DIAMETER RIGIDITY OF SPHERICAL POLYHEDRA

WERNER BALLMANN! AND MICHAEL BRIN?

ABSTRACT. We classify geodesically complete compact 2-dimensional spherical poly-
hedra X of diameter and injectivity radius . If X contains a point whose link has
diameter > 7 then either (i) X is the spherical join of the finite set P of point whose
link has diameter > 7 with the metric graph £ = {z € X : d(¢, P) = 7/2} whose
diameter is > m or (i) X is a hemispherex, that is, X is obtained by attaching
hemispheres to the standard sphere S along great circles so that not all of them pass
through the same pair of opposite points in S. If all links of X have diameter 7 then
either (i) X is a thick spherical building of type A3 or Bz, or (ii) X is the spherical
join of a finite set with a graph F of diameter w. In each case the injectivity radius
of Fis .

1. INTRODUCTION

The diameter rigidity question considered in this paper is motivated by the rank
rigidity problem for spaces of nonpositive curvature. The rank of a complete simply
connected space Y of nonpositive curvature is > 2 if every geodesic in Y is contained
in an isometrically embedded convex Euclidean plane. The Rank Rigidity Problem
asks for a classification of such spaces, at least when the isometry group of Y is
large.

By a Euclidean (respectively, spherical) k-simplex we mean the intersection of
k41 closed half spaces in R¥ (respectively, hemispheres in S*) in general position.
A polyhedron with a metric is called Euclidean (respectively, spherical) if it admits
a triangulation into Euclidean (respectively, spherical) simplices. We are interested
in the rank rigidity of Euclidean polyhedra with compact quotients and expect
them to be Euclidean buildings or products. The rank rigidity for dimY = 2 is not
difficult and is contained in [BB, Section 6.

For a Euclidean polyhedron Y and p € Y we denote by S,Y the link of Y at p,
that is, the set of directions at p. Clearly 5,Y is a spherical polyhedron and, if ¥’
has nonpositive curvature, then the injectivity radius of S,Y is 7. Furthermore, if
the rank of Y is > 2 then 5,Y is geodesically complete and has diameter m. Hence
for dimY = 3 the link X = 5,Y is a geodesically complete compact 2-dimensional
spherical polyhedron of diameter and injectivity radius w. The aim of this paper
is to classify such spaces X. Here are examples of geodesically complete compact
spherical polyhedra of diameter and injectivity radius =.
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1.1 Spherical building. If X is a spherical building then X carries a natural
metric for which the apartments are unit spheres. For this metric the diameter
and injectivity radius of X are m. If Y is a Euclidean building of dimension n > 2
with the natural metric then every geodesic in Y is contained in a isometrically
embedded convex Euclidean n-space. The link of a vertex in Y is a spherical
building of dimension n — 1 which has injectivity radius and diameter 7, see [Br,
Ch.VI].

1.2 Spherical join. Let Y; be a Euclidean polyhedron, y; € Y; and X; = S,,Y;,
i = 1,2. Then the spherical join X1+ X3 is the link of (y1,y2) € Y7 xY3 with angular
distance. Clearly XX} is a spherical polyhedron of dimension dim X; +dim X5 +1
and naturally contains X; and X, as subpolyhedra. If Y7 and Y, are geodesically
complete and of nonpositive curvature then Y; x Y, has rank > 2 and X7 % X3 1s
geodesically complete and has injectivity radius and diameter .

If dimY; = 1 then X; is a finite set and X; * Xy admits the following simple
description which is sufficient for this paper. For each p € X the spherical cone
C, over X, with pole p is the product X, x [0, 7/2] in which X3 x {0} is identified
with p and the distance d is given by

cosd((y,s),(z,t)) = cosscost + sinssint cosmin{n, d2(y, z)},

where ds is the distance in X5. The spherical join X7 * X5 is the disjoint union of
the spherical cones C), p € X7, identified along the equators X, x {x/2}.

1.3 Hemispherex. A spherical complex is called a hemispherez if it is obtained
from the unit sphere by attaching unit hemispheres along great hyperspheres so
that no pair of antipodal points on the sphere belongs to all hemispheres. A 1-
dimensional hemispherex is called a semicirclez. It is not difficult to see that the
injectivity radius of a hemispherex is 7, the diameter of a semicirclex is > 7 and
the diameter of a hemispherex of dimension > 2 is 7, see Figure 1.

FIGURE 1. THE SIMPLEST SEMICIRCLEX AND HEMISPHEREX.



We refer to the initial sphere (circle) of a hemispherex X as the central sphere
(circle) of X. The central circle of a semicirclex is distinguished as the set of points
for which the maximum of the distance function from x is 7. For all other points
it is > 7. In dimension n > 1, each essential vertex = of a hemispherex X lies on
its central sphere S, the link S; X is an (n — 1)-dimensional hemispherex, and S is
distinguished recursively by the property that S is tangent to the central sphere of
Sz X.

The Euclidean cone C'(H) over a hemispherex H of dimension > 2 is a complete
simply connected Euclidean polyhedron of nonpositive curvature and rank > 2.
This is the only known to us example of a higher rank space of nonpositive curvature
which is not a Euclidean building, a symmetric space or a product. Obviously, every
isometry of C(H) must fix the vertex and hence is of finite order. In particular,
C(H) does not admit compact factors.

The following theorem is the main result of this paper.

Theorem. Let X be a geodesically complete compact 2-dimensional spherical poly-
hedron of diameter and injectivity radius m. Then X s

(1) esther a thick spherical building of type As or Bs,

(2) or a spherical join of a finite set with a metric graph of injectivity radius
2 ﬂ-}

(3) or a hemispherex.

The paper is organized as follows. After discussing preliminaries in Section 2 we
present the main argument in Section 3. In Section 4 we consider the case when
X 1s not dimensionally homogeneous. In Section 5 we discuss the case when all
links of X have diameter 7. The main results of Sections 3,4 and 5 are stated as
theorems at the beginning of each section. The above theorem is a consequence of
these theorems.



2. PRELIMINARIES

Let X be a compact spherical polyhedron. Fix a triangulation of X into spherical
simplices. Although the definitions below use this triangulation, they do not depend
on the particular choice of triangulation.

Let x € X and A be a closed k-simplex containing . View A as a subset of
S* and set S, A to be the set of unit tangent vectors ¢ at z such that a nontrivial
initial segment of the geodesic with initial velocity £ is contained in A. If B C A
is another closed simplex containing = then naturally S, B C S, A. We define the
link S; X of X at = by

S X = U35 A,

where the union is taken over all closed simplices containing x. If the maximal
dimension of a simplex adjacent to z is n then 5, X has dimension n — 1. Angles
in S;A induce a natural length metric d, on S, X which turns it into a spherical

polyhedron. For &, € 5, X define

Z(&,n) =min(d(&,n), 7).

For every # € X there is a neighborhood U of z with polar coordinates (¢,s),
£ e 5. X,0<s<e, centered at = and such that

cosd((€,s),(n,t)) = cosscost + sinssintcos Z(£,n).

In other words, locally X is isometric to a spherical cone.

Let X be 2-dimensional. We refer to the simplices of X as vertices, edges and
faces. A vertex x of X is called essential if S;X is not isometric to the metric graph
consisting of two points with m > 0 edges of length 7 connecting them. An edge
of X is called essential if it is not adjacent to exactly two faces. A mazimal face of
X is a connected component of the complement of the union of essential edges and
vertices.

