Lecture 11: Orthogonal Groups




Orthogonal Groups

Definition

Suppose (v, (, )) is an inner product space. Let S € Hom (V, V). Then
S is said to be orthogonal if

(Sv, Sw) = (v, w), allv,weV.

We let O (V, (, )) denote the set of orthogonal linear transformations.
(We will often write O(V).)

Proposition
O(v) is a subgroup Aut(V).

Proof. We show O(v) is closed under o and inverse.



Closed under o:
Suppose S, T € O(V). Let v, w € V. Then

((SoT)v, (SoT)w) = ((S(Tw), (S(Tw)) by definition o
= (Tw, Tw) using S € O(V)
= (v, w) using T € O(V)

Closed under inverse:

Let S € O(V). First we show S~! exists in Hom (V, V), then we will
show S! € O(V). To show S is an invertible linear transformation it
suffices to show S is 1:1 because S : V — V so 1:1 = onto. To show
S is 1:1 it suffices to prove N(S) = {0}.

Suppose v € N(S). Then Sv = 0 and hence (Sv, Sv) = 0. Since S is
orthogonal, this implies (v, v), hence v = 0. Thus N(S) = 0.




Now we have S~! € Aut(V), but is S~ € O(V)?
Let v,w € V, we need to show

(S, S7'w) = (v, w) ()
Since S is onto, there are v/, w’ € V, so that
v=28v,w=Sw.
Substituting in (), we need to show
(57150, S7HSw') = (Sv', Sw')
But S71S = Iy, so

(', w') = (SS9, STISw') = (S, Sw') O



Now since || - || and £ are defined in terms of (, ), we have
S € O(V) = S preserves length and angles.

Precisely, for v, w € V', we have

ISell = {0 50 = Vo o) = IV
_ (Sv, Sw) (v,w) o w
(50 50) = reSwl = ol ~ <)




There is a converse:

Proposition

Svf| = [jv

Suppose S € Hom (V, V) and S preserves lengths (i.e., , for

allveV). Then S € O(V).

Proof. We will use an extremely important formula, the polarization

formula: )
(w,v) =3 (1w + ol * = [Jul[* = ||v]]?)
Now observe
1
(Su, Sv) = 3 (I1Su + Sv[|* = [|Sul]> — ||Sv|*)
1
= 5 (118 (u+ 0)[|> = ||Sul[* = ||Sv[|?)
1
= 3 (IJw+ ][> = [|Sul]* = [|Sv][?)
= (u,v) O



Remark: It is not true that S preserve angles = S € O(V).

Proposition (See page 131, # 12)

If S € Hom (V, V') preserves (right) angles then there exits A € R and
T € O(V) so that
S =T

Note: In this case S is said to be conformal (or a similitude).



Transpose

We now introduce the important operation transpose.

Definition

Given T' € Hom (V, V), the transpose of T, denoted *T', is the linear
transformation that satisfies

(*T, v) = (u, Tv).

We will see below that such a transformation exists (and it will be
unique).

Given a matrix A € M,,(R), A = (a;;), we define the transpose of A
denoted A, to be the matrix obtained by interchanging the rows and
columns of A (or reflextion in the diagonal).

Example:

IfA= then *A =

~ = =
oo Ul N
O O W
W N =
S O
© 0

The two transposes agree. Precisely, we have the following proposition.



Transpose

Proposition
Given an ordered orthonormal basis % = (ui, ..., u,) for V and
T € Hom (V, V),
M('T) ="M(T)
Proof. Let
(ai) = M('T)
(bij) = "M(T)

Then a;; = (T'u;j, u;) and b;; = (*T'uj, u;). Since (, ) is symmetric,
aij = (Tuij, w) = (wi, Tuj) = ("Tuj, w;) = bi;.
Thus Qi = bZJ O

Note: This proves existence and uniqueness: to determine !T", choose an
orthonormal basis % and let ‘T be the (unique) linear transformation
given by tM(T).



Characterization of Orthogonal Transformations

We recall Proposition (2) from Lecture 6:

Let V' be a vector space and T € L(VV) = Hom (V, V). Let
B ={by, ..., by} be a basis for V. Letv € V. Then

[T(v) 2] Tz v]s-

v

Lemma

Suppose {by, ..., by} is an orthonormal basis for V. Let v, w € V and

n n
v = E Wik, W = E Yii.
i=1 i=1

n
Then (v, w) = > z;y;.
i=1




Characterization of Orthogonal Transformations

Proof. We have
n n
(v, w) = Zwﬂm Zyjuj
i=1 j=1
n n
= 3D (wius, yyuy)

i=1 j=1
n n
= D> i (ui uy).
i=1 j=1
But
0 i iy
(u“uj)—{ 1 if =
So,
(v, w) = zﬂﬁzyi (wi, ug) = Zl’zyv O
i=1 i=1



Characterization of Orthogonal Transformations

Theorem (Text, Theorem 15.11)
Let T € Hom (V, V). The following are equivalent.

(1) T e O(V).
(2) For any orthonormal basis % = {ua, ..., un}, the set
U' ={Tu, ..., Tuy,} is again an orthonormal basis.

(3) The matrix A = M(T) satisfies

PAA=T
where % = (uq, ..., u,) an orthonormal basis.
(4) The rown and columns of A = M (T') are each orthonormal bases for

V.




Characterization of Orthogonal Transformations

Proof.
1) =)
(Tus, Tuj) = (us, Uj):{ (1) i zii
(2) = (3)
[Tul}% . [Tun]“ll
A=MT) = oo
Then,

( [Tul]a;/ — ) ( [Tuﬂ% - [Tun]% )
EAA = 1 .. {
Tuply, —



Characterization of Orthogonal Transformations

The ijt" entry of the resulting matrix is

([Tuily —) ([Tujly ) = [Tuily - [Tusly,
_ ' N_ yv_1J 0 if i#£j
= (Tuz,Tu])—(uz,uJ)—{ 1 if e

Thus the resulting matrix is the identity matrix.

(3) = (1) Since ‘M (T)M(T) = I, the identity matrix, we have
YTT = I, the identity transformation. Thus

(Tu, Tv) = ("TTu, v) = (u, v),

and hence T' € O(V).



Characterization of Orthogonal Transformations

Hence the columns are an orthonormal basis. Also, if T' € O(V), then
T =T-1 € O(V) and thus since the columns of *T" are an orthonormal
basis, so are the rows of T

(4) = (2) Since the columns of A = M (T) are an orthonormal basis,
{Twy ..., Tuy,} is an orthonormal basis. O



Orthogonal Matrices

Definition

A matrix A € M, (R) is said to be an orthogonal matrix if
PAA=1T

The set of orthogonal matrices is denoted O(n).

Proposition

A is orthogonal = tA = A~1.

Proof.
(=) We know A orthogonal => A1 exists.

fAA=T="A=A""

where = means right multiplications by A~!.
(<) Suppose A = A"1 Then tAA=1. O



Orthogonal Matrices

Let GL,(R) denote the set of invertible n by n matrices.
GL,(R) is a group and (AB)~! = B~1A~1. We've shown

Proposition
O(n) is a subgroup of GL,(R).

The group O(2)



Orthogonal Matrices

Proof.

a b 2 2
(C d)eO(Q) — a‘+c"=1

V¥ +d*=1
ab+ cd = 0.

<= (a, ) is on circle, (b, d) is on the circle and (a, ¢) is orthogonal to
(b, d).



