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ABSTRACT. A Euclidean polyhedron (a simplicial complex whose
simplices are Euclidean) of nonpositive curvature (in the sense of
Alexandrov) has rank > 2 if every finite geodesic segment is a side
of a flat rectangle. We prove that if a three-dimensional, geodesi-
cally complete, simply connected Euclidean polyhedron X of rank
> 2 and of nonpositive curvature admits a cocompact and properly
discontinuous group of isometries, then X is either a Riemannian
product or a thick Euclidean building of type A3 or Bs.
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1. INTRODUCTION

Let X be a simply connected, complete, geodesic space of nonpositive
curvature in the sense of Alexandrov [Bal95]; in other words, X is a
Hadamard space. Assume that X admits a properly discontinuous and
cocompact group I' of isometries. If X is a Riemannian manifold and
every geodesic in X bounds a flat strip, then X is either a Riemannian
product or a symmetric space of higher rank, see [Bal95]. In the general
case we also expect that X belongs to a relatively short list of model
spaces if there is “enough” zero curvature in X.

Similarly to Riemannian manifolds it is natural to introduce a notion
of rank for X and establish rank rigidity by giving a complete classifi-
cation of spaces of rank > 2. There are several ways of defining that
X has rank > 2:

- every geodesic belongs to a flat plane;

- every geodesic bounds a flat half plane;

- every geodesic is a side of a flat strip;

- every finite geodesic segment is a side of a flat rectangle.
Obviously the further down the list the weaker the notion. In the
Riemannian case all four notions are equivalent. In this paper we use
the last property and say that X has rank > 2 if every finite geodesic
segment is a side of a flat rectangle, otherwise we say that X has rank
1. In [BB95] we proved that if X is a two-dimensional, geodesically
complete polyhedron with a piecewise smooth metric of nonpositive
curvature, then either X has rank 1 and contains a I'-closed hyperbolic
geodesic or X has rank 2 and is either a product of two trees or a thick
Euclidean building of type A, By or Gy (the notion of rank 1 that
we use here differs slightly from the notion of rank 1 in [BB95]). The
following theorem is the main result of this paper.

1.1. THEOREM. Let X be a three-dimensional, geodesically com-
plete, simply connected Euclidean polyhedron of nonpositive curvature
admitting a properly discontinuous and cocompact group of isometries.
If X has rank > 2, then X is either a Riemannian product or a thick
Fuclidean building of type Az or Bs.

The regularity assumption of geodesic completeness implies that X
has no boundary. The following result shows that the cocompactness
assumption in Theorem 1.1 is necessary.

1.2. THEOREM. There exists a three-dimensional, geodesically com-
plete, simply connected Euclidean polyhedron of nonpositive curvature
in which every geodesic lies in a flat plane but which is not a product
or a thick Euclidean building.



If X has rank > 2, the links in X are two-dimensional spherical
polyhedra of diameter and injectivity radius . By [BB98], there are
three types of such polyhedra: (possibly reducible) spherical buildings,
spherical joins with equator of diameter > 7 and hemispherexes (the
precise definitions are given in Section 2). In Section 3 we show that
if one link in X is a hemispherex, then X has rank 1. In Section 4 we
show that if one link in X is a spherical join with equator of diameter
> 7, then X is a product of a tree and a two-dimensional Euclidean
polyhedron.

B.Kleiner (1993, unpublished) and A.Lytchak [Lyt98] proved that if
all links of X are spherical buildings, then X is a Euclidean building.
Together with our results from Sections 3 and 4 this implies Theo-
rem 1.1 since three-dimensional, thick, irreducible Euclidean buildings
are of type As or Bj.

2. PRELIMINARIES

A topological space is called a polyhedron if it admits a triangula-
tion. A polyhedron with a length metric is called Euclidean (respec-
tively, spherical) if it admits a triangulation into Euclidean (respec-
tively, spherical) simplices. Here a Euclidean (respectively, spherical)
k-simplex is a k-simplex A such that A with the induced length met-
ric is isometric to the intersection of k£ + 1 closed half spaces in RF
(respectively, closed hemispheres in S*) in general position.