A curve v : I — X is a geodesic if it has constant speed and is locally distance
minimizing. It it easy to show that a curve v : [a,b] — X with constant speed is a
geodesic if and only if there is a subdivision

a:t0<t1<...<tm:b

such that
(1) ~([tj=1.t;]) is contained in a closed simplex A; C X and v : [t;—1,t;] = A;
is a standard geodesic segment in A;, 1 <5 < m;
(2) dyy(=(t), 7)) 2w 1<y <m—1.
We refer to —4(t) and #4(¢) as the incoming and outgoing directions of 4 in the link

S.tyX. For geodesics vy and o with v(s) = o(t) =: = we set

Zo(v,0) = £(3(s),6(¢)) -

We say that X is geodesically complete if every geodesic v : I — X can be
extended to a geodesic 4 : R — X. Observe that X is geodesically complete if and



only if for every © € X and every £ € S; X there is n € S; X with d.(&,n) > =.
If X is geodesically complete then it has no boundary simplices, that is, simplices
adjacent to exactly one simplex of a higher dimension.

For z,y,z € X with 0 < d(z,y),d(z,z) < injX we define Z,(y,z) to be the
angle at  between the unique minimal connections from z to y and = to z. In
general, angles need not depend continuously on the end points of their sides in
singular spaces. For example, let X be the tripod, that is, the simplicial complex
consisting of three edges e, f, g with one common vertex m, the midpoint of the
tripod. Let y,z be the other vertices of f and g respectively and let = be a point
on e. Then the angle Z,(y, z) is zero if * # m and = if = m.

2.1 Lemma. Let o be a unit speed geodesic with 0(0) = v € X. For a sequence
(tn) of positive numbers tending to 0 let v, be a unit speed geodesic starting at
o(tn). Assume Ly, )(0,n) < 7 for all n and that ~, converges to a unit speed
geodesic v starting at x.

Then £ (0,v) <liminf, o0 Zo(1,)(0,7n)-

Proof. Since X is a spherical polyhedron, locally near = the space X is isometric
to the spherical cone over the space of directions S, X. Hence there is a uniform
e > 0 such that o([tn,t, + ¢]) and v,([0,¢]) are the legs of an immersed isosceles
spherical triangle C,, with angle 2, 1(0,7,) at the vertex. A subsequence of (C,)
converges to an immersed isosceles spherical triangle with legs o ([0, ¢]) and ([0, ¢])
and the inequality for the angle follows. O

2.2 Berger’s Lemma. Let y € X and suppose x € X 1is a local mazimum of the
distance function d(y,.).

Then for every & € Sy X there 1s n € S X such that d(&,n) < 5 and n s

)

tangent to a shortest (of length d(y,x)) connection from x to y.

Proof. Let o be a geodesic with ¢(0) = z and 6(0) = . Locally near z the
space X 1is isometric to the spherical cone over the space of directions S, X. Hence
for t > 0 small enough the link of X at o(t¢) is isometric to the spherical join
of the set {&(t),—o(¢)} with the space of directions at ¢ in S, X. By Lemma
2.1, if n does not exist, then every shortest connection 7, from o(t) to y satisfies

Z(6(t),4:(0)) > g By the structure of the link S, (), we have Z(—a(t),4:(0)) < g

Therefore, d(y, o(t)) is strictly increasing in ¢, and hence z is not a local maximum
of d(y,.). This is a contradiction. O

The njectivity radius inj X of X is the supremum of the set of r > 0 such that
any geodesic segment of length < r is the unique minimal connection between its
ends. We will need the following easy fact.

2.3 Lemma. Let X be a space of injectivity radius m and o be a geodesic loop in
X of length 27.

Then o 1s a closed geodesic.

Proof. Let p = o(n/2), ¢ = 0(37/2). Then p and ¢ are connected by the geodesic
o([r/2,37/2]) of length 7 and by the curve ¢ = o([0,7/2]) U o([37/2,2x]), also of



p=o(172)

o (0)

0= o(312)

FIGURE 2

length 7, see Figure 2. Since the injectivity radius of X is 7, ¢ is a curve of minimal
length and hence a geodesic. O

2.4 Lemma. Let dimX =2 and injX = R > 0. Then for every x € X there is a
finite subset F' of Sy X such that a unit speed geodesic o : [0, R) — X with initial
direction 6(0) € Sy X \ F never hits an essential verter of X, except possibly = at
time 0.

Proof. Since X is compact, there are only finitely many essential vertices in X.
Hence there is ¢ > 0 such that no unit speed geodesic o : [0, R] = X with ¢(0) = =
hits an essential vertex in time ¢t € (R — e, R). Since the injectivity radius is R, the
lemma follows. [

Suppose that for € X the injectivity radius of 5, X is < 7. Then there are two
directions &,n € S, X connected by two different geodesics of length «, < 7 in
S X. If 4,0 are unit speed geodesics in X with 4(0) = ¢, 6(0) = n, then for small
enough s,¢ > 0 the points ~(s), o(t) are connected in X by two different geodesics
of length

arccos(cos s cost + sinssintcosa), arccos(cosscost + sinssintcosf3).

As s,t — 0, both lengths tend to 0, and hence injX = 0. Therefore inj X > 0
implies that all links of X have injectivity radius > n. This in turn implies that X
is of curvature < 1 in the triangle comparison sense of Alexandrov. If inj X > =
then the triangle comparison holds for triangles in X of perimeter < 27 and X is
a CAT(1)-space in the sense of Gromov, see [Al,Gr,B1,B2].

By a spherical lune we mean a subset of the standard sphere S? bounded by two
meridians making (equal) angles < 7 at the poles.

2.5 Lune Lemma. Letinj X > 7 and let B be a geodesic biangle in X with vertices
1,29 € X and sides of length . Suppose the angle oy at xy s less than .



Then the second angle as equals oy and B 1s the boundary of a spherical lune.

Proof. Let y, z be the midpoints of the sides. Then d(y, z) < 7 since otherwise the
union of the geodesics from y to x; and from x; to z would be a minimal geodesic,
contradicting the assumption a; < 7. Now consider a lune on the standard sphere
from the north pole to the south pole such that the distance between the midpoints
of the boundary meridians is d(y,z). We obtain in this way simultaneously the
comparison triangles for A(x;,y,z). Note that the perimeter of these triangles is
< 2m. Mark by a prime the objects on the sphere corresponding to objects in X.
Let (3; be the angle at y between z; and z and ~; the one at z between z; and y.

We have
Bi+p2>m i+ >w

since the sides of the biangle are geodesics and

Br=B=r/2=9 ="

since we are dealing with a lune on the sphere and y’, 2z’ are the midpoints of the
sides. As we pointed out right before the lemma, X is a CAT(1)-space and the
triangle comparison applies to triangles of perimeter < 27. Therefore, 3; < ! and
~vi < ~l. Hence we have equalities for these angles and the equality discussion in
the comparison applies, see [B2]. O

A subset M is r-convez if every geodesic segment of length < r with ends in M
is contained in M.

2.6 Corollary. Let X be a spherical polyhedron of diameter and injectivity radius
m and r1,2 € X be points at mazimal distance ® from each other. Denote by
M, C Sy, + = 1,2, the set of wnitial directions to minimal geodesics from z; to
the other point and by I : My — M, the map which sends the outgoing direction of
such a minimal geodesic to its incoming direction at xs.

Then M; is a w-convezr and = /2-dense subset of Sy, and I is an isometry in the
angle metric. [

The following easy statement is proved in [BB, Lemma 6.1].

2.7 Proposition. Let I' be a finite graph with all vertices of degree at least 2 and
with a length metric of diameter and injectivity radius w. Then

(1) esther there exist finite subsets A, B C I' such that ' is the bipartite graph
T'(A, B) in which each a € A is connected to each b € B by an edge of length
/2,

(2) or I' is a thick spherical building with edges of length w/k, k > 3, whose
apartments are simple loops with 2k edges.

For |A| = |B| = 2 the graph I'(A, B) is a unit circle. For |A| =2 and |B| =m
the graph I'(A, B) consists of two points connected by m edges of length .

2.8 Lemma. Let ' be a finite graph with all vertices of degree at least 2 and with
a length metric of injectivity radius . Suppose A C T' satisfies

(1) d(n,{) == for alln# (¢ € A and
(2) d(n.8) <= for alln € A and 8 €T\ A.



