′(0) = 0. (3.3)
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We also note that it is enough to prove the result when γ = 1 by replacing the
coefficients β and λ by β/γ and λ/γ and the function f by x 7→ f(γx).

Our first task is to write equation (1.7) when Ω is given by (3.1) in term of the
function h(x). We first notice that the tangent vector t, the normal vector n and
the mean-curvature κ are defined by

t = − (1, h′(x))√
1 + (h′(x))2

, n =
(−h′(x), 1)√
1 + (h′(x))2

, κ = − h′′(x)

(1 + (h′(x))2)3/2
.

These three quantities can be written easily using the function Y (x) defined by

Y (x) = ex · n = nx = − h′(x)√
1 + (h′(x))2

. (3.4)

In particular, we have
κ = Y ′(x)

which is consistent with Frenet’s formula n′x = −κ
√

1 + (h′(x))2tx.

Equation (1.7) (with γ = 1) and condition (3.3) then reduce to the following initial

Figure 1: A shape of traveling wave solution Ω0 defined by (3.1) for β/λ = 4 and
γ = 1. The red dots indicate the point xL < 0 on the left and xR > 0 on the right.
The function h(x) is defined for x ∈ [xL, xR] such that conditions (3.2) – (3.3) hold.
The graph of h lies on the y-positve part of the plane, while the graph of −h on the
y-negative part.
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value problem: {
Y ′(x) = λ− cx+ βf(c Y (x))), on (xL, xR),

Y (0) = 0.
(3.5)

while the boundary conditions (3.2)2,3 imply

Y (xL) = −1 and Y (xR) = +1. (3.6)

Furthermore, for a given Y (x), we can recover the function h(x) by inverting the
relation (3.4) to find

h′(x) = − Y (x)√
1− Y 2(x)

.

So if we can find Y (x), solution of (3.5)-(3.6), we will define

h(x) =

∫ x

xL

− Y (x)√
1− Y 2(x)

dx x ∈ [xL, xR]. (3.7)

This function satisfies h(xL) = 0, but the boundary condition (3.2)1 requires the
function Y to satisfy the additional condition:∫ xR

xL

− Y (x)√
1− Y 2(x)

dx = 0. (3.8)

We thus proceed as follows to construct the traveling wave solutions: We first show
that when λ, β satisfy (3.9) and for some range of value of c, there exists Y satisfying
(3.5)-(3.6). We will then show that there exists c > 0 such that (3.8) holds. This
will lead to the following proposition:

Proposition 3.1. Given λ, β > 0 such that

βλf ′(0) > 1, (3.9)

there exists c > 0, xL and xR such that the solution Y (x) of (3.5) satisfies the
conditions (3.6) and (3.8). Furthermore, for a fixed λ, the speed c converges to 0
when β approaches the critical value β∗ = 1

λf ′(0) .

The proof of Proposition 3.1 will occupy the rest of this section, but we can already
show that it implies Theorem 1.4:

Proof of Theorem 1.4. With Y (x) given by Proposition 3.1, we define h(x) by (3.7).
Condition (3.8) implies that h(xL) = h(xR) = 0 and we define the set Ωβ by (3.1).
The boundary conditions (3.6) implies that the normal vector is continuous (it
achieves the values (−1, 0) and (1, 0) continuously at the extremal points (xL, 0)
and (xR, 0)). This means that ∂Ωβ is C1.
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Furthermore, we have κ(x) = Y ′(x) and so Proposition 3.6 implies that

0 ≤ κ ≤ λ+ β + cβf ′(0) on ∂Ωβ

which implies that Ωβ is convex and that ∂Ωβ is C1,1. In turns, (3.5) can be used
to show that Y ′, and therefore κ is Lipschitz continuous so that the boundary ∂Ωβ

is C2,1 and satisfies (1.7).

Finally, it is readily seen that h′(0) = 0 (since Y (0) = 0) and (3.5) implies that the
mean-curvature of ∂Ωβ at the point (0, h(0)) is given by Y ′(0) = λ. When β → β∗,
we have c → 0 and so Y converges to the solution of Y ′ = λ. In particular Ωβ

converges to the set with constant mean curvature λ, that is the ball B1/λ.

The remainder of this section is devoted to the proof of Proposition 3.1. We first
find the set of parameters for which the points xL and xR satisfying the condition
(3.6) exist. In particular, we prove that the existence of xL depends on λ and β,
while for xR the parameter c is also involved. This is done in Section 3.1. We then
fix the parameters λ and β such that xL exists and prove, in Section 3.2, that there
exists a value c∗ > 0 (depending on λ and β) such that xR exists and condition (3.8)
is verified.

Remark 3.2. If we are looking for a traveling wave with c > 0, we must have λ ≥ 0.
Indeed, if λ < 0, then Y ′(0) < 0 and the boundary conditions (3.6) imply that there
exists two points x1 ∈ (xL, 0) and x2 ∈ (0, xR) such that Y (x1) > 0, Y (x2) < 0 and
Y ′(x1) = Y ′(x2) = 0. Equation (3.5) then gives:

cx1 − βf(cY (x1)) = cx2 − βf(cY (x2)) = λ,

which is a contradiction since the first term is negative and the second term is
positive.

3.1 Proof of Proposition 3.1, part I: Existence of xL and xR

In this section, we prove two propositions concerning the existence of xL and xR.

The first proposition below gives the existence of xL for all c ≥ 0:

Proposition 3.3. Let λ, β > 0 be such that

βλf ′(0) ≥ 1. (3.10)

For all c ≥ 0, there exists a point xL < 0 such that the solution of (3.5) satisfies
−1 < Y (x) < 0 for all x ∈ (xL, 0) and Y (xL) = −1. Moreover, xL is such that

−βf ′(0) < xL < 0, (3.11)

and we have

Y ′(x) ≥ 1

βf ′(0)
∀x ∈ [xL, 0]. (3.12)
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The second proposition concerns the existence of xR:

Proposition 3.4. Let λ, β > 0 be such that (3.10) holds. There exists cmax ∈
[λ

2

2 ,
(λ+β)2

2 ] such that for all c ∈ [0, cmax], there exists a point xR > 0 such that
the solution of (3.5) satisfies 0 < Y (x) < 1 for all x ∈ (0, xR) and Y (xR) = 1.
Furthermore, we have {

Y ′(xR) > 0, if c < cmax,

Y ′(xR) = 0, if c = cmax

(3.13)

and

Y ′(x) ≥ min

{
1

βf ′(0)
, Y ′(xR)

}
∀x ∈ [0, xR]. (3.14)

The proof of this proposition will also show that xR ≤ λ+β
c for all c > 0 and xR ≤ λ

2

when c ≤ λ2

2 , though such bounds will not be used later on.

We now turn to the proof of these two propositions.

Proof of Proposition 3.3. Let

xL = inf{a < 0 ; Y (x) ∈ (−1, 0) for all x ∈ (a, 0)}. (3.15)

Since Y ′(0) = λ > 0, we see that xL < 0 and possibly xL = −∞ (if Y (x) > −1 for
all x < 0). We need to show that xL > −∞ and that Y (xL) = −1. When c = 0, we
have Y (x) = λx and the result is trivial. We thus assume that c > 0.

