ORBIHEDRA OF NONPOSITIVE CURVATURE

WERNER BALLMANN! AND MICHAEL BRIN?

ABSTRACT. A 2-dimensional orbihedron of nonpositive curvature is a pair (X, T'), where X is a
2-dimensional simplicial complex with a piecewise smooth metric such that X has nonpositive
curvature in the sense of Alexandrov and Busemann and I is a group of isometries of X which
acts properly discontinuously and cocompactly. By analogy with Riemannian manifolds of
nonpositive curvature we introduce a natural notion of rank 1 for (X,T') which turns out to
depend only on T' and prove that, if X is boundaryless, then either (X, I') has rank 1, or X
is the product of two trees, or X is a thick Euclidean building. In the first case the geodesic
flow on X is topologically transitive and closed geodesics are dense.

1. INTRODUCTION

The idea of considering curvature bounds on metric spaces belongs to Alexandrov [Ale],
Busemann [Bus| and Wald [Wal]. Busemann initiated the theory of spaces of nonpositive
curvature. Later, Bruhat and Tits [BrTi] showed that there is a natural metric of nonpos-
itive curvature on Euclidean buildings and used it to prove a generalization of the theorem
of Cartan on maximal compact subgroups of semisimple Lie groups. The work of Gromov
(see for example [Grl] and [Gr2]) led to a revival of the general theory of metric spaces
with curvature bounds and to applications in Riemannian geometry, combinatorial group
theory and other fields.

In this paper we discuss the rank rigidity for singular spaces of nonpositive curvature.
To a large extent the main concepts and ideas introduced below are a natural develop-
ment of the corresponding aspects of the rank rigidity theory for Riemannian manifolds of
nonpositive curvature (see [BBE],[BBS],[Ba3],[BuSp],[EbHe]).

An orbispace is a pair (X,I"), where X is a simply connected topological space and T
is a group of homeomorphisms of X acting properly discontinuously. An orbispace (X, T')
is compact if I acts cocompactly. An orbispace (X,I') is an orbihedron if X admits a
[-invariant triangulation.

We are interested in orbispaces and orbihedra of nonpositive curvature, that is, we
require in addition that X has a complete I'-invariant geodesic metric d of nonpositive
curvature in the sense of Alexandrov and Busemann. As in the smooth case, asymptote
classes of geodesic rays define the space X(oo) of points at infinity and X = X U X (o0)
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has a natural T-invariant topology. If X is locally compact, then X is compact. Here are
some examples of spaces of nonpositive curvature.

1. Smooth Riemannian manifolds with nonpositive sectional curvature.

2. Trees with interior metrics.

3. Euclidean buildings with their canonical metrics (defined up to a constant), see
[Bro, Chapter VIJ.

4. (m,n)-spaces for mn > 2(m + n) with their canonical piecewise flat metrics.

Such a space is a 2-dimensional CW-complex X with the following properties: the attaching
maps are local homeomorphisms, the boundary of each face consists of at least m edges
(counted with multiplicity) and every simple loop in the link (see Section 2 for the definition
of a link) of a vertex consists of at least n edges. The natural flat metric on X makes each
face of X with k edges an isometrically immersed regular Euclidean k-gon. Such spaces
arise naturally in combinatorial group theory, see [LySc| and [BaBz].

Let (X,I') be a compact orbispace of nonpositive curvature. A geodesic o : R — X is
called I'-closed if there is an isometry ¢ € T translating o that is, ¢(o(t)) = o(t + tg) for
some tg # 0 and all + € R. A T'-closed geodesic ¢ and an isometry ¢ € I" translating o are
said to have rank 1 if ¢ does not bound a flat half plane. The orbispace (X,I") has rank
1 if " contains a rank 1 isometry.

Theorem A. Let (X,T') be a compact orbispace of rank 1 and suppose that X (oc) contains
more than two points.

Then for any two nonempty open subsets U,V C X(oo) there s ¢ € T' such that
H(X(0c)\U) C V and ¢~ (X(00) \ V) C U. Moreover, there is a T'-closed geodesic o
of rank 1 with o(—o0) € U and o(oc) € V.

This is the key property of rank 1 orbispaces. Applications of this property are discussed
in Theorems D and E below.

Theorem B. The property of a compact orbispace (X,I') of nonpositive curvature to have
rank 1 depends only on T.

This theorem generalizes a result of Eberlein [Eb2]. The main idea of the proof goes
back to Morse [Mor]. In fact, we obtain an algebraic criterion for an element of I' to have
rank 1. Theorems A and B are our main motivation for considering rank 1 orbispaces.

Let X be a locally finite simplicial complex. A piecewise smooth Riemannian
metric g on X is a family of smooth Riemannian metrics g4 on the simplices A of X such
that ga|p = gp for any simplices B and A with B C A.

Let g be a piecewise smooth Riemannian metric on X. Then the lengths of curves in X
are defined and the induced distance function d makes X an interior metric space. Assume
that there is a uniform bound on the geometry of the simplices in X. Then d is complete,
and hence, geodesic, since X is locally compact.

Let (X,I') be an orbihedron with X locally finite. We say that a I'-invariant metric d
on X is piecewise smooth if there is a [-invariant triangulation on X with a I'-invariant
piecewise smooth Riemannian metric g such that d is the induced distance function.

A E-simplex in X is called a boundary simplex if it is adjacent to exactly one (k4 1)-
simplex. An n-dimensional orbihedron (X,I") is called boundaryless (or we say that it
is without boundary) if there are no boundary simplices in X with respect to some



(and hence any) triangulation of X. If (X,T') is a 2-dimensional orbihedron of nonpositive
curvature, then X contains a I'-invariant suborbihedron X’ without boundary and of
dimension < 2 such that a) X’ is a I'-equivariant strong deformation retract of X, b) the
action of I' on X' is effective and ¢) the induced metric on X' is piecewise smooth and
of nonpositive curvature (see Section 2). If (X,I') is a compact 2-dimensional orbihedron
of nonpositive curvature, then every geodesic segment of X is contained in a complete
geodesic (one defined on the whole real line) iff (X,T") is boundaryless.
The following theorem is the main result of this paper.

Theorem C. Let (X,T') be a compact 2-dimensional boundaryless orbihedron with a prece-
wise smooth metric of nonpositive curvature. Then either

(i) (X,T) is of rank 1, or
(i1) X s the product of two trees endowed with the product metric of two interior
metrics, or
(iii) X s a thick Euclidean building of type Az, By or Go, endowed with its canonical
metric.

In Cases (ii) and (iii) every geodesic is contained in a flat plane. In Case (i) we prove
that there is a I'-closed geodesic o such that either a) o passes through a point in an open
face where the Gauss curvature of X is negative, or b) o passes from one face to another
through a point in an open edge e where the sum of the geodesic curvatures of e with
respect to the two faces is negative, or ¢) o passes through a vertex v and the distance
between the incoming and outgoing directions of ¢ in the link of v is > #. We call o
hyperbolic if one of the cases a), b), or ¢) occurs.

Denote by G(X) the set of unit speed geodesics o : R — X, endowed with the compact-
open topology. The geodesic flow g’ acts on G(X) by g'(a)(s) = o(s + 1).

Theorem D. Let (X,T') be a compact 2-dimensional boundaryless orbihedron with a piece-
wise smooth metric of nonpositive curvature. If (X,T') has rank 1, then

1 erbolic I'-closed geodesics are dense in the space of geodesics;
1) hyperbolic T'-closed geod d the sp geod ;
1 e geodesic flow 1s topologica ransitive modulo T.
i1) the geod topologically t t dulo T

Note that in Cases (ii) and (iii) of Theorem C the geodesic flow has continuous first in-
tegrals. In a later paper we will study the asymptotics of the number of T'-closed geodesics.
In the rank 1 case the arguments are very similar to the arguments of G.Knieper in [Kni].

Theorem E. Let (X.T') be a compact 2-dimensional boundaryless orbihedron with a piece-
wise smooth metric of nonpositive curvature.

Then either T' contains a free nonabelian subgroup or X is isometric to the Fuclidean
plane and T' 1s a Bieberbach group of rank 2.

This result is analogous to the Tits theorem on free subgroups of linear groups, see
[Til]. Theorem E is a consequence of Theorem C and the following result.

Theorem F. Let X be a Fuclidean building and T' a group of automorphisms of X acting
properly discontinuously and cocompactly.



Then either T' contains a free nonabelian subgroup or X is a Euclidean space and T 1s
a Bieberbach group whose rank is dim X.

For thick Euclidean buildings of dimension > 3, this follows from Tits’ theorem quoted
above [Til] and his classification of spherical buildings of rank > 3 (see [Ti2]).

The proof of our main result, Theorem C, consists of two parts. In the first part we
consider the case when all faces of X are flat Euclidean triangles and all links have diameter
7 and show by an elementary argument that X is either a product of two trees or a thick
Euclidean building of type Ay, By or G3. This part is related to the (unpublished) result
of B.Kleiner [Kle| that if every geodesic of an n-dimensional complete simply connected
space X of nonpositive curvature is contained in an n-flat, then X is a Euclidean building
or a product of Euclidean buildings.

In the second and main part of the argument we start by considering the following cases:
a) the Gaussian curvature of a face is negative at an interior point, b) there is an edge
e with adjacent faces f; and f; and a point z in the interior of e such that the sum of
the geodesic curvatures of e at = with respect to f; and f5 is negative. In both cases we
conclude that (X, I") has rank 1, thus reducing the general discussion to the case when all
faces of X are Euclidean triangles but at least one of the links has diameter > w. The
existence of a rank 1 isometry in I' in the latter case would follow easily if there were
a I'- and g'-invariant measure which is positive on open sets of geodesics. In Section 3
we construct a natural generalization of the Liouville measure which is invariant under
isometries and the geodesic flow. However, this measure is concentrated on the set of
geodesics that do not pass through vertices.

After discussing some preliminaries in Section 2, we construct an analogue of the Li-
ouville measure in Section 3. Theorems A and D are proved in Section 4, Theorem B in
Section 5, Theorem C in Sections 6 and 7, Theorems E and F in Section 8. Sections 4 and
5, Sections 6 and 7, and Section 8 can be read independently.

We express our gratitude to M.Gromov who encouraged us to study singular spaces and
with whom we had many useful discussions. We thank our families for the infinite patience
during the time we worked on this paper.



2. PRELIMINARIES

Let X be a metric space with metric d. A curve ¢ : I — X is called a geodesic if
there is v > 0, called the speed, such that every ¢t € I has a neighborhood U C I with
d(c(t1),c(tz)) = v|ty — ta] for all ¢1,t, € U. If the above equality holds for all ¢1,t; € I,
then ¢ is called minimal or minimizing.

We say that X is a geodesic space if every two points in X can be connected by
a minimal geodesic. A locally compact and complete metric space X is geodesic if it is
interior, that is, if the distance between every two points in X is the infimum of the
lengths of curves connecting them. We assume from now on that X is a complete geodesic
space.

A triangle A in X is a triple (07,02, 03) of geodesic segments whose end points match
in the usual way. Denote by Sk the simply connected complete surface of constant Gauss
curvature K. A comparison triangle A for a triangle A C X is a triangle in Sy with
the same lengths of sides as A. A comparison triangle in Sk exists and is unique up to
congruence if the lengths of the sides of A satisfy the triangle inequality and, in the case
K > 0, if the perimeter of A is < 27/VK. Let A = (77,73, 73) be a comparison triangle
for A = (01,02,03), then for every point = € o;,1 = 1,2,3, we denote by z the unique
point on &; which lies at the same distances to the ends as z.

Let d denote the distance functions in both X and Sk. A triangle A in X is a CATk
triangle if the sides satisfy the triangle inequality, the perimeter of A is < 27 /VK for
K >0, and if

d(z,y) <d(z,y)

for every two points z,y € A.

We say that X has curvature at most K and write Kx < K if every point x € X has
a neighborhood U such that any triangle in X with vertices in U and minimizing sides is
C ATy . Note that we do not define Kx. If X is a Riemannian manifold, then Kx < K iff
K is an upper bound for the sectional curvature of X.

We call X a Hadamard space if X is simply connected, complete, geodesic with
Kx < 0. The following result is proved in [AlBi], see also [Ba2].

2.1 Hadamard-Cartan Theorem. If X s a Hadamard space, then

(1) for any two points x,y € X there is a unique geodesic o4y : [0,1] = X from z toy
and 0,y 15 continuous in x,y;
(i1) every triangle in X is C ATy.