Then T s the bipartite graph T'(A, B) with B ={61d(6,A) = n/2}.

Proof. Let 6 € T be a point with d(6,n) = 7 /2 for some n € A. Since the injectivity
radius of T' is m, it suffices to prove that d(6,() = =n/2 for all ( € A. Suppose
d(6,() > m/2 for some ( € A and let ¢ be a shortest curve from ¢ to 6. By (2),
the length [ of ¢ satisfies 7/2 < | < 7. Extend ¢ to a simple unit speed geodesic
of length 7. Then d(¢(7),n) < m, and hence by (1), ¢(n) ¢ A. On the other hand,
d(¢(m), () = m, and hence by (2), ¢(x) € A, which is a contradiction. O



3. SPACES WITH LINKS OF DIAMETER > 7

In this section a point z € X is called a pole if the diameter of the link S, X
(with respect to d;) is > w. A direction £ € S, X is called a spreading direction
if there is n € S, X with dz(£,n) > =. In this section we will prove the following
special case of our main theorem.

Theorem 3.1. Let X be a compact 2-dimensional spherical polyhedron of diameter
and injectivity radius w. Assume that every edge of X s adjacent to at least two
faces and that X contains a pole.

Then X 1s either a spherical join or a hemispherex.

Throughout this section we assume that X is a compact 2-dimensional spherical
polyhedron of diameter and injectivity radius = and that every edge of X is adjacent
to at least two faces. In particular, X is geodesically complete and for every pole
x € X and spreading direction ¢ € S, X there is a nontrivial arc of directions

n € S; X such that d,(&,n) > .

3.2 Lemma. Let v € X be a pole, £ € 5, X be a spreading direction and o :
[0, 7] = X be a unit speed geodesic with 6(0) = &.
Then for 0 <t < w/2 or m/2 <t <,
(1) the link S,y X 1is the graph T'(A,B) with A = {5(t),—&(t)} and B the set
of midpoints of (at least two) edges of length © connecting &(t) and —o&(t).
In particular, o(t) ¢ Vx and
(2) of o1 : [0,7/2] = X s a geodesic with 61(0) = 6(0), then o1(t) = o(t),
0<t<7/2
(3) of 02 : [0,7/2] = X is a geodesic with 62(0) = o(n/2), then o3(7) =
o(r+n/2),0<7<7/2.

Proof. By Lemma 2.4, there is a continuous family v, : [0,7] = X, —e < s < &,
such that
(1) vs(0) =z for all s € (—e,¢);
(i1) ~s(t) ¢ Vx for all s € (—e,e) and t € (0,7);
(iii) s — ns = 4s(0) is a unit speed curve which lies in an open edge of S; X and
satisfies d,(&,ns) > 7.

Since no ~vs passes through an essential vertex, the union U~v4(t) is isometric
to a spherical lune with angle 2¢. Fix ¢t € (0,7), t # =/2. Since essential edges
of X are geodesics, by elementary spherical geometry, an open subarc ¢ : [ —
X of the curve s — ~4(7m — t) is contained in a maximal face F' of X. Then ¢
is a smooth curve in F with constant speed and d(c(-),0(t)) = =. Hence any
minimal (of length 7) geodesic from ¢ to o(t) is perpendicular to ¢. By Lemma 2.2,
for every s there are exactly two minimal geodesics from ¢(s) to o(t) with initial

d
directions :I:d—%(T) . Therefore, their concatenation is a geodesic loop ay of
T T—t
length 27 at o(t), see Figure 3. By construction, as contains the union of ¢([0,¢])
and v,([0, ® — t]) as a subarc of length 7. We parameterize as by arclength so that

és(0) = —6(¢).By Lemma 2.3, a, is a closed geodesic. By Lemma 2.2, the balls of

9



0, (2m

FIGURE 3

radius 7/2 about é,(0) and —é,(27) cover the link S, X. It follows that S,;HX
is the graph with two vertices, ¢4(0) = —o(t) and —d&s(27), connected by edges of
length 7. In particular, —&4(27) = 6(¢). This concludes the proof. O

3.3 Lemma. Let v € X be a pole, ¢ € 5 X be a spreading direction and o :
[0,7/2] = X be a unit speed geodesic with ¢(0) = &. Then
(1) the link Sy(r/2yX is the bipartite graph T'(A, B) with

B={C: da(ﬂ/z)(—d(ﬂ'/Z),C) =7/2} and

A=AC: do(ny2)(B,() = 7/2} 5 —6(7/2);
(2) for any n € S X with dy(§,n) > m and any ( € A, ( # —6(w/2), there

is a unique continuation of o to a closed geodesic o : [0,2r] — X with
o(r/2) = ( and —&(27) = n; for any such continuation o(7) is a pole.

Proof. Many of the objects used in this argument are shown in Figure 4.
As in the previous proof, there is a continuous family ~5 : [0, 7] = X, —e < s < ¢,
such that
(1) ~vs(t) ¢ Vx for all s € (—e,¢) and t € (0,7);
(ii) s = ns = 4s(0) is a unit speed curve which lies in an open edge of S, X and
satisfies d,(&,ns) > 7.

Since no 7, passes through an essential vertex, the union U~vs(t) is isometric to a
spherical lune with angle 2¢.

10



FIGURE 4

The curve s — 7v,(7/2) is a unit speed geodesic in X, and hence an open subarc
¢ : I — X of this curve is either contained in a maximal face of X or is contained
in an essential edge of X. A neighborhood of ¢ consists of local faces fo, ..., fk,
kE > 1, adjacent to ¢ with, say, —4s(7/2) pointing into fy. The link S, X is the
graph with vertices +¢(s) and k + 1 edges €7 of length = connecting them and
representing the local faces f;, 0 < ¢ < k. The midpoints §] of these edges lie
at distance 7/2 from +¢é(s) with §§ = —45(7/2). Observe that the distance in X
from ¢(s) to z = o(n/2) is ® and, by elementary geometry, any minimal geodesic
from ¢ to z is perpendicular to ¢. Hence, by Lemma 2.2, there are precisely k + 1
minimal geodesics p? : [0, 7] — X from ¢(s) to z and their initial directions are 47,
0 <1 < k. By construction,

pT) = (m/2—7) 0<T </
po(r) =0
Hence the geodesics pj focus at xg := = and

Ao :={py(r):0< 7 <72, se€l}

is an isosceles spherical triangle. Now let 1 <1 < k. We apply Lemma 3.2 to n,
(instead of £) and to the concatenation 47 of 4° with p?|[0,7/2] (instead of ) and

11



conclude that Uy?(7) is a spherical lune, focusing at * = z¢ and at another point
z; € X with d(z,z;) = n. Hence

A= {pi(r):0<7<7/2, seT}
is an isosceles spherical triangle with apex z; = p?(7/2) and
pi(r)=pi(r), w/2<7<m srel

Let
& = p3(n/2) and 5} = —p3(n/2).

Then d;,(€:i,n7) > = since p? is a geodesic. Now s — n? is a simple unit speed curve
in S5, X and S;, X is a graph. Hence we have d,,(§;,n?) > =« for all s by passing to
a subinterval of I if necessary. In particular, z; is a pole.

Let (i = —pi(mw) € S.X be the direction pointing at z;, 0 < i < k. The union
p; Upi, i # j, is a geodesic loop at z of length 2w and hence, by Lemma 2.3, is a
closed geodesic through z. Therefore, the angle between (; and (j, ¢ # j, is #. Let
¢ € S;X be a direction such that d.((,(;) = n/2 for some ¢ € {0,...,k}. To finish
the proof of (1), we need to show that d.((,(;) = n/2 for every j € {0,....k}, 7 # 1.