The convexity of f(y) for y < 0 (Assumption (A4)) implies that

f(y) > f ′(0) y for all y < 0,

hence
f(cY (x)) > f ′(0) cY (x) for all x ∈ (xL, 0).

From (3.5) it follows that

Y ′(x) > λ− c x+ βf ′(0)cY (x) for all x ∈ (xL, 0). (3.16)

Denoting µ = cβf ′(0) > 0, we rewrite (3.16) as (e−µx Y (x))′ > (λ − c x)e−µx and
using the condition Y (0) = 0 we deduce that

Y (x) <

(
λ

µ
− c

µ2

)
(eµx − 1) +

c

µ
x, for all x ∈ (xL, 0). (3.17)

Recalling the assumption (3.10) we see that λ
µ−

c
µ2
≥ 0. Since eµx−1 < 0 for x < 0,

it follows that
Y (x) <

c

µ
x, for all x ∈ (xL, 0). (3.18)
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This implies that Y (xL) < 0. And since we must have Y (xL) ≥ −1 it follows that
xL > −µ

c = −βf ′(0) and Y (xL) = −1.

To prove (3.12), we note that the function V (x) = Y ′(x) solves{
V ′(x) = −c+ cβf ′(cY (x))V (x),

V (0) = λ ≥ 1
βf ′(0) .

(3.19)

Since f ′(cY (x)) ≤ f ′(0), we see that, as long as V ≥ 0, we have

d

dx

[
V (x)− 1

βf ′(0)

]
≤ cβf ′(0)

[
V (x)− 1

βf ′(0)

]
and a simple computation shows that V (x) ≥ 1

βf ′(0) for all x ≤ 0. Inequality (3.12)
follows.

Next, we prove Proposition 3.4:

Proof of Proposition 3.4. We first prove the following lemma:

Lemma 3.5. Let λ > 0 and β > 0 be given. For any c > 0 there exists 0 < x̄ < λ+β
c

such that the solution Y (x) of (3.5) is increasing on (0, x̄) and decreasing on (x̄,∞).
Furthermore, we have

Y (x̄) = sup
x∈(0,∞)

Y (x) ≤ (λ+ β)2

2c
. (3.20)

Proof of Lemma 3.5. Equation (3.5) implies Y ′(0) = λ > 0 and since f(y) ≤ 1 for
all y ∈ R it also gives

Y ′(x) ≤ λ− cx+ β for all x ∈ R

hence Y ′(x) < 0 for x > λ+β
c . Since Y (0) = 0 this equation also gives Y (x) ≤

(λ+ β)x− cx22 which has a maximum at x = λ+β
c . This implies the bound (3.20).

Recall that V (x) = Y ′(x) solves (3.19). Since V (0) = λ > 0, V (x) = Y ′(x) < 0
for x > λ+β

c and V is a continuous function, there exists a point x̃ > 0 such that
V (x̃) = 0. Moreover, whenever V (x̃) = 0 we have that V ′(x̃) = −c < 0. This implies
that V can only change sign once, the existence of x̄ follows and x̄ = x̃.

In view of Lemma 3.5, xR exists such that Y (xR) = 1 and Y ′(xR) > 0 if and only if
Y (x̄) > 1 and in such a case we always have

xR < x̄. (3.21)

We thus start by showing that Y (x̄) > 1 for c ≤ λ2

2 . For this, we define

xR = sup{a > 0 ; Y (x) ∈ (0, 1) for all x ∈ (0, a)}, (3.22)
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with possibly xR = +∞. Since Y (0) = 0 and Y ′(0) = λ > 0, we note that xR > 0.
Since f(y) > 0 for y > 0, (3.5) implies

Y ′(x) > λ− cx ∀x ∈ (0, xR)

and so Y (x) > λx− c
2x

2. When c ≤ λ2

2 this yields

Y (x) > λx− λ2

4
x2 = λx(1− λ

4
x)

The right hand side is non negative for x ∈ (0, 4
λ) and equal to 1 for x = 2/λ, so we

must have xR < λ/2 and Y (xR) = 1 and therefore Y (x̄) > 1.

We can now define

cmax = sup{c0 ; Y (x̄) > 1 for all c ∈ [0, c0)}, (3.23)

which satisfies cmax ≥ λ2

2 . Note that (3.20) implies cmax ≤ (λ+β)2

2 .

Finally, by continuity with respect to c, we notice that when c = cmax, we have
Y (x̄) ≥ 1. Moreover, if Y (x̄) > 1, then there exists δ > 0 such that supY > 1 for
c ∈ [cmax, cmax +δ) which contradicts the definition of cmax. Consequently, Y (x̄) = 1
when c = cmax and so xR = x̄ and Y ′(xR) = 0.

Inequality (3.14) follows from (3.19), which implies that V = Y ′ is decreasing when-

ever V ≤ 1
βf ′(0) and so if V (x0) < min

{
1

βf ′(0) , Y
′(xR)

}
for some x0 < xR, then

V (xR) ≤ V (x0) < Y ′(xR) = V (xR), a contradiction.

Proposition 3.6. Let λ, β and c be such that xL and xR (given by Propositions 3.3
and 3.4) exist. Then Y (x) satisfies

0 ≤ Y ′(x) ≤ λ+ β + cβf ′(0) ∀x ∈ (xL, xR).

Proof. Lemma 3.5 and (3.21) implies that Y ′(x) ≥ 0 on [0, xR]. Together with
(3.12), this implies that Y ′(x) ≥ 0 on (xL, xR). Next, Equation (3.5) implies

Y ′(x) ≤ λ− cxL + β

and the upper bound follows from (3.11).

3.2 Proof of Proposition 3.1, part II: The velocity c

Throughout this section, we fix λ and β such that

βλf ′(0) ≥ 1,
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and we denote by Y (x, c), xL(c), xR(c) the solution of (3.5), (3.6) for all c ∈ (0, cmax).
To prove Proposition 3.1, we must show that if βλf ′(0) > 1, there exists c ∈ (0, cmax)
such that (3.8) is satisfied. We thus introduce the function

G(c) :=

∫ xR(c)

xL(c)

Y (x, c)√
1− Y 2(x, c)

dx, (3.24)

and prove:

Proposition 3.7. The function G : [0, cmax) → R defined by (3.24) is continuous
and satisfies

G(0) = 0, G(c)→ +∞, as c→ cmax.

Furthermore, when βλf ′(0) > 1, then

G(c) < 0 for 0 < c� 1,

while when βλf ′(0) = 1 we have

G(c) > 0 for all c > 0.

Proposition 3.1 now follows from the following corollary:

Corollary 3.8. Given λ > 0 and for all β > 1
λf ′(0) , there exists cβ ∈ (0, cmax) such

that G(cβ) = 0. Furthermore, cβ → 0 as β → β∗.

Proof of Corollary 3.8. The corollary is an immediate consequence of Proposition
3.7 since for any β > β∗ the intermediate value theorem gives the existence of
cβ > 0 such that G(cβ) = 0. In order to show that cβ → 0 as β → β∗, we note that
if we consider G as a function of β and c (instead of only c), then the continuity with
respect to β can be proved similarly to that with respect to c. It follows that when
β → β∗ along any subsequence such that cβ → c∗ (such a subsequence exists since

0 ≤ c ≤ cmax ≤ (λ+β)2

2 ) we have 0 = G(β, cβ) → G(β∗, c∗). Since G(β∗, c) > 0 for
c > 0, it follows that c∗ = 0 and that the whole sequence cβ converges to zero.

