
Lecture 7: The change of Basis Formula for the
Coordinates of a Vector

This lecture does not come from the text. I am using the notation of a
linear algebra text by David Pode, Ch 6.



Let V be an n-dimensional vector space with basis B = {b1, . . . , bn}.
The basis B allows us to associate to each vector v ∈ V an element

[v]B = (x1, x2, . . . , xn) ∈ Rn.

In the computations that follow we will usually write [v]B as a column
vector

[v]B =


x1

x2

...
xn


So we use column vectors for computations.



The rule for going from v to (x1, x2, . . . , xn) is

v =

n∑
i=1

xibi

or

v = (b1, . . . , bn)

 x1

...
xn


You should think of (x1, . . . , xn) as the coordinates of v relative to B.

Remark: The notation [v]B looks very strange but it is the key to
remembering the first change of basis formula.



In the proof of the First Change of Basis Formula it will be important to
think of v −→ [v]B as a map from V to Rn. This map is linear.

Lemma (1)

(i) [v1 + v2]B = [v1]B + [v2]B.

(ii) [cv]B = c [v]B.

Proof. The proof is left to you.

Note: (i) says “coordinates add”.



The Change of Basis Matrix from B to C

Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of V . Suppose
v ∈ V . So we have the coordinates [v]B = (x1, x2, . . . , xn) of v relative
to B and [v]C = (y1, y2, . . . , yn) of v relative to C .

So how are (x1, x2, . . . , xn) and (y1, y2, . . . , yn) related?

To answer this question we need the “change of basis matrix from B to
C ”.



Now we have one of the most important definitions of the course.

Definition

The change of basis matrix from B to C written PC←−B is the matrix
whose columns are the “old basis vectors”, that is, the vectors in B
written out in terms of the “new basis” C . So, if B = {b1, . . . , bn} and
C = {c1, . . . , cn}, we have

PC←−B =


[b1]C [b2]C . . . [bn]C

 =

c1
c2
...
cn


b1 b2 . . . bn

↓ ↓ ↓


Example: Suppose B = {(1, 1), (1,−1)} and C = E = the standard
basis {e1, e2}. Then

PC←−B =
e1
e2

(
(1, 1 (1,−1)
↓ ↓

)
=

(
1 1
1 −1

)



Think of C ←− B as “B in terms of C ”.
Although our main goal here is to learn how to make change of basis
computations we need the following result to prove some key formulas. If
you understand the definition of the matrix [T ]C B of a linear
transformation in terms of the input basis B and the output basis C
then the following result is obvious.

Proposition (1)

Let IV : V −→ V be the identity. Then

PC←−B = [IV ]C B .



Proof. Let B = {b1, . . . , bn} and C = {c1, . . . , cn}. Let M = [IV ]C B
be the matrix of the identity linear transformation relative to the two
bases so

[IV (b1)]C [IV (b2)]C . . . [IV (bn)]C

M =

c1
c2
...
cn

 ↓ ↓ . . . ↓


But this is just PC←−B.



The first consequence of Proposition (1) is

Proposition (2)

PB←−C = (PC←−B)
−1 so the change of basis matrix from C to B is

the inverse of the change of basis matrix from B to C .

Proof. We will prove the matrix equation

PC←−B • PB←−C = I = the identity matrix.

We use Proposition 1:

LHS = [IV ]C B • [IV ]B C .

Here • is matrix multiplication.



Now the formula relating matrix products and composition of linear
transformations say

[S]C B • [T ]B C = [S ◦ T ]C C ,

where ◦ is compostion of linear transformations.
So we get

LHS = [IV ◦ IV ]C C

= [IV ]C C

= I.



The First Change of Basis Formula

Theorem (The first change of basis formula)

Let B and C be bases of V . Then for any v ∈ V , we have

[v]C = PC←−B [v]B .

(Mnemonic–keep the B’s together.

Proof. Let [v]B = (x1, . . . , xn) so

v = x1b1 + . . .+ xnbn.

Then
[v]C = [x1b1 + . . .+ xnbn]C .

By Lemma (1), we get

[v]C = x1 [b1]C + . . .+ xn [bn]C (∗)

So we have to prove that the RHS of (∗) is equal to PC←−B [v]B.



We need to recall a fact about matrix multiplication.

A


x1

x2

...
xn

 = x1( 1
st column of A)

+ x2(2
nd column of A) + . . .

+ xn(n
th column of A).

Hence

PC←−B


x1

x2

...
xn

 = x1( 1
st column of PC←−B)

+ x2( 2
nd column of PC←−B) + . . .

+ xn( n
th column of PC←−B).



But the 1st column of PC←−B is [b1]C , . . ., the nth column of PC←−B is
[bn]C .
Hence

PC←−B

 x1

...
xn

 = x1 [b1]C + . . .+ xn [bn]C .



Example. Let V = R2. Suppose B = E = {e1, e2} = the standard
basis and C = {c1, c2} with

c1 =

(
1√
2
,

1√
2

)
c2 =

(
− 1√

2
,

1√
2

)
.

So {c1, c2} is the standard basis rotated by 45◦.
What are the coordinates (a, b) of e2 relative to the basis C ? So we
want [e2]C .



Geometrically, a should be the length of the projection of e2 onto the line
through c1 and b should be the projection of e2 on the line through c2 so
it looks like a = b. This is because c1 and c2 are perpendicular.
Let’s check. By Theorem (1) we have

[e2]C = PC←−B [e2]B

= PC←−B

(
0
1

)
= 2nd column of PC←−B.



Unfortunately, the matrix that is easy to get is PB←−C

[c1]B [c2]B

PC←−B =

(
1√
2
− 1√

2
1√
2

1√
2

)

By Proposition (2) we have

PB←−C = (PC←−B)
−1

=

(
1√
2
− 1√

2
1√
2

1√
2

)−1

=

(
1√
2

1√
2

− 1√
2

1√
2

)

Hence a = b =
1√
2

, so a = b as we guessed and we should have seen the

length of the projection was
1√
2

.