For # € (0,7/2) small enough let b : [0,3) — X be a unit speed geodesic with
b(0) = z, b(()) = ( and such that b((0,3)) is either contained in a maximal face or
in an essential edge of X. Let o] be the minimal unit speed geodesic from z; to
b(r), 0 <r < (. Then o¥(7) = pi(x/2 + 7).

For a small enough 3 we have that d,,(5%(0),n{) > = for s in an open subinterval
J C I and r € [0,8). Hence the concatenation of pf|[0,7/2], s € J, with o] is a
geodesic.

By Lemma 3.2, applied to ¢%(0) (instead of ¢) and (any extension to [0, 7] of)
o(1), we conclude ci(7) ¢ Vx, 0 < 7 < 7/2. It follows that oi(x/s) = b(r),
r € [0,0).

The first part of the proof shows that for any j € {0,...,k} and any s € J, there
is a minimal geodesic (of length 7) from ¢(s) to b(r) through z; and these geodesics
are perpendicular to b. It follows that S,y X, r > 0, is the graph with vertices
:I:i)(r), connected by k 4+ 1 edges of length m whose midpoints are the directions
of minimal geodesics connecting b(r) to ¢(s), s € J, through z;, 0 < j < k. By
Lemma (angle lemma in prelim), d.((,(;) = 7/2. Therefore S.X = I'(A, B) with
A={¢:0<i<k}and B={(:d.((,A) =x/2}. This concludes the proof of (1)
and shows that (2) holds for an open and dense set of n’s satisfying d,({,n) > n. O
3.4 Corollary. Let v € X be a pole, £ € S, X be a spreading direction and o :
[0, 7] = X be a unit speed geodesic with 6(0) = &.

Then for 0 <t < 7 the link Sy X has diameter ™ and o(x) is a pole. [

For k£ > 2, a k-pod is a graph consisting of a central vertex, called the middle
point, and k edges of length /2 adjacent to it.

3.5 Corollary. Let z € X be a pole and suppose there is an open local edge (3
in S, X adjacent ton € S, X, such that all directions wn 3 are spreading. Suppose
vs 1 [0,7] = X, 0 < s <4 for some § > 0, is a continuous family of unit speed
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geodesics such that 40(0) = n, 4s(0) € B8 for s > 0 and such that s — 5(0) is a
unit speed curve i S, X.

Then L := U~,(t) is a spherical lune with angle §. For 0 < t < m there is a k-pod
II(t) C S,y X whose middle point £ is the direction of the curve s v ~4(t), the
directions pointing into L belong to II(t) and

(1) of t #7/2 thenk = 2; 1if t = 7 /2 then k us the number of local faces adjacent
to the geodesic segment s — vg(mw/2);
(2) IL(t) us the ball of radius 7 /2 centered at £, that is, no edge of Sy X \II(t)

is adjacent to a point in the interior of II(¢).

Proof. 1t is immediate from Lemmas 3.2 and 3.3 that L is a spherical lune of angle
0. Furthermore, it also follows that there is no essential edge of X passing through
the interior of L, except possibly through s — ~v,(7/2). O

3.6 Lemma. Let z,y € X be points with d(z,y) = 7 and let v : [0,7] = X be a
minimal geodesic from x to y.

Then there is ¢ > 0 such that for any £ € S, X with dz(£,%(0)) < ¢ we have the
alternative

(1) esther £ is tangent to a minimal geodesic from x to y,

(2) or else, there are t € (0,7), a unit speed geodesic o : [0,t] — X with
d(0) = &, an wsosceles spherical triangle A with apex at x and legs v([0,1])
and o([0,t]), and a nontrivial open arc o C Sy X adjacent to —3(t) such
that every direction n € o points into A and dy)(n,(t)) > 7.

o(t)

y(t)

FIGURE 5.

Proof. Objects relevant to Lemma 3.6 are shown in Figure 5. Choose § > 0 such
that (a) the d-neighborhood of ~ contains no essential vertices of X except for
those that belong to v, (b) the essential vertices on v lie at least § apart and (c)
each essential edge meeting v is either tangent to 4 or makes an angle > § with ~.
Choose ¢ € (0,6/2) so that Z,y(o(s),z) < & for every t € [4, 7 — §], every
geodesic o : [0,t] — X with 0(0) = z and d(o(t),v(t)) < € and every s <t —§/2.
Let £ € S, X satisfy dz(%(0),€) < € and let 7 < 7 be the maximum of all t < &
for which there is an isosceles spherical triangle Ay C X whose apex is at z and
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whose legs are v([0,¢]) and a unit speed geodesic o : [0,t] — X with ¢(0) = £. If
7 = 7 then A, is a spherical lune and ¢ is a minimal geodesic from z to y.

Suppose 7 < 7. Then we claim that Statement 2 of the lemma holds true for
t = 7, a geodesic o with ¢(0) = ¢ and the corresponding triangle A,. Clearly
7 > & > 0 since the ball of radius § at = is a spherical cone over S, X with apex
at x. By our assumption (a) on § and by the choice of €, the point z = ~(7) is an
essential vertex of X. Assume by contradiction that 2) does not hold. Then there
is an open local edge 3 € S,X tangent to A, and adjacent to —%(7) such that
there is a curve ¢ C S, X from —4(7) to 4(7) which has length 7 and contains (3.

Since A, is a spherical triangle, d(o(7),v(7)) < € by spherical geometry. There-
fore, by the triangle inequality, d(o(7 — §/2,~(7)) < d. By the choice of ¢ we have
Lyr(o(r = 46/2),z) < 4. Assumption (b) implies that the initial directions of the
geodesics from z to o(t), 0 <t < 7 —§/2, lie in the curve ¢ C S, X. We denote
the union of these geodesics by A”. By our assumption (a) on 4, the ball of radius
0 centered at z is a spherical cone over S, X with apex z. Hence ¢ represents a
spherical semidisc D centered at z so that D U A’ contains an isosceles spherical
triangle along v whose legs have length > 7. This is a contradiction. O

3.7 Lemma. Let x € X be a point whose link 1s not a bipartite graph and y € X
be a point with d(z,y) = w. Then

(1) for anyn € SyX there is a uniqgue minimal geodesic from y to x with initial
direction n;

(2) of not every direction in Sz X is tangent to a minimal geodesic from x to
y then Sy X s a circle of length 2w and S X 1s a semicirclex; the central
circle in S; X 1s the set of wnitial directions of geodesics of length m from x
to y.

Proof. Since X is a spherical polyhedron, any two unit speed geodesics o7 and o3 in
X with a common initial direction, coincide on an interval [0, ] with e > 0. Hence
the uniqueness follows from the assumption on the injectivity radius.

The set ® C 5, X of initial directions tangent to minimal geodesics from y to
z is closed and 7/2-dense (by Lemma 2.2). Hence @ intersects any connected
component of ;X and it suffices to prove that ® is open in S, X.

If @ is not open then, by Lemma 3.6, there exist a minimal geodesic v : [0, 7] = X
from y to z, a number ¢ € (0,7), and a local open edge a C S, X adjacent to
—4(t) such that d.(4(n,5(t)) > 7 for all n € a. We apply Lemmas 3.2 and 3.3 with
£ =4(t) and o(-) = (¢t + -) to conclude that S;X is a bipartite graph. This is a
contradiction. Hence @ is open and (1) follows.

To prove (2) observe that the set ¥ C S, X of initial directions of minimal
geodesics from z to y is a proper closed subset of S, X with the following properties:

(1) ¥ is m-convex in S, X and is isometric to Sy X;

(i1) dy(¢, ) < w/2 for any £ € S, X;

Property (i) follows from Corollary 2.6 and (1). Property (ii) follows from Lemma
2.2 since d(z,y) = 7 = diam X.
Let « be a local edge in S; X \ ¥ adjacent to £ € ¥ and let o : [0,7] — X be

a minimal geodesic from z to y with ¢(0) = £. By Lemma 2.4, we can choose a
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so small that geodesics of length 7 with initial directions in « never hit essential
vertices.