Proof of Proposition 3.7. Continuity of c 7→ G(c). Differentiating equation (3.5)
with respect to c, we find that the function Z : x 7→ ∂cY (x, c) solves{

Z ′(x) = −x+ βf ′(cY (x))[Y (x) + cZ(x)], on (xL, xR),

Z(0) = 0.
(3.25)

Moreover using that 0 ≤ f ′(y) ≤ f ′(0) for all y ∈ R and that |Y | ≤ 1, we deduce
that there exists a constant C such that for all x ∈ R and for all c ∈ (0, cmax)

|∂cY (x, c)| ≤ C.

Since xL(c) and xR(c) are determined by the conditions

Y (xL, c) = −1 and Y (xR, c) = 1,
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and recalling (3.12) and (3.13), we can thus apply the implicit function theorem to
get that c 7→ xL(c) and c 7→ xR(c) are continuous Lipschitz functions.

To prove the continuity of G, we now consider a sequence cn of positive number such
that cn → c > 0. We fix δ > 0. The continuity of xL and xR implies that for large
enough n:

xL(cn) ≤ xL(c) + δ ≤ xL(cn) + 2δ,

and
xR(cn) ≥ xR(c)− δ ≥ xR(cn)− 2δ.

Furthermore, since Y (x, cn)→ Y (x, c) uniformly in [xL(c), xR(c)], we have

|Y (x, cn)| ≤ 1− η in (xL(c) + δ, xR(c)− δ), (3.26)

for some η > 0 and n large enough.

We now write

G(cn) =

∫ xR(cn)

xL(cn)

Y (x, cn)√
1− Y 2(x, cn)

dx

=

∫ xR(cn)−δ

xL(cn)+δ

Y (x, cn)√
1− Y 2(x, cn)

dx+

∫ xL(cn)+δ

xL(cn)

Y (x, cn)√
1− Y 2(x, cn)

dx

+

∫ xR(cn)

xR(cn)−δ

Y (x, cn)√
1− Y 2(x, cn)

dx.

The bound (3.26) implies that the first integral converges to
∫ xR(c)−δ
xL(c)+δ

Y (x,c)√
1−Y 2(x,c)

dx

when n → ∞. Next, we see that for x ∈ [xL(cn), xL(cn) + δ], we have |Y (x)| ≤ 1,
1−Y (x) ≥ 1 and 1+Y (x) ≥ C(x−xL(cn)) (using (3.12)). It follows that the second
term satisfies∣∣∣∣∣

∫ xL(cn)+δ

xL(cn)

Y (x, cn)√
1− Y 2(x, cn)

dx

∣∣∣∣∣ ≤
∫ xL(cn)+δ

xL(cn)

1√
C(x− xL(cn))

dx ≤ C ′δ1/2,

where C,C ′ are positive constants.

Using a similar bound for the third term (using (3.14)) yields that

lim
n→∞

G(cn) =

∫ xR(c)−δ

xL(c)+δ

Y (x, c)√
1− Y 2(x, c)

dx+O(δ1/2) = G(c) +O(δ1/2)

from which we deduce the continuity of G.

Behavior of G for c < cmax. It is easy to check that

Y (x, 0) = λx, xL(0) = − 1

λ
, xR(0) =

1

λ
,
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hence

G(0) =

∫ 1
λ

− 1
λ

λx√
1− λ2x2

dx = 0. (3.27)

Next, we define the function H : (−1, 1) → R by H(y) = y√
1−y2

. Using (3.5) we

have:

G(c) =

∫ xR(c)

xL(c)
H(Y (x, c)) dx =

1

λ

∫ xR(c)

xL(c)
λH(Y (x, c)) dx

=
1

λ

[ ∫ xR(c)

xL(c)
∂xY (x, c)H(Y (x, c)) dx

+

∫ xR(c)

xL(c)
(cx− βf(cY (x, c)))H(Y (x, c)) dx

]
=

1

λ

∫ xR(c)

xL(c)
(cx− βf(cY (x, c)))H(Y (x, c)) dx.

For all c ∈ [0, cmax), we know that{
H(Y (x, c)) > 0 for all 0 < x < xR(c),

H(Y (x, c)) < 0 for all xL(c) < x < 0,
(3.28)

so we need to determine the sign of the function W (x) = cx− βf(cY (x, c)).

When
βλf ′(0) = 1,

We use the fact that the function W (x) = cx− βf(cY (x, c)) solves

W ′(x) = c− βcf ′(cY (x))Y ′(x) = c− βcf ′(cY (x))(λ−W )

and so

W ′(x)− βcf ′(cY (x))W = c− βcf ′(cY (x))λ ≥ c− βcf ′(0)λ = 0.

We deduce {
W (x) > 0 for x > 0

W (x) < 0 for x < 0

which together with (3.28) implies that G(c) > 0 for all c > 0.

We now assume that
βλf ′(0) > 1

and want to prove that G(c) < 0 for 0 < c� 1.

The concavity of f(y) for y > 0 (Assumption (A4)) implies that c 7→ f(c)
c is monotone

decreasing for c > 0. Indeed, the function h(y) = yf ′(y) − f(y) satisfies h(0) = 0
and h′(y) = yf ′′(y) ≤ 0 for y ≥ 0 and thus h(y) ≤ 0 for y > 0. It follows that the
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function g(y) = f(y)
y , which satisfies g′(y) = h(y)

y2
, is decreasing for y > 0. We thus

have f(y) ≥ f(c)
c y for all 0 ≤ y ≤ c and so

f(cY (x)) ≥ f(c)Y (x) ∀x ∈ (0, xR),

which implies

Y ′(x) ≥ λ− c x+ βf(c)Y (x) for all x ∈ (0, xR). (3.29)

Denoting µ = βf(c) > 0, we rewrite (3.29) as (e−µx Y (x))′ > (λ − c x)e−µx and
using the condition Y (0) = 0 we deduce

Y (x) ≥
(
λ

µ
− c

µ2

)
(eµx − 1) +

c

µ
x, for all x ∈ (0, xR]. (3.30)

We can now write

W (x) ≤ cx− βf(c)Y (x, c)

≤ cx+ µ

[
−
(
λ− c

µ

)
eµx − 1

µ
− c

µ
x

]
=
c

µ

(
1− λµ

c

)
(eµx − 1) .

We note that 1− λµ
c = 1− λβ f(c)

c → 1− λβf ′(0) < 0 when c→ 0 and so 1− λµ
c < 0

for c� 1. We deduce

W (x) < 0, for all 0 < x < xR(c) when c� 1. (3.31)

Next, we consider xL(c) < x < 0. The convexity of f(y) for y < 0 implies that

y 7→ f(y)
y is increasing for y < 0 and so

f(cY (x, c)) < −f(−c)Y (x, c), ∀x ∈ (xL(c), 0)

and by the upper bound (3.17) it follows that

W (x) = cx− βf(cY (x, c)) > cx+ βf(−c)
[(
λ− c

µ

)
eµx − 1

µ
+
c

µ
x

]
=
c

µ
[µ+ βf(−c)]x+ βf(−c)

(
λ− c

µ

)
eµx − 1

µ
,

where µ = cβf ′(0) > 0. We deduce

W (x) >
1

f ′(0)

[
cf ′(0) + f(−c)

]
x+
−f(−c)
f ′(0)

[
λβf ′(0)− 1

] 1− eµx

µ
.