Let X be a Hadamard space and let 01,0, be two unit speed geodesic rays going out
of € X. We define /(0y,03) in the following way. Let A be a comparison triangle with
K = 0 for the triangle A = (01([0,s]),02([0,%]), 0st), where o4 is the geodesic from o (s)
to o2(t). Since triangles in X are C' ATy, the angle a(s,t) of A at # decreases as s and ¢
decrease. We set

L(o1,02) = lim afs,t).

s,t—0



Let z,y,z € X with y,z # 2 and let 7,4, v,. be the unit speed geodesics from z to y,z
respectively. Set

Zo(y,2) = L(Vays Vaz) -

2.2 Proposition. (See [Ba2], Proposition 1.5.2.) Let X be a Hadamard space and let A
be a triangle in X with sides of length a,b,c and angles o, 3,~ at the opposite vertices,
respectively. Then

(i) e+B+y<m

(ii) (Cosine Inequality) ¢* > a* 4+ b* — 2abcos 7.
In each case, equality holds if and only of A s flat, that s, A s the boundary of a 2-

dimensional convex region in X 1sometric to the region bounded by the comparison triangle
in the flat plane. O

It follows easily that for any two geodesics 01,03 in X, the function d(oq(t),02(t)) is
convex in t. A more special property is as follows.

2.3 Corollary. Let X be a Hadamard space. Let x1,x2 € X be two distinct points and let
o be the geodesic connecting them. Assume that o; 18 a geodesic ray going out of x; and
making angle o; with o, 1 = 1,2. Suppose that a1 + ag > .

Then d(o1(t),02(t)) s strictly increasing in t. O

2.4 Lemma. Let X be a locally compact Hadamard space and Y C X be a path connected,
closed, locally convex subset. ThenY s conver.

Proof. For every compact subset X' C Y thereise > 0suchthat if z,y € K and d(z,y) < ¢
then the geodesic o,,, connecting z to y, lies in Y. Let z,y € Y and let w,, be the
shortest path in Y connecting them. Choose K to be the ball of radius d(z,y) centered
at z. If w,y 1s not a geodesic in X then there is 2z in the interior of w,, such that w,, is
not a geodesic at z. We can shorten w;, by replacing a small subarc of w,, near z by the
corresponding geodesic segment in X. By the remark at the beginning of the proof applied
to K =Y N B(x,d(z,y)), the new curve is contained in Y. This is a contradiction. O

FIGURE 1



2.5 Lemma. Let X be a simply connected space of nonpositive curvature, let xg,x1,..., Ty
be pairwise distinct points in X and let ¢; be the geodesic segments connecting x;_1 to
zi, 0 = 1,2,...,n. Let ¢ connect xg to x, and set @ = Ly (c1,¢), B = Lz, (c,cn) and

ﬁi = 4ri(ci,ci+1). Then

n—1
a+ < Z(TF — 0Bi).
=1

Proof. Let o; be the geodesic from zg to z; and let oy = £y (¢1,02), ai = Ly (04, 0i41),
Ei = Lo (ciyoi), ni = Ly (¢ig1,04), t = 2,...,n — 1, see Figure 1. Then & + n; > (3; and
a < E?:_ll a;. Since X has nonpositive curvature, the sum of the angles in each triangle
Azgr;_1z; 1s at most 7, and hence a1+ 51 +& < 7, a;i+ni+€iv1 <7, apn_1+Nn—1+0 < 7.
Adding these inequalities yields the lemma. O

Let ¢ : X — X be an isometry of a Hadamard space. Then the displacement function
dg(z) := d(z,¢(x)) is convex, that is, for any geodesic o : I — X the function dg(o(t))
is convex in t. Isometries are classified according to the following possibilities for the
displacement function. If dg achieves its minimum in X, then ¢ is called semisimple.
If the minimum is 0, then ¢ has a fixed point and is called elliptic. If the minimum is
positive and is achieved at x € X, then the concatenation of the geodesic segments o;
from ¢'(z) to ¢'T1(z), i € Z, is a geodesic o which is invariant under ¢ and is called an
axis of ¢. In this case we call ¢ axial. If ds does not achieve a minimum, then ¢ is
called parabolic. If T' is a group of isometries of X acting properly discontinuously and
cocompactly, then every ¢ € I' is semisimple, that is, either axial or elliptic.

We assume from now on that X is a locally compact Hadamard space. Our discussion
of rank 1 spaces uses the following three lemmas from [Ba2] (see also [Bal] for the case of
Hadamard manifolds).

2.6 Lemma. (See [Ba2], Lemma 8.1.1.) Let 0 : R — X be a unit speed geodesic which
does not bound a flat strip of width R > 0.
Then there are neighborhoods U of o(—oc) and V of o(00) in X such that for any

£ €U and n € V there is a geodesic from & to n, and for any such geodesic o' we have
d(o’,0(0)) < R. Moreover, o' does not bound a flat strip of width 2R. O

2.7 Lemma. (See [Ba2], Lemma 8.1.2.) Let o : R — X be a unit speed geodesic which
does not bound a flat half plane. Let (¢y) be a sequence of isometries of X such that
dn(z) = o(00) and ¢, (z) = o(—o0) for one (and hence any) z € X.

Then, for n sufficiently large, ¢, has an azis oy, such that o,(00) — o(oc0) and
on(—0) = o(—00) asn — oc0. O

2.8 Lemma. (See [Ba2], Lemma 3.1.3.) Let ¢ be an isometry of X with an azis o : R —
X, where o 18 a unit speed geodesic which does not bound a flat half plane. Then

(i) for any neighborhood U of o(—oc0) and neighborhood V of o(o0) in X there exists
N € N such that "(X\U)CV, ¢ (X \V)CU foralln>N;

(i) for any & € X(o0) \ {o(o0)} there is a geodesic o¢ from € to o(c0), and any such
geodesic does not bound a flat half plane. For any compact K C X(o0) \ {o(00)},
the set of these geodesics is compact (modulo parameterization). O
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We assume from now on that X is a locally finite simplicial complex with a piecewise
smooth Riemannian metric g. We are interested in conditions under which X has nonposi-
tive curvature in the sense defined above, that is Kx < 0. We start by discussing the links
of points * € X. By subdividing X if necessary, we may assume that z is a vertex. Let A
be a k-simplex adjacent to z. We view A as an affine simplex in R¥, that is A = N*_ H;,
where Hg, Hy, ..., Hj are closed half spaces in general position and WLOG z € Int(Hy).
The Riemannian metric g4 is the restriction to A of a smooth Riemannian metric defined
in an open neighborhood V of A in R*. The intersection

T,A:=nf H, T,V

is a cone with apex 0 € TV, and ga(z) turns it into a Euclidean cone. Let B C A be
another simplex adjacent to . Then the face of T A corresponding to B is isomorphic to

T, B and we view T, B as a subset of T, A. Set
T.X =Uxs,. T, A.
Let S; A denote the subset of all unit vectors in T, A and set
S =5:X =Uxa5,.5:4.

The set S, is called the link of = in X (or the space of directions). If A is a k-
simplex adjacent to z, then ga(z) defines a Riemannian metric on the (k — 1)-simplex
Sy A. The family g, of Riemannian metrics ga(z) turns S;X into a simplicial complex
with a piecewise smooth Riemannian metric such that the simplices are spherical: a k-
simplex in S, is (isometric to) the intersection of k4 1 closed hemispheres in S* in general
position. We denote by d, the associated metric.

Suppose now that the dimension of X 1is 2 If = lies in the interior f of a face f, then

S X is the unit circle of the smooth surface f with respect to the Riemannian metric gf|f

If = lies in the interior € of an edge e, then S, X is the bipartite graph with two vertices
corresponding to the directions of € at z and edges of length 7/2 which represent the faces
adjacent to e and connect the two vertices. If z is a vertex, then S, X is a graph whose
vertices correspond to the edges adjacent to x. Two such vertices £ and n of S, X are
connected by an edge of length oy € (0,7) if the corresponding edges e¢ and e, of X are
adjacent to a face f with interior angle as at z (see Figure 2).

2.10 Theorem. (See [BaBuj). Let g be a piecewise smooth Riemannian metric on a
locally finite two-dimensional simplicial compler X and let d be the associated distance
function.

Then Kx < K ff the following three conditions hold:

(1) the Gauss curvature of the open faces is bounded from above by K;

(i1) for every edge e of X, every two faces f1, f2 adjacent to e and every interior point
x € e the sum of the geodesic curvatures kqi(x),ko(x) of € with respect to fi, fa s
nonpositive;

(iii) for every vertex v of X every simple loop in Sy X has length at least 2. O
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FIGURE 2

Let X be a 2-dimensional simplicial complex without boundary. An edge of X is called
inessential if it bounds exactly two faces; the other edges are called essential. A vertex
v of X is called inessential if its link is homeomorphic to a bipartite graph with two
vertices and m(v) > 0 edges connecting them; the other vertices are called essential. An
inessential vertex is called interior if its link is homeomorphic to the circle (that is, if
m(v) = 2).

A connected component of the union of all open faces, inessential edges and interior
vertices is called a maximal face of X. A connected component of the union of all open
essential edges and inessential but not interior vertices v is called a maximal essential
edge. A maximal essential edge might be a loop. Since X is boundaryless, the maximal
faces of X are bounded by maximal essential edges and essential vertices.

2.11 Proposition. Let (X,TI') be a compact 2-dimensional boundaryless orbihedron with
a metric d of nonpositive curvature. Assume that d is induced by a T'-invariant piecewise
smooth Riemannian metric with respect to a I'-invariant triangulation of X such that



(1) the Gauss curvature of all faces is 0;
(ii) for every edge e and any two faces f1, f2 adjacent along e and for any x € e we have
ki(z) + ko(z) = 0;
(iii) for every interior vertez v, the complete angle of S, is 2.
Then the mazimal essential edges of X are geodesics and the mazrimal faces of X are
smooth flat surfaces. Moreover, X admits a T'-invariant triangulation such that all edges
are geodesics and all faces are Fuclidean triangles.

Proof. If e is an essential edge and if e is not adjacent to any face, then e is a geodesic. If
e is adjacent to at least three faces, then the geodesic curvature at e with respect to any
face adjacent to e is 0 since, by (ii), the sum of the geodesic curvatures of every pair of
these faces is 0. Hence all essential edges are geodesics.

Assume now that e is an inessential edge and that f;, f are the two faces adjacent to
e. Since the metrics on f; and f, are flat and since the geodesic curvatures ky and ky of
e with respect to f; and f; add up to 0 precisely, the metrics extend smoothly to a flat
metric on f; UeU fo. (View e, fi and f locally as sitting in the Euclidean plane.) Now
(iii) implies that the maximal faces of X are smooth flat surfaces.

We now first replace the inessential edges of X in a [-equivariant way by piecewise
geodesics arcs. Then we subdivide the faces I'-equivariantly so that the break points of
these arcs become vertices. [

2.12 Proposition. Let (X,T') be a compact 2-dimensional orbihedron with a piecewise
smooth metric of nonpositive curvature.
Then (X,T') contains a I'-invariant suborbihedron X' without boundary such that

(1) X' is a T-equivariant strong deformation retract of X ;
(ii) the action of ' on X' s effective;
(iii) the induced metric on X' is piecewise smooth and of nonpositive curvature.

Proof. Fix a I'-invariant triangulation on X such that the given metric is piecewise smooth
with respect to it. Iteratively, we apply the following reductions:

(a) Delete boundary vertices and the unique open edges adjacent to them.

(b) If f is an open face adjacent to exactly one open boundary edge e, then delete f
and e.

(c¢) If f is an open face adjacent to exactly two open boundary edges e; and eq, then
replace f U ey U ey by the segment from the midpoint of the third edge to the opposite
vertex.

(d) If f is an open face with three open boundary edges ey, €3, €3, then replace fUe; U
ez U ez by the three segments from the barycenter of f to the vertices.

We may have to apply each of these reductions more than once. Since X has only
finitely many simplices mod I', and since these reductions do not increase their number,
after a finite number of steps we end up with a boundaryless complex X', as asserted. O
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3. LIOUVILLE MEASURE FOR THE GEODESIC FLOW

From now on we assume that X is a locally finite, n-dimensional and boundaryless
complex with a piecewise smooth Riemannian metric. We denote by X ¥) the k-skeleton
of X and by X' the set of © € X such that z is contained in the interior of an (n—1)-simplex
adjacent to at least two n-simplices.