Let (X, d) be a locally finite Euclidean polyhedron, x € X and let A
be a closed k-simplex containing z. View A as a subset of R¥ and set
Sz A to be the set of unit tangent vectors £ at x such that a nontrivial
line segment with initial direction £ is contained in A. If B C A is
another closed simplex containing x, then naturally S, B C S;A. We
define the link S, X of X at z by

SeX =S4,
Adzx

where the union is taken over all closed simplices containing x. If
the maximal dimension of a simplex adjacent to x is n then S, X has
dimension n — 1. Angles in S, A induce a natural length metric d, on
S;X which turns it into a spherical polyhedron. For &, € S, X define

Z(f, 77) = min(dw(€7 77)? 7r) :

For every x € X there is a neighborhood U of x with polar coordinates
(&,8), £ € S X, 0< s <4, centered at x and such that

d*((&,5), (n,1)) = 8* +* — 2st cos £(€,m) .



In other words, the d-neighborhood of z in X is isometric to the Fu-
clidean cone of radius ¢ over S, X, where = corresponds to the apex
of the cone. Similar definitions and constructions apply to spherical
polyhedra.

A curve v : I — X is a geodesic if it has constant speed and is locally
distance minimizing. It it easy to show that a curve v : [a,0] — X
with constant speed is a geodesic if and only if there is a subdivision
a=1y <t <..<t, =>bsuch that

1. v([tj_1,¢5]) is contained in a closed simplex A; C X and v :
[tj—1,t;] = A; is a standard geodesic segment in A;, 1 < j < m;
2. Z(=9(t;), ¥(t;)) =m, 1 <j <m—1.

We refer to —4(t) and #(t) as the incoming and outgoing directions of
7 in the link S, X. For geodesics v and o with v(s) = o(t) =: = we
set

Za(7,0) = £(7(s),6(1)) -

We say that X is geodesically complete if every geodesic v : I — X
can be extended to a geodesic v : R — X. If X is complete as a metric
space, then X is geodesically complete if and only if for every z € X and
every £ € S; X there is n € S, X with d (&,n) > 7. If X is geodesically
complete then it has no boundary simplices, that is, simplices which
are adjacent to exactly one simplex of a higher dimension.

The wnjectivity radius inj Z of a geodesic space Z is the supremum
of the set of » > 0 such that any geodesic segment of length < r is the
unique minimal connection between its ends.

Since locally our Euclidean polyhedron X is a Euclidean cone over
the link, it has nonpositive curvature iff the injectivity radius of S, X
is > m for all z € X. Assume that the rank of X is > 2, let x € X
and let &, 1 be two directions in S, X which lie at distance > 7. There
is a geodesic segment passing through x with incoming direction £ and
outgoing direction 7. Since this geodesic segment bounds a flat strip,
there is a semicircle (of length 7) connecting & to n. Therefore S, X
has diameter 7. Since X is geodesically complete and is locally isomet-
ric to a Euclidean cone over S, X, the space S, X is also geodesically
complete. Hence for dim X = 3 the link Y = 5, X is a geodesically
complete compact 2-dimensional spherical polyhedron of diameter and
injectivity radius 7. Here are examples of geodesically complete com-
pact spherical polyhedra of diameter and injectivity radius .

Spherical building. If Y is a spherical building then Y carries a nat-
ural metric for which the apartments are unit spheres. For this metric
the diameter and injectivity radius of Y are w. If X is a Euclidean



building of dimension n > 2 with the natural metric, then every geo-
desic in X is contained in an isometrically embedded convex Euclidean
n-space. The link of a vertex in X is a spherical building of dimension
n — 1 which has injectivity radius and diameter 7. An n-dimensional
building Z is called thick if every (n — 1)-simplex of Z is adjacent to
at least three n-simplices. See [Bro96.

Spherical join. Let X; be a Euclidean polyhedron, z; € X, and
Y, = S;,X;, © = 1,2. Then the spherical join Y7 * Y is the link of
(z1,22) € X7 x Xy with angular distance. Clearly Y; x Y, is a spherical
polyhedron of dimension dimY; + dimY5 4+ 1 and naturally contains
Y; and Y5 as subpolyhedra. If X; and X, are geodesically complete
and of nonpositive curvature then X; x X, has rank > 2 and Y] Y5 is
geodesically complete and has injectivity radius and diameter 7.

If dim X; = 1, then Y] is a finite set and Y; * Y5 admits the following
simple description which is sufficient for this paper. For each p € Y;
the spherical cone C, over Y, with pole p is the product Y5 x [0, 7/2] in
which Y5 x {0} is identified with p. The distance d in Y; % Y5 is given
by

cosd((y, s), (2,t)) = cos scost + sin s sin ¢ cos min{r, dy(y, 2) },

where ds is the distance in Y5. The spherical join Y; x Y5 is the disjoint
union of the spherical cones C,, p € Y1, identified along the equators
Yo x {m/2}.