Observe that d,;(—o(t),o(t)) = 7 for all t € (0, 7) since otherwise 5, X would
be a bipartite graph by Lemmas 3.2 and 3.3, applied to —&(t). Since £ € ¥ but
a C Sy X \ ¥, Lemma 3.6 implies that there is ¢ € (0, 7) and an isosceles spherical
triangle A such that one of its legs is o([0,¢]), it is tangent to « at z and any
direction ¢ in the local edge 3 C S,(;X adjacent to —&(t) and tangent to A lies at
distance more than = from &(¢). In particular, o(t) is a pole. We apply Lemmas

3.2 and 3.3 to 6(t) and recall that ¥ = S, X to obtain

(iii) ¥ =T'(A, B) with |A| > 2 and |B| > 2.
By Lemmas 3.2 and 3.3 and since A is convex, there is a continuous family of unit
speed geodesics v, : [0, 7] = X, 0 < s < 4§ for some § > 0, such that

Yo(r)=0o(t—7), 0<7<t
’78(0)667 S>0

and « is tangent to Uys at . By Corollary 3.5, applied to —&(¢) and 3, this family
of geodesics gives rise to a k-pod II in S, X, k > 2, such that no edge of S, X \ II
is adjacent to the interior of II. Clearly II contains a. Note that ¢(0) is an end
point of II. If an interior point ¢ of II lies in ¥, then so does the arc a C II between
¢ and &(0) (because length (a) < = and because of (i)). But ¢ D «, which is a
contradiction. Hence no interior point of II belongs to .

On the other hand, any end point of II belongs to ¥. Assume, by contradic-
tion that there is an end point ( of II which does not belong to ¥. Then an
e-neighborhood of ( does not intersect ¥ and the point n € II lying between the
middle point v and ¢ with d,(n,v) = ¢/2 is > n/2 away from ¥. This contradicts
Lemma 2.2. Hence we get:

(iv) SzX is obtained by attaching k-pods (with k& > 2) by their end points to

=S5 X.
It follows that S;X is not a 1-dimensional thick spherical building with edges of
length n/k, k > 3. We will need one more property of S, X:

(v) dz(&,n) < m for any £ € ¥ and n € S, X; in particular, S; X and ¥ are
connected.

If (v) did not hold, ¢ would be a spreading direction and Corollary 3.4 would imply
that y is a pole in contradiction with (iii) and (1).

Suppose that & = I'(A, B) with |A|+|B| > 5. Because S, X has injectivity radius
7, the end points of a k-pod have to be attached to points with pairwise distances =
in ¥. Property (v) implies that if § € ¥ is an attaching point then all points ( € ¥
with d;(6,() = m are attaching points for the same k-pod. Assume WLOG that
|A| > 3. Let 8 € ¥ be an attaching point which is not a vertex of ¥ = I'(A, B) which
lies on the edge connecting a; € A to by € B and set dy(a1,0) = 7,0 < 7 < 7/2.
Let (; be the point on the edge connecting a; to by with d((;,a;) = 7,1 = 2,3, see
Figure 6. Clearly d,((;,6) = 7 and d;((2,(3) = #—27 < . This is a contradiction.
Hence any attaching point 8 € ¥ is a vertex and 5, X is a bipartite graph with edges
of length 7 /2. This contradicts the assumption on S, X. Hence |A| = |B| =2 and
¥ = S§,X is a circle of length 27.
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FIGURE 6.

Since the points at which a k-pod II is attached to ¥ must be 7 apart, we
conclude that £ = 2 and II is an edge of length =. By assumption, S, X is not a
bipartite graph and hence is a semicirclex. [

3.8 Corollary. If z,y € X are poles and d(x,y) = 7 then for any £ € S, X there
is @ unique minimal geodesic v with 4(0) = € and (7)) = y. In particular, the map
(0) = —A(7) is an isometry between the links S; X and Sy X. O

3.9 Proposition. Let x € X be a pole. Assume that any point at distance © from
x 18 a pole and that any point at distance ™ from such a point is also a pole.
Then X 1s a spherical join.

Proof. For £ € S;X and y € X with d(z,y) = 7 denote by Uéﬁ' : [0, 7] — X the
unique unit speed geodesic from x to y with initial velocity déﬁ'(O) = {. By Corollary
3.8, {— —dg(ﬂ') is an isometry S; X — S, X. Therefore, if £ € S; X is a spreading
direction, then, by Lemmas 3.2 and 3.3,

(i) for any y € X with d(z,y) = 7 and for any t € (0,7), t # n/2, the link
SpX, where p = Ug(t), is the graph with vertices &g (1), —&g(t) and edges
of length 7 connecting them:;

(ii) for any y € X with d(z,y) = = the link S, X, where p = 02(7/2), is the

graph I'(A, B) with
B={C: dy(~58(x/2),() = /2} and

A=1{C: dp(B.C) = 7/2} 5 —6¥(n/2).

Hence

(iii) for any z € X with d(z,z) = 7, z # y, the geodesics Uéﬁ' and of coincide on
[0,7/2], branch at time 7/2 and the union of o{([7/2, 7]) with o ([r/2, x])
is a geodesic of length 7 from y to z.
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In particular, we have that d(y, z) = 7 and that the set P, C X of points at distance
7 from x is finite. Since all points in P, are poles and all points at distance = from
them are poles, it also follows that for any y € P,, the set P, of points at distance
7 from y is P, U{z}\ {y}. Now let G C S, X be the subset of directions satisfying
(1), (ii) and (iii) for all y,z € P,. The proposition follows if G = S, X.

We know that all spreading directions belong to G. Hence G = 5, X if 5, X is
not connected. Since all spreading directions lie in G, it is not empty. Note that
Conditions (i) and (ii) describe explicitly the link, and hence a small neighborhood,
of Uéﬁ' (t). Therefore (i), (ii) and (iii) are satisfied in an open neighborhood of £ € G
and G is open. It remains to show that G is closed. To that end, let £ € S, X be
a point in the closure of G. Then the geodesics Jéﬁ', y € P, satisfy (iii). Since P,
is the set of all points at distance © from = and the injectivity radius of X is ,
any unit speed geodesic v of length = and with 4(0) = £ coincides with one of the
geodesics Uéﬁ'. In particular, if p = O'g(t), 0<t<m,t#r/2 thenn, = &g(t) is the
only point in S, X at distance > 7 from 7, = —&éi' (t). By symmetry, we can apply
the same argument to the pole y and obtain that 7, is the only point in 5, X at
distance > m from n,. Similarly, for t = 7/2 the set A = {n, € S, X | y € P,U{z}}
satisfies

dp(n, () =m forall n,( € A and dy(n,0) <7 forall ne Aand § € S, X \ A

Lemma 2.8 shows now that ¢ satisfies (i) and (ii). Hence G is closed and therefore

G=5.X. O
Proposition 3.9 and Lemma 3.7 imply the following corollary.

3.10 Corollary. Let X contain a pole x whose link S, X 1s not a semicirclez.
Then X 1s a spherical join. O

By Corollary 3.10 and Proposition 2.7, to prove Theorem 3.1 it is sufficient to
consider spaces X whose links belong to the following list:
(1) semicirclexes;
(2) bipartite graphs I'(A, B) (this includes unit circles and graphs consisting of
2 vertices and edges of length 7 connecting them);
(3) thick 1-dimensional spherical buildings with edges of length = /k, k& > 2.

From now and until the end of this section we assume that the links of points in
X are of types 1,2.3 only and that X has at least one pole.

Let + € X be a pole and recall that the links of types 2 and 3 have diameter
m. Hence the link 5,X is a semicirclex and it consists of its central circle ¢ and
semicircles of length 7 attached to ¢. Points in the interior of these semicircles
are spreading directions. If we start along such a spreading direction and go up to
distance 7 to a point y € X, then y is also a pole (Corollary 3.4). Each direction
at z is tangent to a geodesic of length 7 from z to y, and the map which sends
the direction to the incoming direction at y is an isometry S;X — S,X. The
union of the geodesics corresponding to the central circle in S, X is a unit sphere
S = S(z,y). By Lemma 2.5, S is 7-convex.