Let * € X'. Then z is contained in the interior of an (n — 1)-simplex B. For any
n-simplex C' whose boundary 0C contains z let S”.C denote the open hemisphere of unit
tangent vectors at x pointing inside C'. Let C1,...,Cy,, m > 2, be the n-simplices containing

B. We set
s,=Js.ci, §=1J S, and sC= |J siC
=1

reX'’ reoCNX'

For v € S!C denote by 6(v) the angle between v and the interior normal ve(z) of B
with respect to C at z. Let dr be the volume element on X’ and let A, be the Lebesgue
measure on S.. We define the Liouville measure on S’ by

(3.1) du(v) = cos 8(v) d\,(v) dr.

Note that du(v) x dt is the ordinary Liouville measure invariant under the geodesic flow on

each n-simplex C of X. Therefore, for p-a.e. v € S'C the geodesic 7, in C determined by

Av(0) = v meets AC'N (X(”_l) \X("_Z)) after a finite time ¢, > 0 so that I(v) def —Au(ty) €

S'C, see Figure 3. Note that v,(t,) € X' since X is boundaryless. Similarly to the billiard
flow, p is invariant under the involution I (see, for example, [CFS]).

FIGURE 3
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Let I(v) = w + cos 6(I(v)) ve(vu(ty)), where w is tangent to X' and set

F(v) = | J(=w + cos 8(1(v)) ver (70(t))),

C/

where the union is taken over all n-simplices C’ containing v, (t,) except C.

Thus there is a subset S; C S’ of full g-measure such that F(v) is defined for any v € Sy.
We set recursively Siy1 = {v € S1 : F(v) C Si} and define Soo = N2,S;, V = SN
I(Ss). By construction, V has full y-measure. We define now the transition probabilities
for a Markov chain with states in V' by the formula

(3.2) p(o.w) = 3 TF(0)] if we F(v)

0  otherwise,
where |F(v)| is the cardinality of F(v).

3.3 Proposition. Let X be a locally finite boundaryless simplicial complex with a piecewise
smooth metric g.

Then the measure p given by (8.1) is stationary for the Markov chain on V with tran-
sition probabilities p(v,w) given by (3.2).

Proof. For w € F(v) set q(I(v),w) = (p(v,w))”" and H(I(v)) = F(v). Let P(v, M)
denote the transition probability from v € V to a measurable subset M C V. Then we
have

/VP(U,M / > plv,w) xur(w) du(v)

weF(v)

/ Y g w) xar (1) du(v).

weF(v)

Since I preserves u, the last expression is equal to

[, E Ctwmede =3 [ 5 0 ) ) i)

wEH (u) wEH(u)

where V(B) denotes the set of vectors from V' with foot point in B. Note that for w € H(u)
the number ¢(u,w) is exactly the cardinality of H(u) or the number of terms in the inner
sum. Hence the last expression is equal to

>/ X () de).
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Let V* be the set of sequences (v,)nez C V such that v,y € F(v,) for all n € Z.
Proposition 3.3 implies that g induces a shift invariant measure p* on V*.
Recall that G(X) denotes the space of complete geodesics in X and the geodesic flow

{¢'} in G(X) acts by the formula
(4')(s) = ols +1).

Let G*(X) C G(X) denote the set of geodesics which do not meet X("~2) and intersect
(n — 1)-simplices transversally. Then G*(X) is a Borel subset of full y-measure in G(X)
and we may think of V* as a cross section for the geodesic flow on G*(X). Thus the
measure ¥ on V* defines a measure on G*(X) invariant under the geodesic flow. We call
this measure the Liouville measure since it is the natural generalization of the usual
Liouville measure on the unit tangent bundle of a smooth Riemannian manifold.

3.4 Remarks. a) The set G*(X) is not dense in G(X) if there is a vertex whose diameter
1s > 7.
b) The Liouville measure p is positive on nonempty open subsets of G*(X).

If T' is a group of isometric automorphisms of X that acts cocompactly and properly
discontinuously, then the Liouville measure defines a finite invariant measure for the ge-
odesic flow in G*(X)/T'. Recall that a geodesic ¢ € G(X) is I'-recurrent if there are
isometries ¢, € I' and t, — oo for which ¢, (g (c)) — o as n — cc.

3.5 Corollary. Let (X,T') be a compact orbihedron without boundary and with a piecewise
smooth metric. Then

(1) For every subset G C G*(X) with 4(G) > 0 and any T > 0 there are 0 € G, ¢ € T
and t > T such that ¢(g'c) € G.

(11) with respect to the Liouville measure, almost every geodesic in G(X) s ['-recurrent.

Proof. The statement follows directly from the Poincaré recurrence theorem for the induced

action of ¢' on G(X)/T. O
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4. SOME PROPERTIES OF RANK 1 SPACES

Let (X,T') be a compact orbispace of nonpositive curvature. Then X is a locally compact
Hadamard space, that is a locally compact, simply connected, complete geodesic space of
nonpositive curvature. Observe that if ¢ : R — X is a geodesic that does not bound a flat
half plane then there is R > 0 such that ¢ does not bound a flat strip of width R.

We say that £, € X(oo) are dual (relative to I') if for any neighborhoods U of £ and
V of nin X there is o) € I" such that

PXN\T) CVand (X \V)CU.

The set A¢ of points n € X (oo) dual to £ € X (o0) is clearly closed and I'-invariant. Lemma
2.8 implies that the endpoints of a I'-closed geodesic of rank 1 are dual.

4.1 Theorem. Let (X,T') be a compact orbispace of rank 1 and assume that X (o0) con-
tains more than two points.

Then X(oo) is a perfect set and any point in X (oco) is dual to any other point and to
itself. Moreover, for any two nonempty open subsets U,V C X(oo) there is a I'-closed
geodesic w of rank 1 with w(—o0) € U and w(oo) € V.

4.2 Remarks. a) Note that X (oco) consists of at least two points, and if | X (oco| = 2, then
X is quasi-isometric to the real line and ' contains an infinite cyclic subgroup of finite
index (given by the powers of the rank 1 isometry).

b) Following Chen and Eberlein [ChEDb] we say that I' satisfies the duality condition
if for any geodesic o : R — X there is a sequence ¢, € I' such that ¢,(z) — o(c0) and
¢t (z) = o(—o0) as n — oo for any point x € X. Theorem 4.1 and the remark above
imply that I" satisfies the duality condition if (X,TI') is a compact orbihedron of rank 1.

In order to prove Theorem 4.1 we begin with three lemmas. Fix an isometry ¢ € T’
translating a geodesic o that does not bound a flat half plane. Set ¢(0) = z¢ and o(tg) =
¢(x0), where tg is the period of o, and let Ry > 0 be such that o does not bound a flat
strip of width Ry. Set 7 = o U {o(o0),0(—00)}.

4.3 Lemma. For any T,e > 0 there is R > 0 such that for any v € X with d(z,0) > R
and any two points y,z € o the unit speed geodesics vy and Y. connecting x with y and
z satisfy

Aoy (1) 7e=(8)) <2, 0<t<T.

Proof. Since o is invariant under ¢ it suffices to consider only those x € X for which the
closest point of o lies in ¢([0,%9]). These points = form a compact subset A of X and
o(+o0) ¢ A, see Figure 4.

Choose neighborhoods U of o(—o00) and V of o(o0) in X so that any geodesic from U to
V passes through the ball B(zg, Rg), see Lemma 2.6. By Lemma 2.8 there is N € N such
that ¢7"(A) C U and ¢™(A) C Vioralln > N. Choose t; > 0 such that o([—o0, —t1]) C U
and o([t1,00]) C V. Hence for any point z € ¢~ "(A) the geodesic 7, connecting = with
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y € o([t1,00]) passes through B(zq, Rg). Since d(zo, ¢ "(A)) — oo, for a sufficiently large
n any two such geodesics 7,y and 7., by comparison with the plane, satisfy

d(Vay(t),72:(1)) < /3, 0< ¢ <T.

Hence the statement of the lemma holds for any = € A and y,z € o([t; + nto, 00]) with
¢/3 instead of e. Similarly, for a large enough n the same estimate holds for x € A and
Y,z € o([—oo,—t; — ntg]). Using comparison with the plane we obtain the necessary
estimate for the middle segment o([—t1 — ntg, t1 + ntp]) for a large enough R. O

4.4 Lemma. For any T,e > 0 there 1s R’ > 0 such that of d(x,20) > R’ then

d(’yl’l‘o(t)afyrcr(oo)(t)) <e, 0<t< T’
or d(’yl’fo(t)a'yrcr(—oo)(t)) <e, 0<t<L T.

Proof. Choose neighborhoods U of o(—oc) and V of o(o0) in X so that any geodesic
from U to V passes through the ball B(zo, Ry). By decreasing U and V if necessary we
may assume that the first inequality holds for all + € U and the second one holds for
all x € V. Now let R be from Lemma 4.3 and choose R’ so large that d(z,0) > R if
r¢ UUVUB(zo,R'). O
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4.5 Lemma. Let ¢; be an azial isometry with an azis 0;, 1 = 1,2. Assume that o1(—o00) =
o2(—0o0). Then o1(o0) = o2(0).

Proof. Let z; = 0,(0), 1 = 1,2. For every n > 0 there is m such that d(¢J* ] "z1, z2) does
not exceed the sum of the period of o3 and d(x1, x3). Since I' acts properly discontinuously,
there is ¢g € I" such that ¢J*1); " = g for infinitely many pairs m,n. Therefore, " = 7
for some m,n #0. O

Proof of Theorem 4.1. Since X (o0) contains more than two points and since I' acts cocom-
pactly, there is ¢g € I" such that d(¢o(z0),0) > Ro. The geodesic ¢g(0) does not bound a
flat half plane and is an axis of Y@y ' € I'. Therefore the points o(o(+0c)) are dual to
each other. Since o does not belong to a flat strip of width greater than Ry, we have, by
Lemma 4.5, that ¢o(0(+00)) ¢ {o(c0),0(—0c)}. By Lemma 2.8, ¢ (¢g(0(+o0))) — o(00)
as n — oo, and hence o(00) is dual to both tg(o(o0)) and tg(c(—o0)). By symmetry,
each of the four points o(+00), ¥g(o(F00)) is dual to every other and to itself.

Now let £ € X(o0), £ # 0(+o0) and let ¢, € T be such that ¢,z — £ for any = € X.
By Lemma 4.4, ¢, (0(00)) — £ or ¢, (0(—00)) — & (or both) and hence € is dual to o(—00)
and o(o0). Now let n be any other point in X (o0). Choose ¢,, € I so that ¢,(c(c0)) — n
or ¢n(0(—0o0)) — n. Since ¢ is dual to both o(o0) and o(—o0) we conclude that £ is dual
to n. Hence any two points in X (co) are dual. Clearly X (o0) is a perfect set.

To prove the last assertion of the theorem, let U,V C X (00) be nonempty open subsets.
By Lemma 2.8, there is a geodesic wy from o(—o0) to a point £ € U such that wy does
not bound a flat half plane. Since o(—o0) is dual to £, there is a sequence ¢, € I" such
that ¢n(z) — £ and ¢, ' () — o(—o0) for any z € X as n — oco. By Lemma 2.7, if n is
sufficiently large, then ¢, has an axis o, such that n = 0,(c0) € U and o, does not bound
a flat half plane. By Lemma 2.8, there is a geodesic wy from 7 to a point ( € V such that
wy does not bound a flat half plane. Now n and ( are dual and Lemma 2.7 implies the
existence of a I'-closed geodesic of rank 1 with endpoints in U and V. O

We derive some applications of Theorem 4.1 which are relevant in our paper. Applica-
tions to random walks on I' can be found in [Ba2].

4.6 Theorem. Let (X,T') be a compact orbispace of rank 1 and assume that X (o0) con-
tains more than two points.
Then I' contains a free nonabelian subgroup.

Proof. Choose disjoint open subsets U,V € X(oo) with U UV # X(oc0) and let £ €
X(o00) \ (UUV). By Theorem 4.1 there are ¢, € I' such that

dTH(X(00)\U) CU and ¢*(X(c0) \ V) C V.