Hemispherex. A spherical polyhedron is called a hemispherex if it
is obtained from the unit sphere by attaching unit hemispheres along
great hyperspheres so that no pair of antipodal points on the sphere be-
longs to all hyperspheres. In particular, at least three hemispheres must
be attached to the unit sphere to create a hemispherex of dimension
greater than 1. A 1-dimensional hemispherex is called a semicirclex. It
is not difficult to see that the injectivity radius of a hemispherex is 7,
the diameter of a semicirclex is > 7 and the diameter of a hemispherex
of dimension > 2 is 7, see Figure 1.

We refer to the initial sphere (circle) of a hemispherex (semicirclex)
X as the central sphere (circle) of X. The central circle of a semicirclex
is distinguished as the set of points x for which the maximum of the
distance function from z is 7. For all other points it is > #. In
dimension n > 1, each essential vertex x of a hemispherex X lies on the
central sphere S, the link S; X is an (n — 1)-dimensional hemispherex,
and S is distinguished recursively by the property that S is tangent to
the central sphere of S, X.



FI1GURE 1. The simplest semicirclex and hemispherex.

2.1. THEOREM. [BB98| Let X be a geodesically complete, compact,
2-dimensional spherical polyhedron of diameter and injectivity radius .
Then X s either

- a thick spherical building of type As or Bs, or

- a spherical join of a finite set with a metric graph of injectivity
radius > m, or

- a hemispherez.

The Euclidean cone C(H) over a hemispherex H of dimension > 2
is a complete simply connected Euclidean polyhedron of nonpositive
curvature and rank > 2. This is the only known to us example of a
higher rank space of nonpositive curvature which is not a Euclidean
building, a symmetric space or a product. Obviously, every isome-
try of C(H) must fix the cone point and hence is of finite order. In
particular, C(H) does not admit compact factors. This explains the
necessity of the cocompactness assumption in the main theorem and
proves Theorem 1.2.

Let Y be a Hadamard space. Classes of asymptotic geodesic rays
in Y form the space Y (0c0) of points at oo and the compactification
Y = Y UY(00) has a natural [-invariant topology. A closed, convex
subset Z C Y is geodesically complete if every geodesic segment in
Z can be extended to a complete geodesic in Z. Closed, convex and
geodesically complete subsets Z;, and Zy are parallel if Z,(0c0) = Zy(00).

2.2. PROPOSITION. Let Y be a Hadamard space and Z C Y be
a closed, conver and geodesically complete subset. Let Y, be the set
of points y € Y for which there is a closed, conver and geodesically
complete subset Z(y) parallel to Z and containing y. Then Yy is closed
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and conver and is isometric to C X Z, where C C Yz is closed and
CONVEL.

Proof. Step 1. Let Zy and Z; be parallel. Denote by P; be the (nearest
point) projection to Z;, ¢ = 0,1, and let f(-) = d(-,Z1). Then f
is convex and continuous. Let z,z’ be distinct points in Z; and let
0o : R — Zj be a complete geodesic through z and z'. Then o(+00) €
Zy(o0) = Zy(o0) and hence f is bounded on oy. Since f is convex, it
is constant on oy. Since x and z' were arbitrary, f is constant on Zj.
It also follows that o; = Pyoy is a geodesic in Z; which is parallel to
0o and that the convex hull of Z; and Z; is isometric to the product
[0,a] x Zy, where a = d(Zy, Z1). In particular PyP; is the identity on
Zy and Py and P, preserve distances on Z; and Z;, respectively.

Step 2. Let Z, be parallel to Z; (and Z). Denote by P, the (nearest
point) projection to Z,. Let x € Zy and y = PyPyPyx € Zy. Suppose
y # = and let p : [0,00) — Z; be a geodesic ray through y starting
from x. If b is the Busemann function associated to p, then b(xz) = 0
and b(y) < 0. By Step 1, po = Pyp is the geodesic ray in Z, starting
from P,r which is asymptotic to p, and p and py are parallel. Hence
the Busemann function b, associated to ps coincides with b. Similarly,
if b; is the Busemann function associated to the geodesic ray p; =
Py ps = P, Pyp starting from P, P,z and asymptotic to p, (and p), then
by = by = b. Finally, if by is the Busemann function associated to the
geodesic ray pg = Pyp1 = PyP,Pyp starting from y = PyP; P,x and
asymptotic to p; (and p), then by = by = by = b. Since y = p(t) for
some ¢t > 0, we have that py(s) = p(t + s) for all s > 0 and hence
by = b+t which is a contradiction. Therefore x = y and Py P, P; is the
identity on Z;.