Recalling that x < 0 and that cf ′(0) +f(−c) > 0 by the convexity of f(y) for y < 0,
we see that the first term is negative but it is of order c2 when c � 1. The second

18



term is positive since −f(−c) > 0, λβf ′(0)− 1 > 0 and 1− eµx > 0 and of order c.
More precisely, we can write:

W (x) > O(c2|x|) + (c+O(c2)))
[
λβf ′(0)− 1

]
(−x+O(cx2))

> −c
[
λβf ′(0)− 1

]
x+O(c2|x|) +O(c2x2).

Using the fact that λβf ′(0)−1 > 0 and the bound (3.11), we deduce that for c small
enough,

W (x) > 0, for all xL(c) < x < 0. (3.32)

We can now conclude and give the behavior of G for c � 1: Inequalities (3.28),
(3.31) and (3.32) imply that{

W (x)H(Y (x, c)) < 0 for 0 < x < xR(c),

W (x)H(Y (x, c)) < 0 for xL(c) < x < 0,
(3.33)

as long as 0 < c� 1 and therefore G(c) = 1
λ

∫ xR(c)
xL(c) W (x)H(Y (x, c)) dx < 0.

Behavior of G when c→ cmax. Proposition 3.4, (3.13) gives:

∂xY (cmax, xR(cmax)) = 0.

Recalling that V (x) = ∂xY (x, c) solves (3.19) we deduce that

Y (cmax, x) = 1− cmax(x− xR(cmax))2 +O
(
|x− xR(cmax)|3

)
as x→ xR. (3.34)

Thus, we get that

1− Y 2(cmax, x) = 1− 1 + 2cmax(x− xR(cmax))2 +O
(
|x− xR(cmax)|3

)
= 2cmax(x− xR(cmax))2 +O

(
|x− xR(cmax)|3

)
,

leading to√
1− Y 2(cmax, x) =

√
2cmax |x− xR(cmax)|+O

(
|x− xR(cmax)|3/2

)
. (3.35)

We notice that for all ε > 0 the function G can be written by

G(c) =

∫ xR(c)

xL(c)

Y (x, c)√
1− Y 2(x, c)

dx

=

∫ xR(c)−ε

xL(c)

Y (x, c)√
1− Y 2(x, c)

dx+

∫ xR(c)

xR(c)−ε

Y (x, c)√
1− Y 2(x, c)

dx.

The first term in the right hand side is always finite, while for the second term, we
use (3.34) and (3.35) for c→ cmax to get:∫ xR(c)

xR(c)−ε

Y (x, c)√
1− Y 2(x, c)

dx→
∫ xR(cmax)

xR(cmax)−ε

1√
2 |x− xR(cmax)|

dx = +∞.

We deduce that
G(c)→ +∞ as c→ cmax (3.36)

which completes the proof of Proposition 3.7.
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4 Proof of Theorem 1.5

In this section we prove the existence of a branch of traveling wave solutions bifur-
cating from the family of radially symmetric steady states BR0 . We choose β as the
bifurcation parameter, while the volume of the cell and the surface tension γ are
fixed.

Since the disk BR0 is a solution of the equation (1.6) with zero velocity c = 0, we
seek other solutions in the form of a perturbation of the disk of radius R0:

Ω0 = {(r, θ) : 0 ≤ r < R0 + ρ(θ) and θ ∈ [−π,+π]}, (4.1)

where the function ρ : R→ (−R0,∞) is 2π-periodic and such that∫ π

−π
(R0 + ρ(θ))2 −R2

0 dθ = 0

(this condition guarantee that |Ω0| = |BR0 |). Furthermore, since we look for trav-
eling wave propagating in the x-direction, we restrict ourselves (as in the previous
section) to domain Ω0 that are symmetric with respect to the y-axis. We thus
introduce the functional space:

X = {ρ ∈ C2,α
per(−π, π); ρ(θ) = ρ(−θ) , ∀θ ∈ (−π, π)}. (4.2)

Note that the boundary ∂Ω0 is parametrized by(
(R0 + ρ(θ)) cos θ, (R0 + ρ(θ)) sin θ

)
for θ ∈ [−π,+π],

so the normal vector is given by

n(θ) =
1

((R0 + ρ(θ))2 + ρ′(θ)2)1/2

(
(R0 + ρ(θ)) cos θ + ρ′(θ) sin θ
(R0 + ρ(θ)) sin θ − ρ′(θ) cos θ

)
,

and the mean-curvature by

κ(θ) =
(R0 + ρ(θ))2 + 2ρ′(θ)2 − (R0 + ρ(θ))ρ′′(θ)

((R0 + ρ(θ))2 + ρ′(θ)2)3/2
.

The equation (1.7) can thus be rewritten as

γκ(θ)− βf
(
c
(R0 + ρ(θ)) cos θ + ρ′(θ) sin θ

((R0 + ρ(θ))2 + ρ′(θ)2)1/2

)
+ c(R0 + ρ(θ)) cos θ = λ, (4.3)

for all θ ∈ [−π, π). Therefore, the existence of a boundary ∂Ω0 solving (1.7) follows
from the existence of a function ρ solution of equation (4.3).

The existence of a branch of non trivial traveling waves now follows from the fol-
lowing bifurcation theorem:
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Theorem 4.1. Assume that f satisfies assumptions of Theorem 1.5. There exists
an interval I = (−δ, δ) and four C1 functions ρ : I → X, β : I → R, c : I → R and
λ : I → R such that

(i) For all s ∈ I, the function θ → ρ(s, θ) is a solution of (4.3) with β = β(s),
c = c(s) and λ = λ(s).

(ii) The function s 7→ c(s) is such that c(0) = 0 and c′(0) = 1.
(iii) The function s 7→ β(s) is such that β(0) = R0

f ′(0) , β′(0) = 0 and β′′(0) > 0.

(iv) The function s 7→ λ(s) is such that λ(0) = γ
R0

, λ′(0) = 0.

Proof of Theorem 4.1. First, we note that the original problem (1.6) is invariant by
translation. Thus, it is natural to eliminate these invariances by looking for solution
of (4.3) satisfying the orthogonality conditions

∫ π
−π ρ(θ) cos θ dθ = 0 (the invariance

by translation in the y direction was eliminated by the symmetry assumption).

We recall that X is defined by (4.2) and we define

Y = {ρ ∈ C0,α
per(−π, π); ρ(θ) = ρ(−θ) , ∀θ ∈ (−π, π)},

and the function
F : R×X × R× R→ Y × R× R

by

F(β, ρ, c, λ) =
(
γκ(θ)− βf

(
c
(R0 + ρ(θ)) cos θ + ρ′(θ) sin θ

((R0 + ρ(θ))2 + ρ′(θ)2)1/2

)
(4.4)

+ c(R0 + ρ(θ)) cos θ − λ,
∫ π

−π

(
(R0 + ρ(θ))2 −R2

0

)
dθ,∫ π

−π
ρ(θ) cos θ dθ

)
.

The proof of the theorem relies on a series of properties of F that allow us to apply
the local bifurcation Theorem A.1.