Let w be a nontrivial reduced word in ¢ and . Since UNV = ) we conclude that w(§) € U
if w starts with a power of ¢ and that w({) € V if w starts with a power of ¢. In either
case w(&) # &, hence w # id. Therefore ¢ and ¢ generate a free subgroup of I'. 0O

We say that X is geodesically complete if any geodesic segment in X is contained in
a complete geodesic.
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4.7 Theorem. Let (X,T') be a compact, geodesically complete orbispace of rank 1 and
assume that X (00) contains more that two points.

Then the geodesic flow of X 1is topologically transitive mod T, that s, for any two
nonempty open subsets U,V C G(X) there are t € R and ¢ € T with ¢g"'(U) N (V) # 0.

4.8 Remarks. (a) Topological transitivity is equivalent to the existence of an orbit of
(g") which is dense mod T.
(b) In general, the geodesic flow is not topologically mixing mod T.

Proof of Theorem 4.7. We let U(oo) (respectively V(oo)) be the set of points o(oo) in
X (00) with o € U (respectively o € V). Then U(oo) and V(oo) are open and nonempty.
By Theorem 4.1, we can assume that U(oo) C V(o0). Let o € U. Then there is a geodesic
o' € V with 0'(00) = o(o0). Since U and V are open there are ¢ > 0 and T > 0 such that
a geodesic ¢ belongs to U if

do(T),e(T)), dlo(=T),6(-T)) <e¢

and belongs to V if
d(o'(T),5(T)), d(a'(=T),5(-T)) < e.

Now let # = 0(T) and 2’ = ¢'(—=T') and choose a sequence (¢, ) in I' such that ¢,(y) —
o(oc) and ¢ '(y) — o(—oc) for any y € X. Let o, be a unit speed geodesic with
on(=T) = 2’ and o,(t,) = ¢n(x), where t, = d(z',¢n(z)) — T. Then o, is in V for
n sufficiently large since ¢,(z) — o'(00) = o(o0). Furthermore ¢, '(g'"ol) € U for n
sufficiently large since ¢, (¢ c!)(T) = z and ¢, ' (2') = o(—c). O

Recall that a compact 2-dimensional boundaryless orbihedron (X,T') with a piecewise
smooth metric of nonpositive curvature is geodesically complete. Thus assertion (ii) of
Theorem D in the Introduction is a special case of Theorem 4.7. We now prove assertion

(1) of Theorem D.

4.9 Theorem. Let (X,T') be a closed 2-dimensional rank 1 boundaryless orbihedron with
a piecewise smooth metric of nonpositive curvature.
Then hyperbolic T'-closed geodesics are dense in the space of geodesics.

Proof. Consider the set U of geodesics o such that a) o passes through a point in an open
face where the Gauss curvature is negative, or b) o passes from one face to another through
a point in an open edge e where the sum of the geodesic curvatures of e with respect to
the two faces is negative, or ¢) o passes through a vertex v and the distance between the
incoming and outgoing direction of ¢ in the link of v is > 7. Then U is open and invariant
under the geodesic flow. Now U is not empty since (X,I') has rank 1. Since the geodesic
flow is topologically transitive, U is dense in the space of geodesics. By Lemmas 2.6 and
2.7, each geodesic in U is a limit of hyperbolic I'-closed geodesics. O
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5. HOMOTOPY INVARIANCE OF RANK 1

5.1 Definition. Let X be a metric space andlet A > 1, B> 0. A curve c: I — X is an
(A, B)-quasigeodesic in X if for all s,¢ € T

A7 s —t| — B <d(e(s),e(t)) < Als —t|+ B.

Note that we do not assume that a quasigeodesic is a continuous curve.

5.2 Theorem. Let X be a locally compact Hadamard space having an azial isometry ¢
with an axis 0. Then o does not bound a flat half plane if and only of for any A > 1, B >0
there 1s R = R(o) such that any (A, B)-quasigeodesic ¢ with ends on o stays in the R-
neighborhood of o.

If ¢ bounds a flat half plane then clearly such an R does not exist. In what follows we
assume that ¢ does not bound a flat half plane. We will need the following three lemmas.
Let P denote the projection to o.

5.3 Lemma. There are constants Ry, T > 0 such that iof z,y € X,
d(z,0),d(y,0) > Ry and d(Pxz,Py) > T then

d(z,y) > d(Pxz, Py) + 1.

Proof. 1f this is not so, there are points x,,,y, € X with d(z,,0),d(yn,0), d(Pxyn, Py,) > n
and d(z,,yn) < d(Px,, Py,)+1. Fix a positive integer m. By choosing n large enough and
applying an appropriate power of ¢, we may assume that the segment of ¢ between Pz,
and Py, contains o([—m,m]). WLOG assume that the points Px,,c(—m),o(m), Py, lie
in this order on o. Let o, be the geodesic connecting z,, to y, and denote by p,,q, € o,
the points for which Pp,, = o(—m), Pq, = o(m). By Corollary 2.3, P does not increase
distances. Hence,

d(@n,pn) = d(Pen,o(—m)) and d(ynqn) 2 d(Pya, o(—m)).

We have
d(xn,yn) = d(zn,pn) + d(pn, qn) + d(gn, yn) -
Therefore,
d(pn; qn) < d(2n,yn) = d(Prn,0(=m)) = d(Pyn,0(m)).
Hence
(5.4) d(pn,qn) < d(o(—m),o(m)) +1=2m + 1.

Let ay, B, be the geodesics from o(—m) to p, and from o(m) to g, respectively. By
passing to a subsequence if necessary, we may assume that «, and [3,, converge to geodesic
rays a and (3. By construction, the angles between o and o, § and ¢ are both at least
n/2. Hence d(a(t),3(t)) is not decreasing. By (5.4), d(a(t),3(t)) < 2m + 1 for all t >
0. Hence o, # and ¢ bound a flat half strip S, with right angles at o(+m). For a
subsequence my — oo the corresponding half strips S,,,, converge to a flat half plane along
o. Contradiction. O
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5.5 Lemma. Let T be from Lemma 5.3. Then for any K > 1 there is Ry > 0 such that
d(z,y) > KT provided d(z,0),d(y,o) > Ry and d(Pxz,Py) > T.

Proof. By Lemma 5.3 and the convexity of the distance, we have
d(z,y) > d(Px,Py) +m >T+m if d(z,0),d(y,0) > mRy,

where m > 1. Now choose m = [(K — 1)T]+ 1 and Ry = mRy. O

5.6 Lemma. Let ¢ : [u,v] = X be an (A, B)-quasigeodesic. Assume that for every t €
[u,v] we have d(c(t),c) > Ry, where Ry is chosen by Lemma 5.5 for K > 2B/T. Let
Pc(u) = o(ty) and Pc(v) = o(t,) and assume that o([ty,t,]) contains a segment o(tg,to+
T) of length T. Then there 1s so € (u,v) with Pc(sg) € o((to,to +T)).

Proof. 1f there is no such sqg then (u,v) = U UV, where
U={s: Pe(s)=o0(t),t <to}, V={s: Pe(s)=0(t),t >t +T}.

KT—-B _ B
———— > —, whenever

Note that by Lemma 5.5 and the choice of K and Ry, |sy — $y| > yl Z =

sy € U, s, € V. Contradiction. 0O

c6)

C(Si +1)

co)

oft) o(t.,)

o(ty)

FIGURE 5

Proof of Theorem 5.2. Set K = max(34*B/T, 25A*) and choose R; by Lemma 5.5. As-
sume that there is § such that d(c¢(3),0) > Ry + B. Set

a=sup{s <35 :d(c(s),0) <Ry + B}, b=inf{s >3 : d(¢(s),0) < Ry + B}.
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Then d(c¢(s),0) > Ry + B for s € (a,b), and hence
Ry <d(c(a),o),d(c(b),0c) < Ry + 2B

since ¢ is an (A, B)-quasigeodesic. Let Pec(a) = o(t,), Pe(b) = o(tp) and assume that
t, < tp. Let m > 0 be such that t, —t, = 2mT + 7, where 0 < 7 < 27T. By Lemma
5.6, there are a = sg < s1 < 82 < ... < Smy1 = b such that Pe(s;) = o(t;) with
ti € (ta+ (20 — 1)T,t, + 2T), 1 < i < m, see Figure 5. By Lemma 5.5 and since ¢ is a
quasigeodesic, we have

A(si —si—1) + B > d(c(si),c(si—1)) > KT,
and hence, B < KT — B < A(s; — si—1), 1 <1 < m. Therefore,

m+1 m—+1
(5.7) Z d(c(sq), e(si—1)) < Z (A(si — si—1) + B)

On the other hand,

K1
> m( yE —-B)>-m— > —2§(tb—ta—2T),
which by the triangle inequality is
> B eta), e(0) — 2Ry —aB —oT) > 2B (4 _a)— AB — 24R, — 44B — 24T
=6 Az e ! ~ 6 A3 ¢ !

and if b—a > 2(2AR, + 5AB + 2AT) def k the latter is

> T K(b— —
_12A3Ix(b a) >2A(b—a)+ B,

which contradicts (5.7). Hence b—a < k. Since ¢ is a quasigeodesic, d(¢(s),c(a)) < Ak+ B
for all s € [a,b] and hence

d(c(s),0) < Ry + 3B + Ax def R.

4

Let T be a finitely generated discrete group and let dp be the word metric on I' cor-
responding to a finite system of generators. Note that any two word metrics on I' are
equivalent and the notion of quasigeodesics (see Definition 5.1) can be applied to T.
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5.8 Definition. A finitely generated discrete group I' has rank 1 if there is ¢ € T" with
the property that ® = {¢*|k € Z} is a quasigeodesic and for any A > 1, B > 0 there exists
R > 0 such that any (A, B)-quasigeodesic ¢ : [a,b] — ' with endpoints on ® is contained
in the R-neighborhood of ®. We call such ¢ a rank 1 element.

Since any two word metrics on I' with respect to finite systems of generators are quasi-
isometric, the notion of rank 1 does not depend on the choice of the word metric. Note
that rank 1 elements in I have infinite order.

5.9 Theorem. Let I' be a group of isometries of a locally compact Hadamard space X
acting cocompactly and properly discontinuously.

Then I' us finutely generated and ¢ € T' 1s of rank 1 if and only if ¢ 1s azial and one
(and hence, any) azis of ¢ does not bound a flat half plane.

Proof. Since X is locally compact, I is finitely generated. Note that for any = € X the map
x:I'—= X, x(v) = vz is a quasi-isometry between I' and X. Hence, for any A > 1, B >0
there are A’ > 1, B’ > 0 such that for any (A, B)-quasigeodesic ¢ : [a,b] — T the curve
(1) =¢()x is an (A', B')-quasigeodesic in X.

Now assume that ¢ € I is axial and that an axis ¢ of ¢ does not bound a flat half
plane. Choose © = ¢(0). Then c¢(a)z,c(b)x € o and, by Theorem 5.2, ¢(-)z is contained
in the R(A’, B')-neighborhood of o. Since y is a quasi-isometry, ¢([a,b]) is contained in
the R-neighborhood of {¢*} for an appropriate R. This proves the “if” statement of the
theorem. The other direction is obvious. [
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6. EUCLIDEAN BUILDINGS AND PRODUCTS OF TREES

We assume throughout this section that (X,I') is a 2-dimensional orbihedron of non-
positive curvature, that all links of X have diameter = and that all faces of X are flat
Euclidean triangles, in particular, all edges are geodesics.

6.1 Lemma. Let A be a connected graph such that the valence of each vertex is at least
3. Assume that A has a length structure with injectivity radius and diameter equal to =.

Then:

) Every geodesic of length < m is contained in a closed geodesic of length 2x.
(i1) If € s a vertex then any n with d(§,n) = 7 s also a vertes.

i) There is an integer k > 1 such that every edge of A has length 7/k.

) If € and n are not vertices and d(€,n) = © then there is a unique closed geodesic of
length 27 containing & and n.
(v) If € and n are vertices, d(&,n) = m and e, f are two edges adjacent to n then there
18 a unique closed geodesic of length 2w containing e, f,£. 1.

Proof. Let o be a geodesic of length = with ends o and w. Whether w is a vertex or
not, there is a way to continue o locally as a geodesic beyond w to a point ( such that
w and ( lie on the same edge. It follows from our assumptions that d(o,w) = 7 and
d(a, () =7 —d((,w) < m. Therefore, the unique shortest connection from « to ( together
with the continuation of o form a closed geodesic of length 27. This proves (i).