The end points of the semicircles are vertices of S, X. The geodesics of length =
from z starting in the direction of these vertices and ending at poles will be called
special geodesics. Special geodesics are (unions of ) essential edges.
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3.11 Lemma. Assume that the links of points in X are only of types 1,2,3. Let
z,y € X be poles at distance ™ from each other.
Then no point in S = S(x,y) has a link of type 5.

Proof. If o : [0,7] — X is a special geodesic from z to y, then the geodesics of
length 7 from x to y with initial direction in a semicircle C S; X adjacent to ¢(0)
give rise to a family as required in Corollary 3.5. In particular, S, X contains
edges of length > 7/2 and therefore is not of type 3 for 0 < ¢t < .

Assume that a point z € S does not lie on a special geodesic and that its link
is of type 3. Let b be a semicircle in S, X attached to the central circle. The ends
of b lie at distance 7 from each other in S, X and determine a great circle C' C S
which is the boundary of a hemisphere H; made of geodesics of length 7 from = to
y with initial velocity in b. The great circle C' divides S into two hemispheres, one
of which, call it H, contains z. The union H; U H; is a round sphere and contains,
in particular, a point ¢ at distance m from z. Now necessarily ¢ € Hy. By Lemma
3.7 and Corollary 2.6, the link 5,X is of type 3. On the other hand, ¢ lies on a
geodesic from z starting in a spreading direction. Hence the link has to be of type
2, a contradiction. O

3.12 Proposition. Assume that the links of points in X are only of types 1,2,5.
Let © € X be a pole whose link S, X 1s a semucircler. Suppose that there are at
least two poles in X at distance © from x.

Then X 1s a spherical join.

Proof. We will show that all points at distance 7 from z are poles lying at distance
7 from each other and will apply Proposition 3.9 to conclude that X is a spherical
join.

By assumption, the link of each pole is a semicirclex. Let y,z € X be two poles
at distance 7 from z. By Corollary 3.8, the links S, X and S.X are isometric to
S:X. Let £ € S;X be a spreading direction and let o,,0, : [0,7] — X be the
minimal geodesics from z to y,z with initial velocity {. By Lemmas 3.2 and 3.3, o,
and o, branch at 7/2 and o,([7/2,7]) Uo.([7/2,7]) is a geodesic of length 7 from
y to z. Hence

(1) d(y,z) = © for any two poles y, z at distance 7 from z.

The central circles ¢, ¢, and c. in the links of z, y and z give rise to the unit spheres
S(x,y),S(x,2),S(y,z) C X made of the unit speed geodesics v : [0, 7] = X from =
to y, x to z and y to z, respectively, whose initial velocities lie in the central circles
of the corresponding links. By Lemma 2.5, these spheres are m-convex. Hence
their pairwise intersections are also m-convex. The boundary of S(z,y) N S(z,z)
is exactly the set of points where the geodesics from x with initial velocities in ¢,
branch to y and z. The branching must occur not further than 7 /2 from x because
otherwise the union of the two continuations would be a curve of length < 7 from
y to z. Hence S(x,y) N S(z,z) is contained in the ball of radius 7/2 about z.

By Lemmas 3.2 and 3.3, the branching along geodesics, whose initial velocities
are spreading directions, occurs precisely at time 7/2. Recall that every point in
the interior of one of the semicircles in S, X attached to ¢, is a spreading direction.
By taking limits we conclude that every geodesic of length = from z whose initial
velocity is an end point of one of the attached semicircles, branches at time 7/2

18



to y and z. View z as the south pole of S(z,y) and S(z,z). Since the link S, X
contains at least two semicircles with different ends attached to c,, the intersection
S(z,y) N S(z,z) contains at least two different pairs of antipodal points on the
equator of S(z,y) and S(z, z). Since the intersection S(z,y) N S(z,z) is m-convex,
it is the southern hemisphere in S(z,y) and in S(z,z) (with 2 being the south
pole). We conclude that

(ii) for any two poles z,y at distance 7 from = all geodesics of length 7 from z
to y and z branch exactly at distance 7/2 from z. In particular, the equator
in S(z,y) is a union of essential edges.

Recall that geodesics of length 7 from x to y whose initial velocities are the ends
of one of the semicircles attached to ¢, are called special. Special geodesics are
(unions of) essential edges. If o : [0,7] — X is a special geodesic, it is the limit of
geodesics from z to y whose initial velocities are spreading directions. This excludes
type 3 as a possible link of X at o(¢), 0 < t < w. Consider the link of ¢(x/2). By
the above argument, each of the directions in S, (r/9)X pointing to z,y,z lies at
distance /2 from both the directions tangent to the equator of S(z,y) and the
directions perpendicular to S(z,y) and pointing into the lunes corresponding to
the semicircles in S; X attached to ¢, at 6(0). This excludes type 1 as a possible
link of (7 /2). Hence

(iii) for any special geodesic o : [0,7] — X from z, the link S,(;/)X is a

bipartite graph.

Assume that p € S(z,y) is not the midpoint of a special geodesic and that S, X
is a semicirclex. We claim that its central circle is tangent to S(z,y). Suppose
not. Then there is a semicircle s of spreading directions at p tangent to our central
sphere. If one of these directions points to x or y, we get a contradiction with
Lemmas 3.2 and 3.3. If not, the ends of s point to x and y. Recall that there are
at least 2 different distinguished great circles on S(z,y) made of special geodesics.
Hence a geodesic, whose initial velocity is an appropriate spreading direction in s ,
crosses one of the distinguished great circles at time 0 < ¢ < &, t # 7/2, since p is
not the midpoint of a special geodesic. This contradicts Lemma 3.2 because special
geodesics are unions of essential edges. Hence

(iv) if y is a pole at distance 7 to z and the link of p € S(z,y) isa semicirclex,
then the central circle of S,X is tangent to S(z,y).

It follows that the union of essential edges of X in S(z,y) consists of great circles.
Now suppose that there is a great circle C' in S(z,y) which consists of essential
edges, does not pass through z and is not the equator. Then C intersects the
equator at a point ¢ with an angle different from 0 and /2. Hence S, X is not of
type 2. If it is of type 1 then its central circle represents S = S(z,y) and S(z, z)
which is impossible. Type 3 cannot occur by Lemma 3.11. Therefore,

(v) for any pole y at distance = from = the essential edges of X in S(z,y) are
the equator and the special geodesics from = to y.

Now suppose there is a point p at distance 7 from = which is not a pole. By
Lemma 3.7, the link S5, X is a unit circle and the set of initial directions of the
geodesics of length 7 from = to p is precisely the central circle ¢, of S; X. Moreover,
by (v), these geodesics branch off exactly at time /2 from the geodesics from z to
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any other pole at distance 7 from z. It follows that p lies at distance 7 from these
poles too. More precisely, if o : [0, 7] — X is a geodesic from z to any other pole
and 6(0) € ¢z, then

(vi) d(p,o(t)) = /2 + [t — 7/2],

Let s be a semicircle in 5, X attached to c;, let { be its midpoint and o¢ :
[0,7/2] = X be the unit speed geodesic with initial velocity £&. We want to show
that the distance from p to ¢ = o¢(7/2) is 7.