Lemma 4.2. Assume that f satisfies assumptions (A1) – (A4) and let β0 = R0
f ′(0) .

Then the functional F defined by (4.4) has the following properties

1. F(β, 0, 0, γ
R0

) = 0 for all β ∈ R.
2. Ker ∂(ρ,c,λ)F(β0, 0, 0,

γ
R0

) is a one dimensional subspace of R × X × R × R
spanned by (0, 1, 0);

3. Range ∂(ρ,c,λ)F(β0, 0, 0,
γ
R0

) is a closed subspace of Y × R× R of codimension
1;

4. ∂β ∂(ρ,c,λ)F(β0, 0, 0,
γ
R0

)[(0, 1, 0)] /∈ Range ∂(ρ,c,λ)F(β0, 0, 0,
γ
R0

).

Proof of lemma 4.2. The first point is obvious. Next, we compute Lβ := ∂(ρ,c,λ)F(β, 0, 0, γ
R0

)
which is the linear operator

Lβ : X × R× R→ Y × R× R

21



defined by

Lβ(ρ, c, λ) = Fρ(β, 0, 0, γ/R0)[ ρ ] + Fc(β, 0, 0, γ/R0) c+ Fλ(β, 0, 0, γ/R0)λ. (4.5)

We recall that the linear operator Fρ(β, ρ, c, λ) is defined by

Fρ(β, ρ, c, λ)[η] =
d

dε
F(β, ρ+ εη, c, λ)|ε=0

, for η ∈ X,

and we compute:

F(β, ρ+ εη, c, λ) (4.6)

=
(
γ κρ+εη(θ)− βf

(
c
(R0 + ρ(θ) + εη(θ)) cos θ + (ρ′(θ) + εη′(θ)) sin θ

[(R0 + ρ(θ) + εη(θ))2 + (ρ′(θ) + εη′(θ))2]1/2

)
+ c [R0 + ρ(θ) + εη(θ)] cos(θ)− λ,

∫ π

−π

(
(R0 + ρ(θ) + εη(θ))2 −R2

0

)
dθ,∫ π

−π
[ρ(θ) + εη(θ)] cos θ dθ

)
,

where κρ+εη(θ) is the mean-curvature of the perturbed boundary, that is

κρ+εη(θ)

=
[R0 + ρ(θ) + εη(θ)]2 + 2[ρ′(θ) + εη′(θ)]2 − [R0 + ρ(θ) + εη(θ)] [ρ′′(θ) + εη′′(θ)]

[ (R0 + ρ(θ) + εη(θ))2 + (ρ′(θ) + εη′(θ))2 ]3/2
.

We derive the expression (4.6) with respect to ε, we compute it for ε = 0, and we
then consider ρ = 0, c = 0 and λ = γ

R0
. For η = ρ, we find the following expression

Fρ(β, 0, 0, γ/R0)[ ρ ] (4.7)

=

(
−γ ρ(θ) + ρ′′(θ)

R2
0

,

∫ π

−π
2R0ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ

)
.

The second and the third terms in (4.5) are simpler to compute since c and λ are
scalar quantities. We obtain that

Fc(β, 0, 0, γ/R0) c =
(
−c βf ′(0) cos θ + cR0 cos θ, 0, 0

)
, (4.8)

and

Fλ(β, 0, 0, γ/R0)λ = (−λ, 0, 0) . (4.9)

Finally, the linear operator Lβ is given by the sum of the expressions (4.7) – (4.9),
that is

Lβ(ρ, c, λ) =

(
−γ ρ(θ) + ρ′′(θ)

R2
0

− cβf ′(0) cos θ + cR0 cos θ − λ, (4.10)

2R0

∫ π

−π
ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ

)
.
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When β0 = R0
f ′(0) , we get

Lβ0(ρ, c, λ) =

(
−γ ρ(θ) + ρ′′(θ)

R2
0

− λ, 2R0

∫ π

−π
ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ

)
.

Thus, the elements {(ρ, c, λ)} belonging to KerLβ0 are such that

ρ′′(θ) + ρ(θ) =
−R2

0

γ
λ,

∫ π

−π
ρ(θ) dθ = 0,

∫ π

−π
ρ(θ) cos θ dθ = 0. (4.11)

The parameter c does not appear in (4.11), so (0, c, 0) ∈ KerLβ0 for all c ∈ R and
thus dim KerLβ0 ≥ 1. Furthermore, if (ρ, λ) solves (4.11), then

ρ(θ) = a cos θ + b sin θ − R2
0

γ
λ, for some a, b ∈ R

and the conditions
∫ +π
−π ρ(θ) dθ = 0,

∫ +π
−π ρ(θ) cos θ dθ = 0 and ρ(θ) = ρ(−θ) im-

ply respectively λ = 0, a = 0 and b = 0, hence KerLβ0 = span{(0, 1, 0)} and
dim KerLβ0 = 1.

Next, we show that the range of Lβ0 consists of all the triplets (f, C1, C2) ∈ Y ×R×R
such that

∫ π
−π f(θ) cos θ dθ = 0. The fact that this condition is necessary is obtained

by multiplying the equation

−γ ρ(θ) + ρ′′(θ)

R2
0

− λ = f (4.12)

by cos(θ) and integrating over (−π, π). To check that this condition is sufficient,
we note that given f ∈ C0,α

per(−π, π) and λ ∈ R, equation (4.12) has a solution in
C2,α

per(−π, π) if and only if
∫ π
−π f(θ) cos θ dθ =

∫ π
−π f(θ) sin θ dθ = 0, where the second

condition is always satisfied for f ∈ Y (f is even). The general solution of (4.12) is
then of the form

ρ(θ) = ρ̄(θ) + a cos θ + b sin θ

for some particular solution ρ̄, which we can assume to be even (otherwise we replace
it with 1

2 [ρ̄(θ) + ρ̄(−θ)]). We now take b = 0 (so ρ ∈ X) and choose a such that∫ π
−π ρ(θ) cos θ dθ = C2. Finally, integrating (4.12) with respect to θ yields

− γ

R2
0

∫ π

−π
ρ(θ) dθ − 2πλ =

∫ π

−π
f(θ) dθ

and so for an appropriate choice of λ we will have 2R0

∫ π
−π ρ(θ) dθ = C2.

Lastly, we have to prove the transversality condition (4) with respect to the value
β0, that is we have to prove that (∂βLβ0)(0, 1, 0) /∈ RangeLβ0 . We have

(∂βLβ0)(0, 1, 0) = (−f ′(0) cos θ, 0, 0).
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Assume by contradiction that (∂βLβ0)(0, 1, 0) ∈ RangeLβ0 , then we would have that

−γ ρ(θ) + ρ′′(θ)

R2
0

− λ = f ′(0) cos θ. (4.13)

Multiplying by cos θ and integrating on [−π,+π], we get (integrating by parts and
using the fact that

∫ π
−π ρ(θ) cos θ dθ = 0)

0 = f ′(0)

∫ π

−π
cos2 θ dθ

which is a contradiction since f ′(0) > 0.