To prove (ii) let d(£,n) = m. Then, by (i), £ and n lie on a closed geodesic v of length 27.
Let € be an edge adjacent to ¢ and not contained in v and let ( be a point on e different
from €. As in the proof of (i), d(n,() =7 — d((,€) < =. Hence, ( lies on a geodesic arc p
of length 7 from & to 1. Since the injectivity radius of A is 7, the arc p intersects v only
at £ and n. Hence, n is a vertex. This proves (ii).

Let e, f, g be three edges adjacent to a vertex £. Continue g to a geodesic o of length
m and assume that [(e) :=length(e) <length(f). Let ( be the point on o with d({,() =
m — I(e). Then the distance from the other end of e to  is #, and hence, ( is a vertex
by (ii). Let n be the point on f with d(n,&) = I(e). Then d(n,() = =, and hence, n is a
vertex. This is a contradiction since 7 lies in the interior of f. Hence, the lengths of any
two adjacent edges are equal. This proves (iii).

To prove (iv) assume that £ lies in an edge e with ends &1, &; and n lies in an edge f
with ends ny,7n2. Since d(§;,n) < m, there is a unique shortest connection w; from &; to
n,1 = 1,2. WLOG assume that n; € w;. Since the injectivity radius of A is w, we have
w1 Nwy = n and wy * € * wy 1s the unique closed geodesic of length 27 containing ¢ and 7.
This proves (iv).

To prove (v) let ne,ny # n be the other ends of e and f, respectively. Then 0 <
d(ne,€),d(ns, &) < m, and hence, there are unique shortest connections w,,wy from 7, ny
to &, respectively. Similarly to the proof of (ii), e *we *wy * f is the unique closed geodesic
containing e, f,£. O

6.2 Lemma. Fuvery geodesic in X s contained in a flat plane.

Proof. 1t is sufficient to show that for every [ every geodesic o of length [ is the middle
horizontal line of a flat [ x [ square. By subdividing the faces of X if necessary, we may
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assume that [ is greater than the maximal length of an edge and that all angles are < 7/2.
Set A ={a >0 : o is the horizontal middle line of a flat [ X a rectangle}. Let ag = sup A.
By the local compactness of X, the set A is closed and there is a flat [ x ag rectangle for
which o is the middle horizontal line. We will show now that A is open in [0, 00).

Let o be the middle horizontal line of a flat [ x a rectangle R whose top and bottom
boundaries are geodesics oF : [0,]] — X. We will extend R beyond ot and o~ by flat
strips of width ¢ > 0. We will deal only with o, the argument for o~ is the same. Assume
first that 0% does not contain an open subsegment of an essential edge. For any ¢ € (0,1)
the incoming £(t) and outgoing n(t) directions of & at o (t) lie at distance 7 in S+
and are not vertices. Hence, by Lemma 6.1(iv), there is a unique closed geodesic in Sy+ 4
containing £(t) and n(¢). It follows that ¢ is contained in a unique flat strip S of positive
width e. The strip S extends R.

FIGURE 6

Assume now that o7 contains an open subsegment of an essential edge. Then, by
Lemma 6.1(ii) and Lemma 6.1(v), it consists of essential edges and maybe two segments
of essential edges at the ends. Let tq5 > 0 be the minimal value of the parameter for which
ot (tg) is a vertex, see Figure 6. By assumption ¢y < [. Rectangle R is represented in the
link S,+(4,) by a geodesic arc ag of length /2 if t5 = 0 and of length 7 if ¢; > 0. In either
case extend ag to a closed geodesic wg in S,+(¢,). Extend R by the union Py of closed faces
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adjacent to o (¢g) which are represented by the edges forming wq in So+(t,). Note that
Py is convex since all angles are < /2. Assume that ¢1, tg < t; <[, is the next parameter
value for which 0¥ (1) is a vertex. Then P, is represented in So+(1;) by two adjacent edges
e1, f1 with the incoming direction £(¢1) of ot adjacent to both. One of the edges, say e,
lies in the arc ay representing R in S,+(4,). Note that oy has length 7 if #; </ and /2 if
t1 = [. By Lemma 6.1(v), there is a closed geodesic wy of length 27 which contains f; and
aq and is unique if t; < [. Let P; be the union of closed faces adjacent to o (t1) which are
represented by the edges forming wy in Sg+(4,). Then Py is convex and Py N Py consists of
the two faces represented by e; and f1 in S,+(4,). Therefore, we can extend RU Py by P
to a bigger flat surface. We repeat this process until we construct a flat surface containing
R and a flat strip of positive width which extends it. O

6.3 Lemma. Let A be a connected graph with a length structure of injectivity radius and
diameter equal to w. Assume that the length of each edge in A is 7/2.
Then A 1s a complete bipartite graph.

Proof. Let £,n be two vertices in A with d(£,n) = 7. Let U and W be the sets of vertices
that lie at distance 7/2 and 7 from £, respectively. Clearly there is a vertex ( € U such
that d(&,¢) = d(¢,n) = 7/2. Let (' € U. If d(¢',n) # =/2 then d({’,n) = n. Note that
d({’,¢) = m. Hence the distance from any point between n and ( to (' is greater than .
Contradiction. Hence d((',n) ==/2. O

6.4 Lemma. Let X be a simply connected, locally finite complex of nonpositive curvature
such that all mazimal faces of X are flat rectangles and all links have diameter .
Then X 1s a product of two trees.

Proof. Since X has nonpositive curvature, every link satisfies the assumptions of Lemma
6.3, and hence is a complete bipartite graph. Fix a vertex vg € Vx and declare it a marked
vertex. Choose a vertex &y € 5,, and mark it “horizontal”. Mark “vertical” all vertices
n with distance 7/2 to & and mark “horizontal” all vertices ¢ in S,, with distance 7 to
£o. Mark “horizontal” all edges adjacent to vg which are represented by horizontal vertices
in S,, and mark “vertical” all other edges adjacent to vg. Let w be any vertex of X
connected to a marked vertex v by an edge e. Assign to the vertex {,, representing e in .Sy,
the marking of e. Now mark accordingly the rest of the vertices in .S, that is the vertices
with distance 7 from &, get the same marking as £, and the vertices with distance 7/2
get the opposite marking. We claim that this process can be used to mark consistently all
vertices in the links of X and all edges in X. Since X is simply connected, it is sufficient
to check that no contradictions arise for one face of X. Let u be a vertex of a maximal face
F. let v,w be the vertices of F' connected to u by edges ¢, f, and let v’ be the diagonally
opposite vertex of the rectangle F'. Assume that all vertices in the link 5, have horizontal
or vertical markings. Note that Z(e, f) = 7/2, and hence, e and f have different markings.
WLOG assume that e is horizontal and f is vertical. Let g be the edge connecting v to u’
and let h be the edge connecting w to u’. Then Z(e,g) = Z(f,h) = x/2, and hence, ¢ is
vertical and h is horizontal. Therefore, the markings for S,+, obtained by moving through
e * g and through f * h, coincide.

Hence, every edge of X is marked either “horizontal” or “vertical”. When two edges
e, f are adjacent, they have the same markings if Z(e, f) = 7 and different markings if
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Z(e, f) = /2. Now let w be any vertex. Denote by T} the connected component of the
union of horizontal edges which contains w and denote by T, the connected component of
the union of vertical edges which contains w. It is clear now that X =Ty, x T,,. O

6.5 Theorem. Let (X,T) be a compact 2-dimensional orbispace without boundary and of
nonpositive curvature. Assume that all links of X have diameter w, that all faces of X are
Euclidean triangles and that all edges are geodesics.

Then either all angles between essential edges of X are w/2 and © and X s the product
of two trees, or at least one angle i1s w/k, k > 3, and X is a thick Fuclidean building of
type As, By, or G;.

Proof. By Lemma 6.2, X is the union of embedded flat planes. Let F' be such a plane. It
follows from 6.1(ii) that any line ¢ in F' containing an essential edge of X is the union of
essential edges.

Suppose first that F' does not contain essential vertices of X. Then, by what we said
above, the union of essential edges in F' is a set of parallel lines in F' (an intersection would
produce an essential vertex). If F' does not contain an essential edge then X = F since a
fundamental domain of I' has finite radius. If X # F. let # ¢ F and let y be the point
in F' closest to . Then there is a line ¢ of essential edges in F' through y, such that the
geodesic v from z to y is perpendicular to o at y (recall that diam S, = 7). Hence, a ray 4’
in F from y and perpendicular to ¢ is a geodesic continuation of v, and ~ %~ is contained
in a flat plane F’. By our assumption on F' we have FF N F' = H, where H is the half
plane in F' determined by ¢ and 7’. It follows that all essential edges in F’ are parallel to
o in F'. We can see now that X is the product of an (essential) tree with a line (in the
direction of o).

Suppose now that F' contains an essential vertex v. If @ = a(v) is the common length
of edges in S,, see Lemma 6.1, then o = w/m for some m > 2. Hence there are m
lines of essential edges in F' passing through v such that the angle between consecutive
lines is w/m. These lines cut out m triangular surfaces from F. If F' does not contain
another essential vertex, then a fundamental domain of T' lies completely inside one of
these triangular surfaces, a contradiction. Hence there is another essential vertex in F.
Since the angles at essential vertices are 7/n, n > 2, it follows that the maximal faces of
X in F are either rectangles or triangles.

Suppose that a maximal face A in F is a triangle and let e be an edge of A. By Lemma
6.1(iii), the maximal face A’ of X in F opposite to A along e has interior angles at the
ends of e equal to the interior angles of A. Hence A’ is the reflection of A along e. It
follows that the maximal faces in F' are all isometric and that the tesselation of F' by them
is of type Aj., By or G.

Now let €’ be any essential edge in F' with ends v/, w’ and A’ D ¢’ be any maximal face
not lying in F'. Take a segment w in A’ which is parallel to ¢’ and close to it. Extend w to
a geodesic o. By Lemma 6.2, there is a flat plane F’ containing o, and hence, containing
A’. The angles o, 3 at v/, w’ in F’ are the same as in F. Hence, A’ is equal to the triangles
in F. Therefore, all maximal faces of X are equal triangles. Note that any flat plane F' in
X is partitioned into triangles that are maximal faces of X and this partition is invariant
under the reflections with respect to all essential edges in F.

We claim now that X is a thick Euclidean building whose apartments are flat planes
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and chambers are maximal faces of X. We must verify the following properties.

1) X is the union of flat planes. That is so since every geodesic lies in a flat plane.

2) If the intersection Fy N F, of two planes contains a maximal face A, then there is
a unique Coxeter isomorphism between F; and F, fixing Fy N F,. This follows from the
fact that Fy N Fy is convex and the position of any triangle in a flat plane F; uniquely
determines the positions of all other triangles.

3) For any two maximal faces Ay, Ay of X there is a flat plane F' containing both. To
see this connect the centers of A; and A, by a geodesic 0. By Lemma 6.2, there is a flat
plane which contains o, and hence, contains both Ay and As,.

Assume now that a maximal face A C Fis a rectangle. Then the argument above shows
that all maximal faces of X are rectangles and the length of each edge in each essential
link is 7/2. Then, by Lemma 6.3, each link of X is a complete bipartite graph, and by
Lemma 6.4, X is the product of two trees. [
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7. RANK 1 ORBIHEDRA

In this section we will consider the situation complementary to that of Section 6 and
will show that I' contains a rank 1 isometry. We start with several lemmas that allow
us to reduce step by step the class of spaces X. After Proposition 7.7 we are reduced
to the situation when all edges of X are geodesics, all faces are flat triangles and the
angles between essential edges in all links are rational. To handle this case we introduce a
parallel dihedral structure in X and prove in Proposition 14 that, if there is a link in
X of diameter > 7w, then I' has rank 1.

Let (X,T') be a compact 2-dimensional boundaryless orbihedron with a piecewise smooth
metric of nonpositive curvature. We fix a I'-invariant triangulation on X such that the
metric d on X is induced by a piecewise smooth Riemannian metric on this triangulation.

7.1 Lemma. Assume that

(1) there is a point xo n an open face F of X such that the curvature of F at xg 1s
negative, or

(ii) there is a point xg in an open edge e of X such that the sum of the geodesic
curvatures of e in two adjacent faces Fy, Fy 1s negative at xg.