Step 3. Let Pz be the projection to Z. For y € Yz, let P, denote the
(nearest point) projection to Z(y). Fix 2y € Z and set C' = Uyey, Py20.
By Step 2, the geodesic segment between any two points ci,co € C
projects to zy under Pz, and hence C' is convex. Clearly C is closed.
Denote by P the projection to C. Let y; € Y, and let a; = d(Z(y;), Z),
i =1,2. Then, by Step 1, the convex hull of Z(y;) and Z is isometric to
0, a;]x Z, and Poy; = Py,z0 € Z(yi), 1 = 1,2. Similarly, the convex hull
of Z(y1) and Z(ys9) is isometric to [0,a] x Z, where a = d(Z (1), Z(y2))-
Therefore and by Step 1 and Step 2,

& (y1,y2) = d*(Powyr, Poys) + d*(y1, Py, yo)
= d*(Poy1, Poye) + d*(Pgy1, Pz Py 1)
= d*(Pcyr, Peys) + d*(Pzyr, Pzys) -



3. THE CASE OF A HEMISPHEREX

Let X be a three-dimensional, geodesically complete and simply
connected Euclidean polyhedron of nonpositive curvature admitting
a properly discontinuous and cocompact group I' of isometries. In this
section we show that X has rank one if there is a point z € X whose
link is a hemispherex.

3.1. PROPOSITION. Let x € X and suppose that S, X is a hemi-
spherex. Then there exists an isometry ¢ € I' such that the unit speed
geodesic segment o : [0,1] — X from x to px can be extended to a geo-
desic segment & : [—¢,l + €] — X that is not a side of a flat rectangle.

The proof of Proposition 3.1 uses the geodesic flow g* on X and the
g'-invariant Liouville measure p constructed in [BB95]. Denote by GX
the set of unit speed geodesics o : R — X endowed with the compact-
open topology. The geodesic flow g* acts on GX by ¢*(0)(s) = o(s+1).

We say that a unit speed geodesic o : I — X is reqular if o does not
meet the 1-skeleton X (I of X. The Liouvile measure y is concentrated
on the set GrX of complete regular geodesics and is positive on open
subsets of GrX.

A geodesic 0 : R — X is called I'-recurrent if there are sequences

tn — oo and ¢, € I' such that ¢, 'g" (0) = 0.

3.2. LEMMA. ([BB95], Section 3) For any regular geodesic segment
o : [a,b] = X, there are complete, T'-recurrent, reqular geodesics oy,
such that o,|[a,b] — o. O

3.3. LEMMA. Lety € X, {,n € S,X and suppose that there is a
sequence of complete reqular geodesics o, such that o,|[—9, 6] converges
to a geodesic segment oq : [—9,8] — X through y with 64(0) = £ and
—60(0) = n. Then for every ¢ > 0 there is ¢ € T' such that the
geodesic o : [0,r] — X from y to @y satisfies d,(5(0),€) < € and
dpy(—0(r),m) < e.

Proof. By Lemma 3.2, we can assume that the geodesics o, are recur-
rent. Hence there are ¢,, € " and ¢,, — oo such that ¢, 'g'0,|[—4, 6] —
0o as n — 00. Set p, = 0,(0) and ¢, = 0, (). Then d(p,,y) — 0 and
d(Gn, ony) = d(, ' qn,y) — 0 as n — oco. Let p, : [0,7,] = X be the
unit speed geodesic from y to ¢,y. By convexity, d(o,(t), pn(t) — 0
uniformly in ¢. Therefore dy(p,,(0),€&) — 0 and dy,,(—pn(72), Pnn) — 0
as n — oo. ]

3.4. LEMMA. Suppose that S, X is a hemispherezr, £ is a point in
the central sphere, n is a point in an open attached hemisphere H and
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d.(&,m) = 7. Choose 6 > 0 such that the §-neighborhood of x is isomet-
ric to the Euclidean cone over Sy X of radius 6. Let oq : [—0,] — X be
the unique geodesic segment with 64(0) = & and —6y = n. Then there
are complete reqular geodesics o, such that o,|[—0,0] — 0y.