We can now apply the bifurcation theorem A.1: Let us denote by Z any complement
space of KerLβ0 , there exists an interval I = (−δ, δ) and four C1 functions β : I → R,
ρ : I × [−π,+π]→ Z, c : I → Z and λ : I → Z such that

F(β(s), ρ(s, θ), c(s), λ(s)) = (0, 0, 0) for all s ∈ I, θ ∈ [−π,+π], (4.14)

and 
β(0) = β0 = R0

f ′(0) ,

ρ(0, θ) = 0 and ∂sρ(0, θ) = 0 for all θ ∈ [−π,+π],

c(0) = 0 and c′(0) = 1,

λ(0) = γ
R0

and λ′(0) = 0.

(4.15)

This completes the proof of points (i) and (ii) of Theorem 4.1. The rest of this section
is devoted to proving Lemma 4.3 and 4.4 below which together imply Theorem 4.1-
(iii) (some of the more technical computations are presented in the appendix).

In the proofs that follow, we use extensively the fact that the functions θ 7→ ρ(0, θ)
and θ 7→ ∂sρ(0, θ) (and all their derivatives with respect to θ) vanish. Using the fact
that

∫ π
−π ρ(s, θ) cos θ dθ = 0 and

∫ π
−π
(
(R0 + ρ(s, θ))2 −R2

0

)
dθ = 0 for all s, we also

have that ∂ssρ(0, θ) satisfies:∫ π

−π
∂ssρ(0, θ) cos θ dθ = 0,

∫ π

−π
∂ssρ(0, θ) sin θ dθ,

∫ π

−π
∂ssρ(0, θ) dθ = 0. (4.16)

We start with:

Lemma 4.3. We have β′(0) = 0, λ′′(0) = 0 and ∂ssρ(0, θ) = 0 for all θ ∈ [−π, π].

Proof of lemma 4.3. We differentiate with respect to s the first component of F and
since (4.14) holds for all s ∈ I we get that

0 =γ∂sk(s, θ)− β′(s)f(z(s, θ))− β(s)f ′(z(s, θ))∂sz(s, θ) (4.17)

+ c′(s)(R0 + ρ(s, θ)) cos θ + c(s)∂sρ(s, θ) cos θ − λ′(s),
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where the functions k and z are defined by

k(s, θ) =
((R0 + ρ)2 + 2∂θρ

2 − (R0 + ρ)∂θθρ)(s, θ)(
((R0 + ρ)2 + ∂θρ2)3/2

)
(s, θ)

. (4.18)

and

z(s, θ) = c(s)
(R0 + ρ(s, θ)) cos θ + ∂θρ(s, θ) sin θ

(
√

(R0 + ρ(s, θ))2 + (∂θρ(s, θ))2)
. (4.19)

Using (4.15) we first see that

z(0, θ) = 0 for all θ ∈ [−π,+π],

Since f(0) = 0 the coefficient of β′(0) in (4.17) for s = 0 vanishes and we do not get
any information.

We differentiate equation (4.17) with respect to s and we get

0 =γ∂ssk(s, θ)− β′′(s)f(z(s, θ))− 2β′(s)f ′(z(s, θ))∂sz(s, θ) (4.20)

− β(s)f ′(z(s, θ))∂ssz(s, θ)− β(s)f ′′(z(s, θ))(∂sz(s, θ))
2

+ c′′(s)(R0 + ρ(s, θ)) cos θ + 2c′(s)∂sρ(s, θ) cos θ

+ c(s)∂ssρ(s, θ) cos θ − λ′′(s).

Computing (4.20) for s = 0 (using (4.15) and the fact that f(0) = f ′′(0) = 0) we
obtain

0 =γ∂ssk(0, θ)− 2β′(0)f ′(0)∂sz(0, θ)− β(0)f ′(0)∂ssz(0, θ) +R0c
′′(0) cos θ − λ′′(0).

Using Lemma C.1 and the fact that β(0) = R0/f
′(0), we deduce

γ∂ssk(0, θ) = 2β′(0)f ′(0) cos(θ) + λ′′(0). (4.21)

Lemma B.1 now gives

γ

R2
0

L[∂ssρ(0, ·)] = 2β′(0)f ′(0) cos(θ) + λ′′(0). (4.22)

where L denotes the operator

L[u] = −u− ∂θθu.

Multiplying (4.22) by cos θ, integrating on [−π, π], and using the fact that L∗[cos] =
0, we obtain

∫ π
−π 2β′(0)f ′(0) cos2 θ dθ = 0 which implies that β′(0) = 0 since f ′(0) 6=

0. Integrating (4.22) on [−π, π], using the fact that L∗[1] = −1 and (4.16), we obtain∫ π
−π λ

′′(0) dθ = 0, that is λ′′(0) = 0. In turn, (4.22) now implies that L[∂ssρ(0, ·)] = 0,
that is ∂ssρ(0, θ) = C1 cos(θ) + C2 sin(θ). Using (4.16) we find C1 = C2 = 0 and so
∂ssρ(0, θ) = 0.

Finally, we prove:
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Lemma 4.4. We have β′′(0) > 0.

Proof of lemma 4.4. We differentiate (4.20) with respect to s

0 =γ∂sssk(s, θ)− β′′′(s)f(z(s, θ))− 3β′′(s)f ′(z(s, θ))∂sz(s, θ) (4.23)

− β′(s)[3f ′′(z(s, θ))(∂sz(s, θ))2 + 3f ′(z(s, θ))∂ssz(s, θ)]

− β(s)[f ′′′(z(s, θ))(∂sz(s, θ))
3 + 3f ′′(z(s, θ))∂sz(s, θ) ∂ssz(s, θ)

+ f ′(z(s, θ))∂sssz(s, θ)] + c′′′(s)(R0 + ρ(s, θ)) cos θ

+ 3c′′(s)∂sρ(s, θ) cos θ + 3c′(s)∂ssρ(s, θ) cos θ

+ c(s)∂sssρ(s, θ) cos θ − λ′′′(s).

When s = 0, using the fact that c(0) = 0, c′(0) = 1, β(0) = R0/f
′(0), β′(0) = 0,

z(0, θ) = 0, ∂sz(0, θ) = cos θ, ∂ssz(0, θ) = c′′(0) cos θ (see Lemma C.1), ρ(0, θ) =
∂sρ(0, θ) = ∂ssρ(0, θ) = 0 and the assumptions f(0) = 0, f ′′(0) = 0, we find:

0 =γ∂sssk(0, θ)− 3β′′(0)f ′(0) cos θ − R0

f ′(0)
[f ′′′(0) cos3 θ + f ′(0)∂sssz(0, θ)]

+ c′′′(0)R0 cos θ − λ′′′(0).

Finally, using the expression for ∂sssz(0, θ) given by Lemma C.2 and the formula for
∂sssk(0, θ) given by Lemma B.2, we get:

γ

R2
0

L[∂sssρ(0, ·)] = 3β′′(0)f ′(0) cos θ +
R0f

′′′(0)

f ′(0)
cos3 θ + λ′′′(0). (4.24)

Since L∗[cos] = 0, we deduce:∫ +π

−π

(
3β′′(0)f ′(0) cos θ +R0

f ′′′(0)

f ′(0)
cos3 θ + λ′′′(0)

)
cos θ dθ = 0,

leading to

β′′(0) = −R0

4

f ′′′(0)

(f ′(0))2
.

The result follows since f ′′′(0) < 0.

This completes the proof of Theorem 4.1.

