Lecture 1: Abstract Vector Spaces




The Definition of a Field

This page comes from Chapter 1, page 8 of the text. Examples of fields
are the real numbers R, the complex numbers C and the rational
numbers Q. There are also finite fields, for example, Z/p, p a prime.

Definition

A field F is a set (also denoted F) equipped with two binary operations,
addition 4+ and multiplication - satisfying the following axioms

lz+y=y+axand z-y=y-z (the commutative laws)

2 (x+y)+z=a+(y+2z2) and (z-y)-z=z-(y-2) (the associative
laws)

3z-(y+z2)=2xy+az-z (the distributive law)

4 There exists an element 0 in F such that x + 0 =« for all z € F'.

5 For each = € F there exists an element —z such that z + (—z) = 0.

6 There exists an element 1 in F such that x - 1 = z for all x € F.

7 For ealch x € F with 2 # 0 there exists an element 2! such that
r-x - =1.

We will usually write xy instead of x - y.



Vector Space over a Field F

We now skip to Chapter 2.

Definition

A vector space over F'is a triple (V, +, -) where,
1 Vis a set,

2 -+ is a binary operator that assigns to any pair vy, v2 € V a new
element v1 + vy € V,

3 - is a binary operation that assigns to any pairce Fandv eV a
new vector c-v € V.

The operation + satisfies 5 axioms.




Axioms for Addition +

Al Commutativity
U+vV=v+u.

A2 Associativity
(u+v)+w=u+ (v+w).

A3 Existence of the zero vector
There exists a unique element 0 of V such that

v+0=wv, forallveV.

A4 Existence of an additive inverse
For each v € V, there exists a vector —v such that

v+ (—v) =0.

We will abbreviate u + (—v) for u — v, so we have defined subtraction.



Axioms for scalar multiplication -

S1 Associativity
c1+(c2v) = (e1e2)v.
S2 Distributivity (1% version)
(c1 4 c2)v=c1v+ cav.
S3 Distributivity (2" version)
c(v1 +v2) = ¢y + crua.

S4

1-v =w.



Vector Space Axioms

We will call the axioms A1, A2, A3, A4 and S1, 52, S3, S4 the
vector space axioms.

We will prove shortly that

and



The Main Examples

Eg. | R"
As a set R" is the set of ordered n-tuples

R™ = {(x1, 29, ..., x,) : ; € R}.

We have to define the operator + and -.
Addition
(x17 "'7xn)+(y17"'7yn) = (xl—i_yl’ "'7x7l+yn)'

Scalar Multiplication

e (X1, ooy @) = (cx1, ...y CTy) .

This works, that is, the eight vector space axioms are satisfied.

Define vectors (e1, €3, ..., e,) ER" by ey = (1,0, ..., 0),
ea = (0,1, ...,0), etc.




The Main Examples

Eg. Il The space of real-valued functions on a set X

Let X be a set and Fr(X) be the set of real-valued function on the set
X. We define + and - by

(f+9)@) = [flz)+g()
(ef)x) = cf(x).

Exercise
Show that Example Il includes Example I.
Hint: Take X to be the n-element set {1, 2, ..., n}.



Properties of + and -

Properties of 4+ and - that can be deduced from the axioms.

Theorem (3.5)

Let V' be a vector space over F'. Then the following statements hold
(1) Cancellation

U+w=v+w=— u="0.

(2) The equation u + x = v has unique solution
T =v—u.

(3) 0-u=0.

(4) (=1)u=—u.

(5) ccru=cyuandu#0 = c; =




Properties of + and -

Proof.

(1) Add —w to each side.
(2) Add —u to each side.
(3) This one is tricky!

Let O be the zero element in F' (!! not the zero element in V). Then

0+0 = 0
(0+0)u=0wu
0w+ 0-u = 0-u.

Subtract the vector 0-u from each side to get

0-u = 0.



Properties of + and -

Proof (continued).
(4) We want to show

u+(-1)u=0 (%)
From S4, (1)u = u, so

LHS(x) = (u+(-Du= 1+ (-1))u
0w = 0 from (3).



Properties of + and -

Proof (continued).

(5) Suppose u # 0 and ¢1-u = co-u. Hence

(c1 —co)u=0 (xx).
We want to prove ¢; — ca = 0 in F'. Suppose not. Then
(1 — )1 € F exists. Multiply both sides of () by (c; — co)™*
to get (c1 —c2) 7 ((c1 — co)u) = (1 — )~ 10 =0.

LHS = ((¢e1 —e2) " He1 — o) u) = Lu=u.

But RHS of (xx) equals 0 and hence u = 0, contradicting our
assumption that u # 0. Hence, our assumption that ¢; — c2 # 0 has
led to a contradiction. Hence ¢; — co = 0 and ¢; = cs. ]