Proof. The equator of H breaks S into two hemispheres, H; and H,.
If £ € Hy, then S’ = H U H; is a sphere representing a Euclidean ball
B C X centered at z of radius §. Since X1 intersects B in a finite set
of radii, oy can be approximated as claimed. O

3.5. LEMMA. Suppose that Y is a hemispherexr, H is an open at-
tached hemisphere and & € H. Let H' be an open attached hemisphere
such that HN H consists of two points. Then there is n € H' lying at
distance m to & and such that there are exactly two geodesics of length
connecting & and n. Their union is a circle of length 27 passing through
the two points of the intersection H N H.

Proof. Let S be the central sphere of Y. The union Z = SUHUH' is a
spherical join whose equator E; is the union of a circle (corresponding
to S) with two semicircles (corresponding to H and H') and whose
poles are the the two points of the intersection H N H'. Since every
unit speed geodesic in Y entering an open attached hemisphere H”
spends time 7 in H”, any minimal (of length 7) connection from & to
a point 7 € H' lies in Z. Now choose n € H' at distance 7 from £ and
such that the projections of £ and n to E; lie at distance greater than
min Ey. O

End of proof of Proposition 3.1. Let S C S;X be the central sphere
and E C S be the union of the equators of the attached hemispheres.
Let Hi be an open attached hemisphere and &; be such that the point
m € S with d;(&,71) = 7 does not lie in E. Choose ¢ > 0 such that
dy(m, E) > 3¢. Then the ball B,(&1,3¢) of radius 3¢ centered at &; is
contained in H;. By Lemma 3.3, there is ¢; € I such that

dz(01(0),&1) < e and dy (p1m1, —61(r1)) <€,

where y = 12 and oy : [0,71] — X is the unit speed geodesic from x
to y.

Let & be the antipode of —g(r;) in the central sphere ¢S of S, X.
Then dy (&2, 1 E) > 2¢. Let Hy be an open hemisphere attached to 1S
and let 7, € H, be a point at distance 7 from &. Then By (1., 2¢) C Ho.
By Lemma 3.3, there is 9 € I' such that

dy(62(0),&) < € and d, (pame, —02(r2)) < €,



where z = 9y and oy : [0,75] — X is the unit speed geodesic from y
to z. Let ¢ = ¢op1 and o : [0,7] = X be the unit speed geodesic from
T to z, see Figure 2. Since d, (—61(r1),2(0)) > m — € and since X has
nonpositive curvature,

d; (6(0),01(0)) <e and d,(—d(r), —da(r2)) <€
and hence 6(0) € H; and —6(r) € poHs.

Y=y

x o Z = P2y

FIGURE 2

Now let H| be an open attached hemisphere in S, X such that H; N
H’l consists of two points. By Lemma 3.5, there is a direction ¢’ € H]
at distance 7 from ¢ (0) such that there are exactly two geodesics of
length 7 from & to &(0) (their union being a geodesic of length 27
passing through H; ﬂﬁll). Let 0 : [—&,7] — X be a geodesic extension
of ¢ with incoming direction & at x = ¢(0) = 5(0). If 7 is a side of a
flat rectangle R, then R is represented in the link S, X by one of the
two geodesics of length 7 from &' to 6(0). Hence (up to width) there
are at most two such rectangles. Furthermore, R determines a geodesic
7 of length 7/2 in S, X starting from —&(r) € paHy. We now choose
another hemisphere H) in S, X and a direction 0’ € H;, of distance 7
to —a(r) such that there are precisely two geodesics of length 7 from
—a&(r) to n', neither of them containing the above geodesic . Hence, if
0 :[—e,r+¢] = X is a geodesic extension of & with outgoing direction
n' in z, then & is not a side of a flat rectangle. O

4. THE CASE OF A SPHERICAL JOIN WITH LARGE EQUATOR

From now on we assume that all links in X have diameter 7, but
that no link in X is a hemispherex. By the classification of [BB98],
every link in X is either a thick spherical building of type As or Bs
or a spherical join with an equator of diameter = 7 or a spherical join
with an equator of diameter > 7. In the first two cases the link is a

10



spherical building. In this section we address the case when there is a
point in X whose link is a spherical join with an equator of diameter
> T

4.1. PROPOSITION. Suppose that all links of X have diameter m,
but that no link in X is a hemispherex. Let x € X be such that S, X
s a spherical join with equator of diameter > m. Then X 1is isometric
to a product of a tree with a two-dimensional Euclidean polyhedron of
nonpositive curvature.