5 Conclusion and biological consequences

Spontaneous symmetry breaking is a characteristic of living cells, the model (1.1)
introduced in [6] and studied in this work accounts for this biological phenomenon.
Indeed for large enough value of the parameter β (β ≥ R0/f

′(0)), two different
behaviors take place: a symmetric cell with a zero velocity or an asymmetric cell
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with a non zero velocity. From a biological viewpoint this means that the rest
state (1.4) is destabilized through a bifurcation at β = R0/f

′(0). In other words,
the polarization-translation mode, which breaks the front-symmetry and leads to
motility, is unstable for β = R0/f

′(0).

As a conclusion, the model presented here is intended to be a highly simplified rep-
resentation of the biological cell. The analyse performed in this work allows to prove
that the models (2.1) and (2.3) – (2.7) are close to an unstable system of equations.
The model (1.1) while mathematically unpleasant, describes an important feature
of cell motility. Its main interest lies in its relative simplicity as it is expressed as
a single free-boundary model. Since it accurately describes the instability allowing
cells to move, a more in-depth mathematical analysis would be interesting and chal-
lenging due to the non-conventional boundary condition. We leave the question of
the existence of a Lyapunov function for (1.1) as an open question.

A A theorem of Crandall-Rabinovitz

We recall here the classical bifurcation theorem of Crandall-Rabinovitz [5] that we
used to prove our result. Given U, V two real Banach spaces and a continuous map
F : R× U → V , the goal is to analyze the structure of the solution set

F [λ, u] = 0, (λ, u) ∈ R× U.

Theorem A.1 (Local bifurcation [5]). Let U, V be Banach spaces, W a neighborhood
of (λ0, 0) in R × U and F : W −→ V . Suppose that the following properties are
satisfied

1. F(λ, 0) = 0 for all λ in a neighborhood of λ0;
2. The Fréchet partial derivatives ∂uF , ∂λF , ∂λuF exist and are continuous;
3. Ker ∂uF(λ0, 0) is a one dimensional subspace of U spanned by a nonzero vector

u0 ∈ U ;
4. Range ∂uF(λ0, 0) is a closed subspace of V of codimension 1;
5. ∂λuF(λ0, 0)[u0] /∈ Range ∂uF(λ0, 0).

If Z is any complement of Ker ∂uF(λ0, 0) in U , then, there is a neighborhood N
of (λ0, 0) in R × U , an interval I = (−ε, ε) for some ε > 0 and two continuous
functions

ϕ : (−ε, ε) −→ R, ψ : (−ε, ε) −→ Z

such that ϕ(0) = λ0, ψ(0) = 0 and

F−1[0] ∩ U = {(ϕ(s), su0 + sψ(s)) : |s| < ε} ∪ {(λ, 0) : (λ, 0) ∈ N}.

If ∂uuF is continuous then the functions ϕ and ψ are once continuously differen-
tiable.

Remark A.2. In theorem A.1, (λ0, 0) is a bifurcation point of the equation F(λ, u) =
0 in the following sense: in a neighborhood of (λ0, 0), the set of solutions of F(λ, u) =
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0 consists of two curves Γ1 and Γ2 which intersect only at the point (λ0, 0); Γ1 is
the curve (λ0, 0) and Γ2 can be parameterized as follows:

Γ2 : (λ(s), u(s)), |s| small ; (λ(0), u(0)) = (λ0, 0); u′(0) = u0, λ
′(0) 6= 0.

B Computation of ∂sk, ∂ssk and ∂sssk

Recall that k(s, θ) is defined by (4.18) for s ∈ I and θ ∈ [−π,+π].

Lemma B.1. Assume ρ(0, θ) = ∂sρ(0, θ) = 0 for all θ ∈ [−π,+π]. Then

∂sk(0, θ) = 0

and
R2

0∂ssk(0, θ) = −∂ssρ(0, θ)− ∂ssθθρ(0, θ). (B.1)

Proof. Define the functions

N(s, θ) = ((R0 + ρ)2 + 2∂θρ
2 − (R0 + ρ)∂θθρ)(s, θ)

D(s, θ) =
(
((R0 + ρ)2 + ∂θρ

2)3/2
)
(s, θ)

so that

k(s, θ) =
N(s, θ)

D(s, θ)
and ∂sk(s, θ) =

(
(∂sN)D −N(∂sD)

D2

)
(s, θ) (B.2)

with

(∂sN)(s, θ) = (2(R0 + ρ)∂sρ+ 4∂θρ ∂sθρ−R0∂sθθρ− ∂sρ ∂θθρ− ρ ∂sθθρ )(s, θ),

(∂sD)(s, θ) = (3(∂θρ ∂sθρ+ (R0 + ρ)∂sρ)
√

(R0 + ρ)2 + (∂θρ)2 )(s, θ).

Since the ρ(0, θ) = ∂sρ(0, θ) = 0 for all θ, we see that (∂sN)(0, θ) = (∂sD)(0, θ) = 0
and so ∂sk(0, θ) = 0.

Next, we define

n(s, θ) = ((∂sN)D −N(∂sD))(s, θ) and d(s, θ) = D2(s, θ),

so that ∂sk(s, θ) = n
d (s, θ) and

∂ssk(s, θ) =

(
(∂sn)d− n(∂sd)

d2

)
(s, θ), (B.3)

where

(∂sn)(s, θ) = ((∂ssN)D −N(∂ssD))(s, θ) and (∂sd)(s, θ) = (2D∂sD)(s, θ),
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with

(∂ssN)(s, θ) =(2∂sρ
2 + (2R0 + 2ρ− ∂θθρ)∂ssρ+ 4(∂sθρ)2

+ 4∂θρ ∂ssθρ−R0∂ssθθρ− 2∂sρ∂sθθρ− ρ∂ssθθρ)(s, θ),

and

(∂ssD)(s, θ) =
(
3((R0 + ρ)2 + (∂θρ)2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)2

+ 3
√

(R0 + ρ)2 + (∂θρ)2((∂sρ)2 + (R0 + ρ)∂ssρ+ (∂sθρ)2 + ∂θρ∂ssθρ)
)
(s, θ).

Using the fact that ρ(0, θ) = ∂sρ(0, θ) = 0 for all θ, we see that

∂ssN(0, θ) = 2R0∂ssρ(0, θ)−R0∂ssθθρ(0, θ),

and
∂ssD(0, θ) = 3R2

0∂ssρ(0, θ),

hence (note that N(0, θ) = R2
0 and D(0, θ) = R3

0)

∂sn(0, θ) = −R4
0∂ssρ(0, θ)−R4

0∂ssθθρ(0, θ),

and (recall that (∂sD)(0, θ) = 0) ∂sd(0, θ) = 0. We deduce that ∂ssk(0, θ) =
∂sn
D2 (0, θ) =

−R4
0∂ssρ(0,θ)−R4

0∂ssθθρ(0,θ)

R6
0

and (B.1) follows.

Lemma B.2. Assume ρ(0, θ) = ∂sρ(0, θ) = ∂ssρ(0, θ) = 0 for all θ ∈ [−π,+π].
Then

R2
0∂sssk(0, θ) = −∂sssρ(0, θ)− ∂sssθθρ(0, θ).

Proof. Since we now assume that ∂ssρ(0, θ) = 0, the computation above give in
particular

∂ssN(0, θ) = 0, ∂ssD(0, θ) = 0.