Since the directions of s are spreading, Lemmas 3.2 and 3.3 imply that the union
D of all geodesics of length 7 from x with initial velocity in s consists of hemispheres
that branch along a common half equator consisting of points at distance /2 from
x. The boundary 0D of D consists of special geodesics from = to other poles. It
follows from Lemmas 3.2 and 3.3 that any curve from a point in X outside of D
to a point inside D has to intersect 0D. Since g lies at distance 7/2 from any
point on 0D, we conclude that d(p,q) = m and that a minimal geodesic from p to
q has to pass through the midpoint m of a special geodesic (see (vi)). This leads
to a contradiction since the link at m is a bipartite graph. On the one hand, the
outgoing direction ¢ at m of the unit speed geodesic v : [0, 7] — X from z to p lies
at distance 7 from its incoming direction 1. On the other hand, since

d(p,q) = d(p,m) + d(m, q),

¢ must also lie at distance 7 from the direction 6 at m pointing to q. Now n is a
vertex of the bipartite graph S,, X and (by the choice of ¢q) d;,(n,6) = /2. This
contradicts dp, (1, () = 7, and hence

(vii) all points at distance 7 from z are poles.

By (i), if y is any pole with d(z,y) = 7 then there are at least two poles z,z at
distance 7 from y. Hence, by (vii), all points at distance = from y are poles. Now
Proposition 3.9 implies that X is a spherical join. O

To finish the proof of Theorem 3.1 it remains to consider the following case.

3.13 Proposition. Suppose that X has poles, the link of each pole is a semicirclex
and for any pole x € X there is exactly one pole in X at distance © from x.

Then either X has at least four poles and is a hemispherex or X s a spherical
join obtained from the unit sphere by attaching hemispheres passing through the
north and south poles; in the latter case X has exactly two poles — the north and
south poles.

Proof. Fix a pole x € X and let y be the pole at distance = from x. Let S be the
unit sphere consisting of all geodesics of length 7 from z to y with initial velocity
in the central circle of S;X.

Assume that the link of z € S is a semicirclex. Then z is a pole. We claim that
its central circle must be tangent to S. This is so for z = x or y. Suppose the
claim does not hold at z € S\ {z,y}. Then there is a semicircle s of spreading
directions at z tangent to S. None of the spreading directions can point to z or
y since this would contradict Lemmas 3.2 and 3.3. Hence, the ends of s point to
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x and y. Since 5, X is a semicirclex, here are at least two different great circles
on S which are unions of special geodesics consisting of essential edges. Hence a
geodesic from z with an appropriate spreading direction crosses an essential edge
at time 0 < ¢t < . This implies that there are at least two poles at distance 7 from
the pole z which contradicts our assumption. Therefore, the central circle at z 1is
tangent to S. Hence, by the structure of possible links, the set of essential edges of
X in S is a union of great circles. Moreover,

(¥) if ¢ C S is a great circle consisting of essential edges, p € g and o C SpX
is a local edge which is adjacent to one of the two directions of ¢ and is not
tangent to S then there is a spherical strip attached to S along the whole
length of g which passes through p and is tangent to a.

By assumption, any pole has only one pole at distance 7w from it. Hence, the
geodesics in spreading directions cannot branch at time /2 and the hemispheres
in the direction of the semicircles in the semicirclex links of S are maximal faces
since the links of their interior points are unit circles. Thus, it suffices to show that
points in S cannot have links isometric to a type 2 link I'(A, B), where |A|, |B| > 2
(recall that, by Lemma 3.11, points in S do not have links of type 3).

Suppose that z € S be a point with such a link. Assume first that z = o(¢)
for some special geodesic o : [0,7] — S from = to y, where 0 < t < 7. Since
special geodesics are unions of essential edges, o(t) and —&(t) are vertices of S, X.

Therefore, S, X =T'(A, B) with

B ={¢ : d.(£,6(t)) = 7/2},
A={n:d.((,B)=mn/2} 5 +6(t)

and |A| > 2 by our assumption. Since o is a special geodesic, there is a local
edge o € S, X adjacent to 6(0) such that o consists of spreading directions. By
(%), there is a spherical strip f adjacent to o([0,¢]) such that « is tangent to f at
z. Hence for every £ € S, X with d.(—6(¢),£) = 7, there is a continuous family
vs : [0,7] = X, 0 < s <6 for some § > 0, such that

Yo(r)=o(r), 0<7<t
Ao(t) =€ and 44(0) € o for s> 0.

Any such family ~, has a common end point and such an end point is a pole. Since
|A| > 2, there are at least two choices for the end point of 4, s > 0. But these
end points are poles, contradicting our assumption that there is only one pole at
distance 7 from z.

Suppose now that z € S is a point whose link is of type I'( A, B) with |A|, |B| > 2
and that z does not lie on a special geodesic from z to y. In a bipartite graph, a point
at distance 7 from a vertex is also a vertex. Hence for an essential edge adjacent
to z, its geodesic continuation through z is also essential. Since there are at least
two different great circles in S consisting of special geodesics, there is an essential
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edge e through z tangent to S such that the unit speed geodesic p in S starting
from z in the direction of e crosses a special geodesic o at a time 0 < ¢t < 7/2. Set
p(t) = p. By the previous paragraph, S, X is not a bipartite graph, and hence is
a semicirclex (see Lemma 3.11). By (%), there is a spherical strip along p and not
tangent to S. Hence the incoming direction —p(t) at p satisfies the assumption of
Corollary 3.5. Since t < /2, it follows that S, X contains a simple arc of length
7 such that none of its interior points is a vertex. This contradicts the assumption

that [A|,|B| > 2. O

This completes the proof of Theorem 3.1.
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4. DIMENSIONALLY NON-HOMOGENEOUS POLYHEDRA.

In this section we discuss spherical polyhedra that contain edges not adjacent to
any face.

4.1 Theorem. Let X be a geodesically complete compact 2-dimensional spherical
polyhedron of diameter and injectivity radius w. Assume that X contains an edge
that 1s not adjacent to any face.

Then X 1s a spherical join whose equator has isolated points.

A k-pod i X consists of k closed edges ey, ..., e of length 7/2 with a common
point m, called the middle point of the k-pod, such that B(m,n/2) =e; U...U €.
A 2-pod is an edge of length 7 not adjacent to any face in X. For & > 3, the middle
point is an essential vertex of X.

The following lemma replaces lemmas 3.2 and 3.3. For the convenience of the
reader we repeat in the proof some of the arguments from those lemmas.

4.2 Lemma. Under the assumptions of Theorem 4.1, X contains a k-pod with
E>2.

Proof. Since X is 2-dimensional, there is a point € X adjacent to a face f and
an edge e such that e is not adjacent to any face of X. Let o : [0, 7] = X be a unit
speed geodesic with ¢(0) = 2 which starts along e.

Since ¢ = 6(0) is an isolated point of S;X, its distance from any direction
pointing inside f is infinite. By Lemma 2.4, there is a continuous family ~, :
[0,7] = X, —e < s < e, such that

(1) 75(0) =z for all s € (—e,¢);
(i1) ~s(t) ¢ Vx for all s € (—e,e) and t € (0,7);
(iii) s — ns = 45(0) is a unit speed curve which lies in an open edge of S, X and
satisfies d(£,ns) = oo.

Since no 7, passes through an essential vertex, the union U~vs(t) is isometric to a
spherical lune with angle 2¢.

Fix t € (0,7), t # m/2. Since essential edges of X are geodesics, by elementary
spherical geometry, an open subarc ¢ : I — X of the curve s — ~4(7 —t) is con-
tained in a maximal face F' of X. Then ¢ is a smooth curve in F with constant
speed and d(c(-),o(t)) = 7. Hence any minimal (of length 7) geodesic from ¢ to
o(t) is perpendicular to ¢. By Lemma 2.2, for every s there are exactly two minimal
geodesics from ¢(s) to o(t) with initial directions :I:E%(T) . Therefore, their

T—t
concatenation is a geodesic loop ay of length 27 at o(t). By construction, a, con-
tains the union of ([0, ¢]) and vs([0, 7—t]) as a subarc of length . We parameterize
as by arclength so that &s(0) = —(¢). By Lemma 2.3, a, is a closed geodesic. By
Lemma 2.2, the balls of radius 7/2 about é,(0) and —é,(27) cover the link S, X.
It follows that S, X is the graph with two vertices, ¢,(0) = —&(t) and —a,(27),
connected by edges of length #. In particular, —ds(27) = &(¢). Hence

(iv) for t € (0,7/2) or t € (n/2,7), the link S, is the graph with vertices
{6(t),—0&(t)} connected by I # 1 edges of length =.
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If t > 0 is small then o(t) € e and S,(nX = {(t), =6 (t)}. The set of such ¢ is

open; by (iv), it is closed in (0, 7/2). Therefore
(v) SeyX = {o(t),—c(t)} for all t € (0,7/2); in particular, —¢(7/2) is an
isolated point in Sy /9)X.