The proof is based on several lemmas.

4.2. LEMMA. Let Tozy be a geodesic segment in X, x1 € Toxa
and y € X \ Toxs. Suppose that the geodesic triangles (xo,x1,y) and
(x1,29,y) are flat and that Z,, (xo,y) + Lz, (22, y) = 7. Then the geo-
desic triangle (xo, x2,y) is flat.

Proof. The Euclidean comparison triangles Ay and A, for (zg,x1,%)
and (x1,z2,y) are isometric to them. Hence, by the assumption on the
angle sum, if we paste Ay and A, along the side corresponding to 717,
we obtain a triangle A which is a comparison triangle for (zg,z9,y).
Since triangles (xg, z1,y) and (x1, z2,y) are flat, A has the same angles
at vertices zo and x5 as triangle (zg,xo,y). Therefore (zg,zs,y) is
flat. 0

4.3. LEMMA. Under the assumptions of Proposition 4.1, let E, be
the equator of S;X. Then there is a tree T C X such that

(i) T is closed, convez, geodesically complete and contains z;
(ii) if z € T, then S,X is a spherical join whose equator E, is iso-
metric to E, and whose set of poles is S,T;
(iii) there is € > 0 such that the e-neighborhood of T is isometric to
T x C,, where C, is the Euclidean cone over E, of radius €.

FIGURE 3
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Proof. By the structure of the link S, X, the point z is contained in the
1-skeleton of X. W.l.o.g. assume that x is a vertex. Then the poles of

S; X correspond to the directions of essential edges e, ..., e, adjacent
to z, see Figure 3. Let 77 = U,e;. Since X is a Euclidean polyhedron,
the normal links of eq,..., e, are isometric to E,. Let z{,...,x; be

the other ends of ey, ..., e, respectively. Then the link S, (Sg,X) of
the incoming direction §; of e; in S5, X is also isometric to E,. Since
diam (Sg;X) = 7 and no link of X is a hemispherex, the link S;, X is
also a spherical join with equator isometric to E,. Let T5 be the union
of T1 with all (essential) edges corresponding to the poles of the links
Sg; X, @ =1,...,k. Proceeding in this way we obtain a tree T C X
satisfying 1 and 2.

Since I' acts cocompactly on X, there is € > 0 such that, if a closed
simplex intersects the e-neighborhood of 7', then it intersects 7" and 3

follows. 0
\ S X
Yy
FIGURE 4

For a spherical join with equator E, away from the poles there is
a well defined (nearest point) projection onto F which we call the
equatorial projection. We say that a point y € X \ T is admissible for
z € T if the equatorial projection £ € FE, of the direction at z pointing
at y has a point n € E, whose distance in F, to £ is > m. We also
say that two equatorial directions at different points of T" are parallel
along T if they are parallel in the isometric splitting 7' x C. of the
e-neighborhood of T' (see Lemma 4.3) .
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4.4. LEMMA. Lete = Toz be a (closed) edge inT and lety € X\T
be admissible for some z € e. Then triangle (xo,z1,y) is flat. In
particular the equatorial projections of the directions pointing to y at
all points of e are parallel along T'.

Proof. Let t be a point in the interior of e such that y is admissible for
t, see Figure 4. Let o1 be the geodesic segment from ¢ to y and let o5 be
a geodesic segment of positive length starting at ¢ with initial direction
n whose equatorial projection lies at distance > 7 to the equatorial
projection of £ = 1(0). The geodesic segment 0 = g7 * 09 bounds a
flat strip S which corresponds to a semicircle (of length 7) ¢ C S; X
from £ to 7. Since the distance between the equatorial projections of &
and 7 is > 7, the semicircle ¢ passes through a pole of S;X. Hence S
is tangent to e at t and there is a flat triangle (¢,t,y) with ¢’ € e.

Let f C e be a closed interval such that y is admissible for any
t € f. By the argument in the preceding paragraph, any point from
the interior of f belongs to a nondegenerate flat triangle with base
in f and vertex y. Note that the link of each interior point ¢ of e is a
spherical join with two poles e™ and e~ in the directions of e. Therefore
Zi(&,eT) + £i(&,e7) = 7 for any point ¢ from the interior of e and any
direction ¢ € S;X. Hence, by Lemma 4.2, if two such flat triangles
intersect, their union is a flat triangle. It follows that the interior of
f is covered by a disjoint union of closed base lines of maximal, flat,
nondegenerate triangles with vertex at y. Since f is an interval, we
conclude that there is only one base line and the convex hull of f and
y is a flat triangle.