Then there is a T'-closed geodesic o such that in Case (i) o passes through a point v € F
and the curvature at x is negative, and in Case (1) o passes from Fy to F, through a
point x € e and the sum of the geodesic curvatures of e at x with respect to Fy and Fs 1s
negative. In both cases o 1s hyperbolic.

Proof. In either case there is a geodesic w such that w(0) = g, w does not bound a flat strip
and does not pass through vertices. By the Poincaré recurrence theorem (see Corollary
3.5), there are geodesics w, — w, isometries ¢, € I' and real numbers ¢, — oo such that
6 g (wn)) = w. Tt follows that ¢pze — w(oo) and ¢, 'zg — w(—oc) as n — oo. By
Lemma 2.7, if n is large enough then ¢, has an axis 0,, and o, (+00) — w(+oo) as n — oo.
Since w does not bound a flat strip, 0,, — w as n — oo. Hence, for n large enough the axis

o passes through a point z as claimed. O

7.2 Lemma. Assume that there is a verter vo of X whose link S,, has the property that
for any point £ € Sy, the set {n € Sy, : d(&,n) > =} is not empty. This happens, in
particular, when S, s not connected.

Then there 1s a T'-closed geodesic o passing through vo and making an angle > © at vg.

Proof. By the compactness of the link S, , there is 6 > 0 such that for any £ € 9, there
is a point n € S,, with d(§,n) > m 4+ . Let & be any point in S,, and let og be any
geodesic in X such that 0¢(0) = vo and the outgoing direction of o in S, is £y. Denote
by R the diameter of a fundamental domain for I'. Then there is an isometry ¢¥g € T’
such that d(¢ovg,0(4R/d + R)) < R. Let wp be the geodesic connecting vy to v1 = 1gvo.
Then the outgoing direction g of wg at vg satisfies d(ng, &) < 0/4. Let (o be the incoming
direction of wy at vy and let & € S,, be such that d(&1,(p) > 7+ d. Let o1 be a geodesic
such that 01(0) = vy and the outgoing direction of oy at vy is £. There is an isometry
Y1 € T such that d(vyv1,0(4R/6 + R)) < R. Let wy be the geodesic connecting vy to
vy = tvy. Then the outgoing direction n; of wy at vy satisfies d(n1,&) < §/4. Set
¢2 = 11g. Proceed in this manner to construct isometries ¥, ¢, = ¥,_1--- g, and
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geodesics wy, such that the distance in Sy, ., between the incoming direction (,—1 of wy_4
and the outgoing direction 1, of wy, is at least 743§ /4. The last inequality implies that the
concatenation of the geodesics w,, is a geodesic in X. By the compactness of the link 9,
there are two integers m,n, 0 < m < n, such that d(¢;, ' n,, ¢, nm) < §/4. Set ¥ = ¢}
and o = ¢! (W * W1 * - - *wp—1). Then the concatenation w of the geodesic segments
V¥ (0), k € Z, makes an angle > 7 at vy and is an axis of 1». [

7.3 Lemma. Let v be a vertez in X and suppose that £,n € S, are such that d,(§,n) = 7.
Then for any ¢ > 0 there are £, n' € Sy, an 1sometry ¢ € T and a geodesic w connecting
v to ¢v such that the outgoing direction of w at v is &', the incoming direction of w at ¢v

is ¢n' and d,(€',€),d,(n',n) < e.

Proof. We subdivide the faces of X, if necessary, by the geodesic segments e and f starting
at v in the directions £ and n, respectively, and assume WLOG that e and f are edges of
X. Let 6 be a shortest connection from ¢ to n in S,. Then the union of the faces of X
represented by the edges in S, forming 6 is a polygon P with angle m at v between e and
f. By subdividing further, if necessary, we may assume that P is convex. Let v, and vy be
the other ends of e and f and let ¢ # e and f' # f be the other edges of P adjacent to v,
and vy, respectively. Fix § > 0 and let €’ and f" be the subsegments of ¢’ and f' of length
0 containing v, and vy, respectively. Let G be the set of geodesics ¢ which do not pass
through vertices, contain segments connecting points from €’ to points from f" and such
that o(0) € P. Then G has positive Liouville measure. Hence, by the Poincaré recurrence
theorem (see Corollary 3.5), there is a geodesic o € G, an isometry ¢ € I' and T > 0,
which can be chosen arbitrarily large, such that ¢=(g7(c)) € G. For a large enough T
and small enough § the geodesic w connecting v to ¢v satisfies the requirements of the
lemma. O

7.4 Lemma. Assume that there is a vertex v in X whose link has the following property:
there exist points ;,mi € Sy, @ = 1,2,...,n, such that d(&,n;) = =, d(ni,&i41) > w0 =
L2,..,n—=1, and d(n,, &) > 7.

Then there 1s a T'-closed geodesic o passing through v and making an angle > © at v.

Proof. Let d(ny, &) = 7+ 4§ with § > 0. Fix any positive ¢ < §/(2n) and use Lemma 7.3 to
construct geodesics w; and isometries ¢;. Set ©; = ¢;...p2¢1 and w = wykPrwWa k... ¥y _1wWy,.
Then w consists of geodesic segments with angles > © — 2¢ at the n — 1 break points, its
starting direction is at distance < ¢ from ¢; and its ending direction at ¢, (v) is at distance
< ¢ from ¢, (ny,). By Lemma 2.5, the incoming direction of the geodesic o from v to ¢, (v)
at ¥, (v) and the image of its outgoing direction under 1, lie at distance > 7 in Sy, ().
Hence, the geodesic

...*;/;;ka*...*;b;la*a*;/;na*...*;/}',ja*...

is an axis of ¢, and satisfies the requirements. [

The assumption diam S, > = is not sufficient for the existence of a finite sequence of
pairs of points &;, n; as in Lemma 7.4 — the 1-skeleton of a tetrahedron with all edges of
length 27 /3 is a counterexample. However, as an immediate consequence of Lemma 7.4
we have
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7.5 Corollary. Letv be a vertex in X such that diam S, > 7 and there is a closed geodesic
in S, whose length is an wrrational multiple of w.
Then there 1s a hyperbolic azial isometry b € I'. O

7.6 Lemma. Let v be a vertex in X such that the link S, contains a simple arc w of length
[ > m whose end points £ # n are essential vertices and whose interior does not contain
essential vertices.

Then there 1s a T'-closed geodesic o passing through v and making an angle > © at v.

Proof. If | > 2w, the statement follows from Lemma 7.2. We assume that [ < 27, the
argument for the case [ = 27 is similar. Let ( be the midpoint of w. Since £ is essential,
there are at least two ways of extending the subarc from ¢ to { beyond £ to arcs weq,wea of
length 7. Similarly, there are at least two extensions w1, wy2 of [(,n] C w beyond n to arcs
of length 7. Recall that [ > =, the injectivity radius is 7 and there are no essential vertices
in the interior of w. Hence there exist indices ¢, 7 such that w¢; does not intersect any arc
of length m —[/2 starting at n and w,; does not intersect any arc of length = —[/2 starting
at {. Therefore, w can be extended to a simple arc w’ in S, of length 2(7 +¢), € > 0, which
contains wg; and wy;, does not intersect other arcs from ¢ and n of length = — /2, and
for which ( is the midpoint. Let o and § denote the ends of w’. Consider the following
points on w: & lies on we; at distance ¢ from (, ny = «, & lies on w,; at distance ¢ from
¢, ;1 = B. By construction, d,(&o,m ), dy(€1,10) > 7. Hence, Lemma 7.4 applies and the
lemma follows. [

7.7 Proposition. Let A be a finite graph with a length structure of injectivity radius 1.
Assume that every vertex is adjacent to at least 3 edges and that the length of every closed
geodesic in A 1s rational.

Then the length of every edge s rational.

Proof. If an edge connects a vertex to itself then it is a closed geodesic and its length is
rational by assumption. To treat other cases we need the following auxiliary statement.

7.8 Lemma. If f is an oriented edge with different ends then there i1s a geodesic loop ¢
in A starting with f and ending with f=1.

Proof. Let e connect v to w # v. By assumption, A\ f is a nonempty graph with every
vertex adjacent to at least 2 edges. Therefore, A\ f contains a geodesic loop ¢’ at w. Now
let c= f*c'*f 1. O

We continue now with the proof of Proposition 7.7. Let e be an edge connecting = to
y # x. If there is an edge f # e starting and ending at = then f := ¢, is a closed geodesic
at . Otherwise there are 2 oriented edges f1, fo starting but not ending at . By Lemma
7.8, there are geodesic loops ¢y, ¢y for fi1, f2 such that ¢, := ¢ * ¢z 1s a closed geodesic at
z. We construct ¢, in a similar way and note that ¢ = ¢, * e * ¢, * €' is a closed geodesic
and 2length(e) = length(c) —length(c, ) —length(c,). This finishes the proof of Proposition
7.7 O

By Proposition 2.11, Lemma 7.1 and Lemma 7.2 we can assume that all edges of X
are geodesics, that all faces are Euclidean triangles and that all links are connected. By

Corollary 7.5, Lemma 7.6 and Proposition 7.7 we can assume that all angles between
adjacent essential edges are rational multiples of 7 and < 7.
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7.9 Definition. A parallel dihedral structure D of order ¢ in X is a family of subsets
D, CS;, x € X, such that

(i) for any z € X and £ € D, we have

k
D,={nesS,:d&n)= T for some integer k};
q

(i) if 2,y € X belong to the same open face F' then D, and D, are parallel in F
(iii) if # € X lies in a closed face F' and ¢ € D, belongs to T, F then for any y in the

interior F' there is n € D, parallel to  in F;
(iv) if # € X lies in an essential edge e then the point £ € S, representing e lies in D,.

Clearly (m,n)-complexes with their canonical piecewise flat metric (see Section 1) are
examples of complexes with a parallel dihedral structure.

7.10 Remark. If X has a parallel dihedral structure of order ¢ then
(i) the length of any closed geodesic in any link of X is an integer multiple of 7/q,

(i) if z; lies in an open face F;, 1 = 1,2, and the faces Fy, F, are adjacent by an edge
then D, || Dy, in the union of the faces.

Recall that a maximal face of X is a connected component of the union of all open
faces, inessential edges and interior vertices (see Section 2).

7.11 Lemma. If all angles between adjacent essential edges of X are < =, then every
mazimal face of X s locally convex. [

7.12 Proposition. If the angles between the essential edges of X are rational multiples
of m and < m, then X has a parallel dihedral structure.

Proof. The assumptions do not immediately imply the existence of a parallel dihedral
structure because the union E’ of closed essential edges of X may be disconnected.

If ' = () then X has a parallel dihedral structure by the well known classification of
planar lattices. If E’ # () then, by Lemmas 7.11 and 2.4, the maximal faces of X are
embedded polygonal subsets in the plane. Since I' acts cocompactly, maximal faces of
X do not contain arbitrarily large disks. Therefore, we have the following possibilities
for a maximal face F: 1) a convex polygon, 2) an infinite flat strip, 3) two parallel rays
whose ends are connected by a finite polygonal line, see Figure 7. Let ¢ be the common
denominator of all angles between adjacent essential edges. If x € X is a point lying on
an essential edge e then let D, C S, consist of the point £ representing e and all points
n € S, for which d;(n,§) is an integer multiple of 7/q. For any other y € X lying in the

interior F' of a maximal face F' choose any « € OF and define D, as the parallel translation
of D, from z to y in F. In Cases 1) and 3) all essential edges forming OF belong to the
same connected component of E’, and hence, the set D, does not depend on the choice of
z € OF. In Case 2) there are two connected components of E’ but they are parallel, and
D, also does not depend on where z lies in OF'. It is easy to see that this defines a parallel
dihedral structure on X. O
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7.13 Lemma. Let X have a parallel dihedral structure D and let ¢ be an axial isometry
with an axis o which bounds a flat half plane and whose direction does not belong to D.

Then the set P of geodesics parallel to o 1s a plane and T' contains a subgroup acting
cocompactly on P.

Proof. Since the direction of o is not in D, the set P is the product of a line (in the direction
of 0) and an interval. Since o bounds a flat half plane, the interval is infinite. Assume that
P is not a plane. Then it is exactly a flat half plane with boundary ¢’ invariant under ¢.