We now consider the case t = 7/2. The curve s — ~5(7/2) is a unit speed
geodesic in X, and hence an open subarc ¢ : I — X of this curve is either contained
in a maximal face of X or is contained in an essential edge of X. A neighborhood of
¢ consists of local faces fi,..., fr, & > 2, adjacent to ¢ with, say, —%,(7/2) pointing
into fi. The link S, X is the graph with vertices +¢(s) and k edges ¢} of length
7 connecting them and representing the local faces f;, 1 < ¢ < k. The midpoints
§? of these edges lie at distance 7/2 from +¢(s) with 67 = —5,(7/2). Observe that
the distance in X from ¢(s) to m = o(7/2) is m and, by elementary geometry, any
minimal geodesic from ¢ to m is perpendicular to ¢. Hence, by Lemma 2.2, there
are precisely k minimal geodesics from ¢(s) to m and their initial directions are 67,
1<i<k

Assume that the link S, X contains a non-trivial arc. Since —d(7/2) is an
isolated point in S, X, there is a continuous family of geodesics o, : [0, 7/24¢] — X
extending o|[0, 7/2] such that r + &,(7/2) is a unit speed curve in S, X and such
that bs(r) := o,(7/2 + 6) is in an open face for all r and all § € (0,¢). Applying
Lemma 2.2 as above, we get a family of geodesics pj§ of length 7 from bs(r) to
vs(m/2 — §), where s is fixed, and such that p5(0) = 6,(x/2 + §). By passing
to the limit as § — 0, we get for every r a minimal geodesic from m to ¢(s) with
initial direction (7 /2). This contradicts the fact that there are only finitely many
minimal geodesics from m to ¢(s). Hence

(Vi) So(m/2)X is a finite set.

It follows that for ¢t > 7 /2 and sufficiently close to 7/2 the point o(¢) lies in an
edge of X not adjacent to any face. For such ¢ the link at o(¢) is {—0d(¢),0(¢)}.
The set of such ¢ is clearly open; by (iv), it is closed in (7/2,7). Hence S,;HX =
{=0o(t),c(t)} for all t € (0,7), t # /2. The same holds true for any continuation
of 0|[0,7/2] beyond m. Hence the ball of radius 7/2 about m is a k-pod for some
k>2. 0O

Proof of Theorem 4.1. By Lemma 4.2, X contains a k-pod P with k& > 2. Denote
its middle point by m, its legs by ey, ..., ex and the end points by z1,...,x;. Let
& € S5, X be the direction of e;. Clearly &; is an isolated point in S;,X. Fix
i €41,2,...,k}. Let v :[0,7/2] = X be a unit speed geodesic such that v(0) = z;
and 4(0) # &;. Since dy,(&i,7(0)) = oo, the union e; U~ is a geodesic in X and so
is e; U e; U~y for 7 # 1.

Fix t € (0,7/2) and set z = ~(¢). Choose j # ¢ and let y be the point on
e; at distance 7/2 — ¢ to m. Then d(z,y) = 7 = diamX. Since the distance
function d(z,-) decreases in both directions from y, there are exactly two geodesics
of length 7 from y to z. By Lemma 2.2 applied to d(y,-), the balls of radius /2
in 5. X about the incoming directions of these two geodesics cover S.X. One of
the incoming directions is —(t). It follows that S, X consists of two points ++(¢)
connected by [ # 1 edges of length .

It follows that each ball B(z;,7/2) C X is the spherical cone with center z; and
equator {z € X :d(z,z;) = n/2} =2 S;,X. It remains to show that d(z,z;) = =/2
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for any z € X with d(z,z;) = 7/2, j # 1. For z = m this is clear. For z # m
we have d(z,m) = m = diam X. Since the distance function d(z,-) decreases in all
k directions from m, there are exactly k different geodesics of length 7= from m to

z which go along e, ..., ex. Obviously these geodesics pass through z1, ..., zx, and
hence d(z,zj) = w/2 for all j. O
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5. CHARACTERIZATION OF SPHERICAL BUILDINGS.
In this section we prove the following theorem.

5.1 Theorem. Let X be a geodesically complete compact 2-dimensional spherical
polyhedron of diameter and injectivity radius w. Assume that all links of X have
diameter 7.

Then either X 1s a spherical join over a graph of injectivity radius and diameter
7 or else X s a thick spherical building of type As or Bs.

5.2 Lemma. Under the assumptions of Theorem 5.1 suppose that v,y € X satisfy
d(z,y) = =.

Then for every £ € S, X, there 1s a unique geodesic of length m from x to y with
wnatial velocity €.

Proof. Let @ be the set of initial directions of geodesics of length 7 from z to y.
Then @ is closed and not empty. By Lemma 3.6, ® is open. Since 5, X is connected,
¢=5,X. O

Proof of Theorem 5.1. If X is not a sphere, then X contains an essential edge. If
X does not contain essential vertices, essential edges cannot branch and have to
be closed geodesics of length 27 by Lemma 5.2. The Gauf-Bonnet formula implies
that maximal faces are hemispheres and that X is a spherical join over a graph
I'(A, B).

Suppose now that X contains essential vertices and edges. For any essential
vertex z in X, all (maximal) edges in S, X have the same length 7/n, where
n = n(z) > 2 (see Proposition 2.7). We claim that every maximal face of X
is either a spherical triangle or a spherical lune whose sides in both cases are
(by definition) essential edges and whose vertices are essential vertices of X. If

x1,...,2T are the vertices on the boundary of a maximal face F' with interior
angles m/n(z1),... ,7/n(xr) then, by the GauBl-Bonnet formula,
s iy s
k—2y(F 7T—|—/IX’: + ...+ <k-—.
( )&( )) » TL(”L'l) TL(.TL‘k) = 9

Because F is a compact surface with boundary, y(F) < 1. Since K =1, F is a
topological disc and k& < 4. The sum of the interior angles in a spherical triangle is
> 7 . Hence we have the following possibilities for the interior angles of F'if k = 3:

, where m > 2

iy
m
s
, —, where m =3,4,5.

m
If £ = 2 then F is a spherical lune, the angles at its vertices are equal to each other
and equal to 7/n for some n > 2.

If all maximal faces of X are spherical lunes then X is obviously a spherical join
over the set of vertices of these lunes.

Suppose X contains a maximal face F' which is a spherical triangle. Let e be a
side of F and let z,y be the vertices adjacent to e. The length |e| of e is < 7, and
the isometry type of F'is determined by |e| and the angles of F at x and y. If F’ is

26



any other maximal face adjacent to e then it shares a common side with F' and its
angles at x and y are equal to the corresponding angles of F' (see Proposition 2.7).
Therefore F' is isometric to F. It can actually be obtained by reflecting F' with
respect to e. Each of the types of triangles listed above is a simplex in a spherical
Coxeter complex. It follows easily that X is a thick spherical building. In the case

T T T
5757%7 m227

we see that X is a spherical join over the vertices with angles 7/m. In the case

b m:374757

3=

T
273’

X is a thick spherical building of type As, B3 and Hj, respectively. This completes
the proof since there are no thick spherical buildings of type Hs (see [Ti, p.275]). O
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