If A is a flat triangle with base line in e and vertex at y, then the
equatorial projections of the directions pointing to y at points on the
base line are parallel along 7. By what we just proved, the set of
points ¢ € e for which y is admissible, is open and closed. Therefore
the convex hull of e and y is a flat triangle. O

A rectangular, flat half strip in X is a flat triangle with two right
angles and one vertex at infinity.

4.5. LEMMA. Suppose that y € X \ T is admissible for somet € T.
Let Py be the projection of y to T and & be the equatorial projection of
the direction pointing to y at t. Then

(i) y is admissible for each t' € T and the equatorial projection of the
direction pointing to y at t' is parallel to & along T;

(ii) for any ray p C T starting from Py, the conver hull of p and y
is a rectangular, flat half strip S(p) bounded by p, the ray p(y)
starting from y and asymptotic to p and the segment from y to
Py.
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Proof. Let e C T be an edge containing ¢. By Lemma 4.4, the convex
hull of e and y is a flat triangle. It follows that the equatorial projec-
tions pointing to y at points of e are parallel along 7" and hence y is
admissible for the ends of e. Proceeding by induction we obtain the
same statement for each edge of 7.

®
Y p(y)
S(p)
T ’/’,,
‘ - -
Py
P
FIGURE 5

Suppose p is a ray in T with p(0) = Py := to. Let t1,ts,... be con-
secutive vertices along p so that the triangles At,t,.1y, n = 0,1,...,
are flat. Since pisarayin T and £, (t,_1,y) < w/2 for n > 1, we have,
by the structure of the links in 7', that 2y, (t, 1,v) + £, (Y, tnt1) = 7.
Hence the union Ug° (At,yt, 41 is a flat half strip, see Figure 5. O

Two closed convex subsets C, C C X are parallel if their convex hull
is isometric to the product C' x [0, a], where C' = C x {0}, C = C x {a}
and a = d(C, C).

4.6. LEMMA. Lety be admissible for the tree T constructed in Lemma
4.3. Then there is a tree T > y which is parallel to T'.

Proof. Let T' = U1}, where T, is obtained from 7;,_; by adding a
ray p, in T so that Ty = Py := z¢ and p, N1}, consists of one point
Tn = pp(0) for n > 0. By induction we assume that there is a tree
Tn 1 O y parallel to T,,_; so that the convex hull C,,_; of Tn 1 and
T,_1 splits as T,_1 x [0,a], where a = d(y, Py). Let y, € Tp_1 be
the point with Py, = z,, which corresponds to (x,,a) in the splitting
of C,,_1. By Lemma 4.5, y, is admissible and there is a half strip
S(pn) = pn x [0, a] spanned by y, and p,. Let p, = p, x {a} be the ray
in S(p,) starting from y,, (and asymptotic to p,) and set T, =T,_1U Pr.-
Note that, by the product structure of C,,_; and S(p,), distances in T,
do not exceed the distances between the corresponding points in 7,.
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On the other hand, for any ¢;,ty € T),, the geodesic segments t; x [0, a]
and o X [0, a] are perpendicular to T,,. Therefore the distance between

their ends is at least d(¢,t2). Hence T, is a tree parallel to T,. O

We now finish the proof of Proposition 4.1. Let T' be the tree con-
structed in Lemma 4.3. The closed and convex subset Y C X, con-
sisting of points y for which there is a tree T(y) > y parallel to T, is
isometric to a product Z x T, where Z C Y is closed and convex. We
will show that ¥ = X.

Fix t € T. For £ € 5X and a > 0, denote by C(&,a) the set
of points y € X such that the distance in S; X between £ and the
incoming direction of the geodesic connecting y and ¢ is < «a. Let &
be admissible. There is oz > 0 such that any n € 5;X is admissible if
Z(&,m) < a. Hence any point y € C(&, ) is admissible and, by Lemma
4.6, C(§, ) C Y. Since I' acts cocompactly, for any R > 0, there is
v € T' such that Bg(yt) C C(§, ). Therefore Bg(t) C Y. Since R is
arbitrary, Y = X. O
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