Let F' be a fundamental domain of T', set ¢'(0) = z¢ and let z, be the point in P that
lies on the perpendicular to ¢’ through xg at distance 2nxdiam F' from z¢. Let o, be the
geodesic passing through z, and parallel to ¢’. Note that o, is an axis of ¢. There is
tn € T such that y, = Y2, € F. The geodesic 1, (0, ) passes through y,, and hence,
through F and is an axis of ¢, ¢ . Observe that the displacement of y, by ¥,¢v 1 is
equal to the displacement of xg by ¢ and all y,,’s lie in F. Hence, by the discreteness of T’
there are infinitely many pairs m # n such that ¢,¢¢ ! = ,ép-1. Hence ¢ commutes
with @ = ¢ -11,. Note that 1 # id by the choice of z,. Since 1) commutes with ¢, it
leaves invariant the set of axes of ¢. By composing t» with itself, if necessary, we may
assume that 1) preserves orientation in P. If m > n then ¢ moves x,, away from ¢’ in P,
and hence, moves zg away from ¢’ in P. This is a contradiction. Hence, P is a plane. The
same argument implies that the group generated by ¢ and ¥ acts cocompactly on P. O

7.14 Proposition. Assume that X has a parallel dihedral structure D of order q and that
there 1s a vertex v wn X such that S, has diameter > «.

Then there is an axial isometry » € T with an axis which does not bound a flat half
plane, and hence, T s of rank 1.

Proof. By doubling D if necessary we may assume that ¢ is even. Suppose that all axes
of the isometries from I' bound flat half planes. If there is no essential edge adjacent to v
then S, is a circle and, by Lemma 7.2, there is an axial isometry in I' with a hyperbolic
axis. Hence, we may assume that there is an essential edge e adjacent to v. Choose two
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points £, mn €S, such that

i S and lie on a minimal geodesic Y ( SU of length > T,

) T
= d DU = —,
i) d€, D) = d(y, Dy) =
(iv) the balls B(¢, 4—) and B(n, 41) centered at { and n are contained in 7.
q q

By construction, we have:

(7.15) if ¢ € B(¢, 2 ) n' € B(n, — 2 ) then there is no closed
q q

geodesic in S, of length 27 containing ¢’ and n'.

By Lemma 7.3, for any ¢ > 0 there are {',n' € S,, an isometry ¢ € I' and a geodesic w
connecting v to qbv such that the outgoing direction of w at v is &, the incoming direction
of wat ¢v is ¢n’ and d,(¢',€),dy(n',n) < e. By passing if necessary to the geodesic
connecting the ends of w * w, we may assume that the isometry ¢ corresponding to w is
a square. Let o be an axis of ¢ and let 7 be the shortest connection from v to o. Set
a = ZLy(1,0), B = Lyv)(¢(7),w) and denote by o’ and 3’ the angles formed by 7,0 and
¢(7), 0, respectively. Obviously, o/, 3" > n/2. By Corollary 2.3, a+ o' < mand g+ 3 <=
since d(v,0) = d(¢(v),0). Note that a + 3 > m — 2¢ by the choice of w. Hence

S-2<af<T<a BT+,

We are not using it but actually o’ + ' = 7, and hence, o' = 3’ = 7/2. Let vy,v2,...,v,
be the vertices lying in the interior of 7 in consecutive order and let v’ be the intersection
point of 7 and o. Denote by o; the geodesic connecting v; to ¢(v;) and let oy, o, 53;, 51, i =
1,...,n, be the angles indicated in Figure 8. Since 7 and ¢(7) are geodesics, we have
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ait+aol>m Bi+ 06l >m 0=1,..,n By Lemma 2.5, all these angles are between /2 — 2¢
and 7/2 + 2e. Let §; denote the defect of 7 at v;, that is §; = d; — 7 > 0, where d; is the
distance in S,, between the incoming and outgoing directions of 7. Note that «a;, o) < w,
and hence, a;,a} realize the distance from these directions to the direction of o; at v,.
Therefore, o; + o) > 7+ ;. Similarly, 3; + 3. > m + d;. Since the sum of the angles of any
geodesic quadrangle is at most 27, we have:

2in+U)r > o'+ 8 a1+ B+ Y (afy+ B +ai+Bi)+a,+8, +a+p

1=2

> (aitai+Bi+B)+a +8 +a+B8>2mr+2) & 427 —4e.
i=1 i=1
Hence, Y i, i < 2e.
Let 67 denote the outgoing direction of 7 at v. Then d,(67,D,) > 21 — 3¢ since
q

q is even and 7/2 — 2¢ < a < 7/2. Let 6 and 6 denote the outgoing and incoming
directions of T at v;, respectively. Then d,, (67, D, ) = d,(6%,D,) > 21 — 3¢, and hence,
q

s
dy, (6F,D,,) > 2% —3e—41. Repeating this argument, we obtain for the incoming direction

0~ of T at v’

dy (0~ Dy) =dy (67, Dy V> = —3: =% 6 > — _5¢c.
( Y ) n(n’ n)—2q 36 Zz:; —2q 55

Let ¢ be the direction of o at v'. Since 7/2 < o' < 7/2 + 2¢, we have

v
1 dy Dy ) > — — .
(7.16) (¢ ) > 5 Te

Therefore, if ¢ is small enough then ¢ ¢ D,.

By our assumption, ¢ bounds a flat half plane. By Lemma 7.13, the set P of geodesics
parallel to o is a plane and, since ¢ a square, it acts as a translation in P in the direction
of o. WLOG assume that 7 is the shortest connection from v to P. Recall that o' <
7/2 4 2¢ < 7. Hence, 7 and o locally span a unique flat sector S in X with angle o’ at
the apex v’. Since the direction of ¢ is not in D, there is a subsector S’ of S containing

o and lying in P. By (7.16), the angle of S’ at v’ is at least 21 — Te. It follows that the
q
angle between 7 and P is at most

For a small enough ¢ the right hand side is less than /2 which contradicts the fact that
7 1s the shortest connection from v to P. Hence, w lies in P and is parallel to o. This
contradicts (7.15). O

33



8. EUCLIDEAN BUILDINGS

A general reference for the following is [Bro]. Recall that a Tits building is a simplicial
complex X which is the union of subcomplexes, called apartments, such that

(B0) each apartment is a Coxeter complex;

(B1) for any two simplices A, A" in X, there is an apartment containing both of them;

(B2) for any two simplices A, A" in X and apartments F, F' containing both of them,
there is an isomorphism F' — F' fixing A and A’ pointwise.

We may take A and A’ to be the empty simplex in (B2), and hence any two apartments are
isomorphic. In particular, all apartments have the same dimension. Simplices of maximal
dimension are also called chambers. Axiom (B2) can be replaced by the following axiom,

see [Bro, p.77]:

(B2’) if F,F' are apartments with a common chamber C', then there is an isomorphism
i: F— F' fixing F N F' pointwise.
We say that X is a Euclidean building if its apartments are Euclidean Coxeter com-
plexes. A Euclidean building has a canonical piecewise smooth metric d consistent with
the Euclidean structure on the apartments and turning it into a Hadamard space.

Let X be a Euclidean building of dimension n, equipped with the complete system of
apartments and the canonical metric d. Then a subset of X is an apartment if and only
if it is convex and isometric to R™. For this reason, we call the apartments of X flats.
Every geodesic of X is contained in a flat.

Let Ap be the group of automorphisms of a flat F' preserving the triangulation. Then
Ap preserves the metric, and hence, Ap is a Bieberbach group of rank n. The subgroup
Tr C Ap of translations is a normal and maximal abelian subgroup. It is free abelian of
rank n and has finite index in Ap.

8.1 Remark. The triangulation of F is defined by a finite number & of pairwise transverse
families Hy,...,Hr of parallel hyperplanes in F which are called walls. The (n — 2)-
skeleton of F' consists of the intersections of walls H; N H; with H; € H;, H; € H; and
i # j. The open (n — 1)-simplices are the complements of these intersections in the walls.

The Coxeter group Wr C Ap of automorphisms of F' generated by the reflections in
the walls H € H = Ule ‘H; has finite index in Ap.

Fix a flat F' and a translation 7 € Tp. We say that a translation 7/ of a flat F’ is
conjugate to 7 if there is an isomorphism ¢ : F' — F such that 7’ =i ' o7 04. Thus a
translation 7’ of F' is conjugate to 7 if and only if 7’ is conjugate to 7 in Ap. It follows
that the number of translations of a flat F’ conjugate to 7 is equal to the number m of
elements in the conjugacy class of 7 in Ap.

We say that a geodesic o is special (with respect to 7) if ¢ does not meet the (n — 2)-
skeleton of X and if there is a flat F' containing ¢ and a translation 7’ of F’ conjugate to
7 such that

T’(J(t)) =o(t+tg) forallt € R,

where to = ||7'|]] = ||7]| > 0 is the displacement. This is independent of the flat F’
containing o : if F"' is another such flat, then ¢ C F' N F". Since o does not meet the
(n — 2)-skeleton of X, this implies that F' N F" contains an n-simplex. Hence there is an
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isomorphism i : F"" — F' fixing ¢ pointwise and 7" = i~ o 7/ 07 is a translation of F"

conjugate to 7 and shifting ¢ as required.
If o is special with respect to 7, if F’ is a flat containing o, and if 7 : F/ — F" is an
isomorphism to another flat F”/, then 7 o ¢ is also special with respect to 7.

8.2 Example. Let B be an open (n — 1)-simplex in X, and let F' be a flat containing
B. Consider the system H of walls as in Remark 8.1. Then B C H € ‘H; for some
i, 1 <1< k. If H € H,; is another wall, then the composition 7 of the reflections in H
and H' is a translation of F' perpendicular to B. A unit speed geodesic ¢ in a flat F’ is
special with respect to this 7 iff it does not meet the (n — 2)-skeleton of X and if there is
an isomorphism 7 : F/ — F such that i o ¢ intersects B perpendicularly.

8.3 Lemma. Let o be a special geodesic in a flat F'. Suppose that w is a geodesic with
0(0) = w(0) and 6(0) = w(0). Then w s also special. More precisely, if w is contained in
a flat F", then there is an isomorphism i : F"" — F'" with i(w) = 0.

Proof. Since special geodesics do not meet the (n — 2)-skeleton of X and intersect the
(n — 1)-skeleton transversally, there is an n-simplex C of X and an € > 0 such that

w(t)=0(t)eC, 0<t <e.

Hence C C F'N F" and therefore there is an isomorphism ¢ : F" — F' fixing F' N F"
pointwise. Then i(w) =7. O

8.4 Lemma. Suppose 7' 1s a translation of a flat F' which 1s conjugate to 7. Denote by v
the parallel field of unit vectors in F' in the direction of 7'. Let B be an open (n—1)-simplex
of F' transverse to 7’.

Then there is an open and dense subset B(t') C B of full measure and an ¢; > 0 such
that a geodesic o in F' with x := 0(0) € B and dy(6(0),v(x)) < &1 1s special iff + € B(7')
and 6(0) = v(z).

Proof. If m is the number of elements in the conjugacy class of 7 in Ap then there are m
directions in F” which special geodesics can point in. Hence a geodesic o approximately
pointing in the direction of v can be special only if 6(0) = v(z), where z = ¢(0). If
7(0) = v(z), then o is shifted by 7/ and o does not meet the (n — 2)-skeleton of X if
o([0,]|7']]]) does not meet the (n — 2)-skeleton of F. 0O

We return to our discussion in Section 3. For a point z in an open (n — 1)-simplex adja-
cent to an n-simplex C denote by S”/C C S?C the directions tangent to special geodesics.
Then S”C contains at most m elements. Let Cy,... ,C, be the n-simplices adjacent to an
(n — 1)-simplex B. We set

S” =Ul_,S7C; and V; = Uzex:Sh.

Then V; C V by the defining property of special geodesics.
There is a natural measure v on V; (the conditional measure of p, see (3.1)):

(8.5) dv(v) = cos8(v)dz,
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where = is the foot point of v and dz the volume element of X' (see the beginning of
Section 3).

By the definition of V;, we have F(v) C V; if v € V;, and hence the Markov chain
with transition probabilities given by (3.2) restricts to a Markov chain with state space
Vr. One can check easily that the measure v given by (8.3) is stationary and hence gives
an invariant measure v* for the shift in the space V¥ of sequences (v, )nez in V;.