Next, we define

a(s, θ) = ((∂sn)d− n(∂sd))(s, θ) and b(s, θ) = d2(s, θ),

and we have that

∂sssk(s, θ) =

(
(∂sa)b− a(∂sb)

b2

)
(s, θ), (B.4)

where

(∂sa)(s, θ) = ((∂ssn)d− n(∂ssd))(s, θ) and (∂sb)(s, θ) = 2(d ∂sd)(s, θ),

with

(∂ssn)(s, θ) = ((∂sssN)D −N(∂sssD) + (∂ssN)∂sD − (∂sN)(∂ssD))(s, θ),

(∂ssd)(s, θ) = 2((∂sD)2 +D∂ssD)(s, θ)
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in which

(∂sssN)(s, θ) = (6∂sρ ∂ssρ+ (2R0 + 2ρ− ∂θθρ)∂sssρ+ 12∂sθρ ∂ssθρ

+ 4∂θρ∂sssθρ− (R0 + ρ)∂sssθθρ− 3∂ssρ∂sθθρ− 3∂sρ∂ssθθρ)(s, θ)

and

(∂sssD)(s, θ) =− 3((R0 + ρ)2 + (∂θρ)2)−3/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)3

+ 9((R0 + ρ)2 + (∂θρ)2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)(∂θρ∂ssθρ+ (∂sρ)2)

+ 9((R0 + ρ)2 + (∂θρ)2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)
(
(R0 + ρ)∂ssρ+ (∂sθρ)2

)
+ 3
√

(R0 + ρ)2 + (∂θρ)2)(3∂sρ∂ssρ+ (R0 + ρ)∂sssρ)

+ 3
√

(R0 + ρ)2 + (∂θρ)2)(3∂sθρ∂ssθρ+ ∂θρ∂sssθρ)(s, θ).

Using that ρ(0, θ) = ∂sρ(0, θ) = ∂ssρ(0, θ) = 0, we get:

∂sssN(0, θ) = 2R0∂sssρ(0, θ)−R0∂sssθθρ(0, θ),

and
∂sssD(0, θ) = 3R2

0∂sssρ(0, θ).

Since ∂sD(0, θ) = ∂ssD(0, θ) = 0, ∂sd(0, θ) = 0, ∂sb(0, θ) = 0, we deduce that

R12
0 ∂sssk(0, θ) = ∂sa(0, θ) = R6

0∂ssn(0, θ)

= R6
0[(∂sssN)D −N(∂sssD)](0, θ)

= R10
0 [−∂sssρ(0, θ)− ∂sssθθρ(0, θ)]

and the result follows.

C Computation of ∂sz, ∂ssz and ∂sssz

Recall that z(s, θ) is defined by (4.19) for s ∈ I and θ ∈ [−π,+π] and that c(s)
satisfies

c(0) = 0, c′(0) = 1.

Lemma C.1. Assume ρ(0, θ) = ∂sρ(0, θ) = 0 for all θ ∈ [−π,+π]. Then for all
θ ∈ [−π, π] we have

∂sz(0, θ) = cos θ, and ∂ssz(0, θ) = c′′(0) cos θ

Proof. Define the functions

N (s, θ) = (R0 + ρ(s, θ)) cos θ + ∂θρ(s, θ) sin θ,

D(s, θ) =
√

(R0 + ρ(s, θ))2 + (∂θρ(s, θ))2,
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so that

z(s, θ) = c(s)
N (s, θ)

D(s, θ)
and ∂sz(s, θ) = c′(s)

N (s, θ)

D(s, θ)
+ c(s)

ν(s, θ)

δ(s, θ)
, (C.1)

where
ν(s, θ) = ((∂sN )D −N (∂sD))(s, θ) and δ(s, θ) = D2(s, θ).

We have N (0, θ) = R0 cos θ and D(0, θ) = R0 and since c(0) = 0 and c′(0) = 1, we

obtain ∂sz(0, θ) = N (0,θ)
D(0,θ) = cos θ which is the first part of the lemma.

Differentiating (C.1) with respect to s we obtain

∂ssz(s, θ) = c′′(s)
N (s, θ)

D(s, θ)
+ 2c′(s)

ν(s, θ)

δ(s, θ)
+ c(s)

h(s, θ)

g(s, θ)
, (C.2)

where
h(s, θ) = ((∂sν)δ − ν(∂sδ))(s, θ) and g(s, θ) = δ2(s, θ).

Recalling that c(0) = 0 and c′(0) = 1, we find

∂ssz(0, θ) = c′′(0)
N (0, θ)

D(0, θ)
+ 2

ν(0, θ)

δ(0, θ)
.

Next, we have:
∂sN (s, θ) = ∂sρ(s, θ) cos θ + ∂sθρ(s, θ) sin θ,

and

∂sD(s, θ) =
(R0 + ρ(s, θ)∂sρ(s, θ) + ∂θρ(s, θ)∂sθρ(s, θ)√

(R0 + ρ(s, θ))2 + ∂θρ(s, θ)2
.

In particular, we get ∂sN (0, θ) = 0 , ∂sD(0, θ) = 0, hence

ν(0, θ) = 0, δ(0, θ) = R2
0.

We deduce:

∂ssz(0, θ) = c′′(0)
N (0, θ)

D(0, θ)
+ 2

ν(0, θ)

δ(0, θ)
= c′′(0) cos θ.

Lemma C.2. Assume ρ(0, θ) = ∂sρ(0, θ) = ∂ssρ(0, θ) = 0 for all θ ∈ [−π,+π].
Then for all θ ∈ [−π, π] we have

∂sssz(0, θ) = c′′′(0) cos θ

Proof. We must go one step further. Differentiating (C.2) with respect to s we find

∂sssz(s, θ) = c′′′(s)
N (s, θ)

D(s, θ)
+ 3 c′′(s)

ν(s, θ)

δ(s, θ)
+ 3 c′(s)

h(s, θ)

g(s, θ)
+ c(s) ∂s

(
h(s, θ)

g(s, θ)

)
.
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Since c(0) = 0, c′(0) = 1 and ν(0, θ) = 0 (see proof of the previous lemma) we obtain

∂sssz(0, θ) = c′′′(0)
N (0, θ)

D(0, θ)
+ 3

h(0, θ)

g(0, θ)

We have
(∂ssN )(s, θ) = ∂ssρ(s, θ) cos θ + ∂ssθρ(s, θ) sin θ,

and

(∂ssD)(s, θ) =

− ((R0 + ρ)2 + (∂θρ)2)3/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)((R0 + ρ)∂sρ+ ∂θρ∂sθρ)

+ ((R0 + ρ)2 + (∂θρ)2)−1/2(R0∂ssρ+ (∂sρ)2 + ρ∂ssρ+ (∂sθρ)2 + ∂θρ∂ssθρ)(s, θ)

so ∂ssN (0, θ) = 0 and ∂ssD(0, θ) = 0 and so

(∂sν)(0, θ) = ((∂ssN )D −N (∂ssD))(0, θ) = 0.

In turns this gives
h(0, θ) = ((∂sν)δ − ν(∂sδ))(0, θ) = 0.

Together with the fact that N (0, θ) = R0 cos θ and D(0, θ) = R0, this implies

∂sssz(0, θ) = c′′′(0)
N (0, θ)

D(0, θ)
+ 3

h(0, θ)

g(0, θ)
= c′′′(0) cos θ.
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