Denote by G, the set of geodesics which are special with respect to 7. Then G, is
invariant under the geodesic flow and under automorphisms of X. We may think of V* as
a cross section in G, where the return map (of the geodesic flow g') corresponds to the
shift on V*. Hence v* defines an invariant measure v, for g on G,.

Let T' be a group of automorphisms of X which acts properly discontinuously and
cocompactly. Since I' leaves G, invariant, the measure v, gives a finite invariant measure
for the induced action of ¢g' on G,/T'. Thus the Poincaré recurrence theorem implies the
following corollary.

8.6 Corollary. Every special geodesic o is nonwandering mod T, that is, there are
sequences o, € Gr, ¢ €T and t, € R with 0, — 0, t, = +00 and én(g'"(0,)) = o. O

Recall that special geodesics intersect the (n — 1)-skeleton transversally.

8.7 Lemma. Let o be a special geodesic intersecting an (n — 1)-simplex B transversally
at r = o(0).

Then there is an €3 > 0 with the following property: if w is a geodesic with w(0) = z
and w(0) = 6(0), if w(t) is in an (n — 1)-simplex B' and if f: B' — B is an isomorphism
(of simplices) with d(f(w(t)),z) < e2, then f(w(t)) = x.

Proof. Let F' be aflat containing o and F"’ a flat containing w. By Lemma 8.3, w is special
and hence B’ C F". Furthermore, there is an isomorphism ¢ : F" — F' with i(w) = o.
Hence we may assume w = ¢ and F" = F’.

Now o is shifted by a translation 7’ of F’ conjugate to 7. Since 7’ is an automorphism
of F', there are only finitely many (combinatorial) possibilities for the intersection of o
with (n — 1)-simplices. O

8.8 Lemma. Suppose ¢ is a finite segment of a special geodesic o.
Then there 1s a T'-closed geodesic containing o.

Proof. Let F' be a flat containing o. By reparameterizing ¢ and enlarging the given
segment of o if necessary, we may assume that z = ¢(0) is in an open (n — 1)-simplex B
and that ¢ = ¢([0,T]) with T > 0. By Lemmas 8.3 and 8.4, there is an ¢ > 0 with the
following properties:
(1) for any special geodesic w intersecting the balls B.(o(—1)) and B.(o(T + 1)), the
segment w N F’ is parallel to o in F’.
(2) if w is a geodesic with w(0) € F', w(0) parallel to ¢(0) in F’ and d(z,w(0)) < e,
then w is special.
By Corollary 8.6, there are sequences o, € G, ¢, € I' and ¢, € R such that o, —
o, t, = oo and ¢ng'"o, — o. Since ¢ does not meet the (n — 2)-skeleton of X, we
conclude that

oa(t): (bng'mon)(t) €F, —1<t<T+1
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for all n sufficiently large. By a small change of the parameterization of ¢, and a small
change of ¢, we may assume that ¢,(0) and (¢,9"0,)(0) are in B.

Now o, and ¢,g'"0, are special. For n large enough they intersect B.(o(—1) and
B.(c(T + 1)), and then o, N F' and (¢,g'"0,) N F' are parallel to o in F' by (1). In
particular, 6,(0) and ¢,.(0y(t,)) are parallel to ¢(0) in F'.

Let F, be a flat containing o,,. Since special geodesics do not meet the (n — 2)-skeleton,
o([0,T]) = ¢ is in F,, and parallel to o, in F, for all n sufficiently large. Let w, be the
geodesic in F,, with w(0) = z and w,(0) = 6(0). Then w,, is parallel to o, in F, and 7 is
contained in w,. Since ¢pg""c, — o and d(wy,0,) — 0, we conclude that d(wy,(t,),z) —
0. Hence, by Lemma 8.7 ¢ (wy(tn)) = @ for all n sufficiently large. Since ¢p.(0n(t,)) is
parallel to 6(0) in F' and w,, is parallel to o, we have that ¢,.(w,(t,)) = 6(0) = w,(0).
Therefore,

Ukezdn(wn([0,1n]))

is a geodesic invariant under ¢, and containing . [

Let I'r denote the stabilizer of a flat F' and let
w={¢pelF : ¢(z) =z forall x € F}.

Then Ap := I'p /T is (isomorphic to) a subgroup of Ap. We say that F' is I'-closed if
I'r acts cocompactly on F, that is, if Ap has finite index in Ap. If F' is I'-closed, then
Tr N Ap has finite index in Tr and Ap.

8.9 Theorem. Let K be a compact subset of a flat F in X.
Then there is a I'-closed flat F' containing K.

Proof. Let 7 € Ty be a translation in a direction which is not tangent to any of the walls
of F. Let o be a unit speed geodesic in F' shifted by 7 and not passing through the
(n — 2)-skeleton of F. Then F is the unique flat containing o.

Consider the system of pairwise transverse families Hy, ... ,Hi of walls in F. By a half

flat in F' we mean the part of ' on one side of a wall. For each ¢, 1 < < k, there are half
flats Fit and F~ in F with boundaries H;”,Hi_ € H; such that K C Fi+ N F,. By our

(3 (3
assumption on o,

o =0 (F{" NE")

is a finite segment of o. Let o be a finite segment of ¢ containing o;, 1 <1 < k, see Figure
9.

By Lemma 8.8, there is a I'-closed geodesic o' containing . Let F’ be a flat containing
a’. By the choice of ¢, FFN F' is a convex subset of F' with interior. Hence the boundary
of FN F'is a union of closed (n — 1)-simplices. It follows that F' N F’ is the intersection
of half flats. Note that o; is contained in F' N F’. Hence the half flat containing F' N F’,
bounded by a wall H in H;, must contain F{" N F;. Therefore K C F N F'.

There is a unique isomorphism j : F' — F fixing F' N F'. Hence, j(¢') = o, and o’
is not parallel to any of the walls in F' and does not pass through the (n — 2)-skeleton
of F'. Tt follows that F’ is the unique flat of X containing ¢’. Let ¢ € T shift ¢’. Then
¢(F') = F', by the uniqueness of F'. By passing to a finite power of ¢, we may assume
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that ¢ is a translation of F'. Now the argument of Lemma 7.13 applies and finishes the
proof of the theorem. 0O

8.10 Theorem. Let X be a Fuclidean building and ' a group of automorphisms of X
acting properly discontinuously and cocompactly.

Then either T' contains a free nonabelian subgroup, or else X 1is isometric to a Fuclidean
space and I' 1s a Bieberbach group.

Proof. If X is not a Euclidean space, then X contains an (n — 1)-simplex By which bounds
three n-simplices C’l_,C'l"" and C, where n = dimX > 1. By Theorem 8.9, there is a
I'-compact flat Fy containing €| and C’l"". In particular, there is ¢; € T translating F}
in a direction perpendicular to By. Again by Theorem 8.9, there is a I'-compact flat F
containing C'; and a ¢ € I translating F' in a direction perpendicular to By. Choose a
point x1 € By and let 01 3 21 (respectively o 5 z1) be the geodesic in Fy (respectively F')
perpendicular to By. Then oy is shifted by ¢1 and o by ¢.

Let 29 = ¢(x1) and By = ¢(By). Then Bj is an (n — 1)-simplex which bounds at least
three n-simplices Cy , Cy and Cy, where Cy is the last n-simplex through which o passes
before it meets By. By Theorem 8.9, there is a I'-compact flat F, containing C';” and C’;’.
As above we conclude that the geodesic oy in F; through z; and perpendicular to By is
shifted by an isometry ¢ € T'. Let ¢t; > 0 be the period of o; with respect to ¢;, that
is, ¢i(0i(t)) = oi(t + t;) for all t € R, = 1,2. Let U; be the set of points x in X whose
projection P;(x) onto o; is not in o;((—t;/2,t;/2)). Then

(8.11) P X\U;) CU; forn#0,1=1,2.

Denote by o the segment of ¢ between x; and z,. By construction, the angles between
the outgoing direction of ¢ at x; and the incoming and outgoing directions of oy are .
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Similarly, the angles between the incoming direction of ¢ at z; and the incoming and
outgoing directions of oy are w. Therefore, each of the rays oq((—oc,0]) and o4([0,0))
joined with ¢ and then extended by any of the two rays o2((—o00,0]) or 02([0,00)) is a
geodesic. We claim that

(812) Pl(Ug):xl and PQ(Ul):.IQ.

Suppose, for example, that = is a point with py(z) = o04(¢) and t < —t;1/2. Note that
y = pi1(z) is the unique point on oy with Z,(z,01) > 7/2. Now let w be the geodesic
consisting of the concatenation of o4 ((—00,0]), ¢ and 03([0,00)). Since t < —t1/2, we also
have Z,(z,w) > 7 /2. Hence

Loz, 00) = Loz, w) < 7)2

for all z € 02((0,00)). Therefore pa(x) & 02((0,00)). The other cases are treated similarly
and (8.12) follows.

We conclude from (8.12) that Uy N Uz = (). Let = be a point on . Then py(z) = x4
and pa(x) = x2, hence z € X \ (U; U Uy).

Now consider any nontrivial reduced word w in ¢; and ¢3. It follows from (8.11) that
w(z) € U; if w starts with a power of ¢;,1 = 1,2. Therefore w(z) # z, and hence w # id.
Therefore ¢; and ¢, generate a free nonabelian subgroup of I'.' O

We now come to Theorem E of the Introduction.

8.13 Theorem. Let (X,T') be a compact 2-dimensional boundaryless orbihedron with a
piecewise smooth metric of nonpositive curvature.

Then either T' contains a free nonabelian subgroup or else X 1s isometric to the Fuclidean
plane and T' 1s a Bieberbach group.

Proof. According to Theorem C, there are three cases to consider: If (X,TI') has rank 1,
then T' contains a free nonabelian subgroup by Theorem 4.6. If X is a thick Euclidean
building of type Az, By or Gj, then I' contains a free nonabelian subgroup by Theorem
8.10. In the remaining case, X is the product of two trees T} and T,. If X is not isometric
to the Euclidean plane, then T} or 75 has vertices with valency > 3. Since the essential
edges of X = T} x T3 are parallel and perpendicular to the factors, I" preserves the product
structure.

If both Ty and T3 have vertices of valency > 3, declare their maximal edges (maximal
arcs not containing vertices with valency > 3) to have length 1. Then the barycentric
subdivision of the unit squares in X is a triangulation of X which turns X into a Euclidean
building of type B;. Clearly, I' acts by automorphisms on this building, and hence T’
contains a free nonabelian subgroup.

If one of the factors, say T := Tj, has vertices of valency > 3 and the other is a line,
T, = R, then each ¢ € T' is of the form ¢ = (¢, 7), where ¢ is an isometry of T and
7 an isometry of R. By passing to a subgroup of I' of index 2, we may assume that
each such 7 is a translation. Since I' is a cocompact and properly discontinuous group of
automorphisms, the center of I" consists of elements of the form (1,7). Now let I'" be the
group of automorphisms ¢ of T' such that there is a translation 7 of R with (¢, 7) € T.
Then T is cocompact and finitely generated. Let J be a finite generating set.
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We show now that IV is properly discontinuous, compare [Ebl, Lemma 5.1]. If ¢, is a
sequence in IV with ¢, — id, then the commutators [¢,,, 1] — id for any ¢ € J. Choose
translations 7,, 7 of R such that (¢, 7,), (¢, 7) € I'. Then

[(d}nﬂ_n)a (¢7T)] = ([@Z}na@/}LO) — ad.

Since T' acts properly discontinuously, we conclude that [¢,, 9] = id for all n sufficiently
large and any ¢ € J. Since J generates I, it follows that (¢, 7,) is in the center of T,
and hence v, = id for all n sufficiently large. Hence I' is a properly discontinuous and
cocompact group of automorphisms of 7. Therefore IV, and hence also I', contain a free
nonabelian subgroup. O

As another application of Theorem 8.9 we state the following generalization of Theorem
2 in [BaBu] to higher dimensions. The proof uses the arguments of [BaBu] and Theorem
8.9. The possibility of extending the arguments of [BaBu| to higher dimensions was in-
dicated by M.Gromov (private communication), who also had a (different) approach for
proving Theorem 8.9.

8.14 Theorem. Let X be a thick Euclidean building, I' a properly discontinuous and co-
compact group of automorphisms of X and d a T'-invariant metric of nonpositive curvature

on X.

Then, up to a I'-equivariant homeomorphism and rescaling, d is the standard metric.
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