
Lecture 17: The minimal Polynomial of a Linear 
Transformation



Subsituting a Linear Transformation into a Polynomial

Let V be a vector space over F of dimension n. T ∈ L (V, V ) and
f(x) ∈ F [x]. We want to define f(T ) ∈ L (V, V ).

Definition

If f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 then

f(T ) = anT
n + an−1T

n−1 + . . . + a1T + a0I

We could also evaluate at a square matrix A:

f(A) = anA
n + an−1A

n−1 + . . . + a1A + a0I

Theorem

The matrix of f(T ) relative to the basis B is f(A), where A is the
matrix of T relative to the basis B.



Let ΦT : F [x] −→ L (V, V ) be given by

ΦT (f) = f(T ).

Proposition

ΦT is an F -algebra homomorphism. ΦT is not onto (for n ¿1) and had a
big kernel.

Why isn’t it onto?

f(T )g(T ) = g(T )f(T ).

So any two elements in the image of Φ commute. So take two
non-commuting elements in L (V, V ) (we need n > 1 to do this.) They
can not both be in the image of ΦT .



Why does ΦT have a big nullspace?
Take any set of n2 + 1 linearly independent elements of F [x],

{f1, f2, . . . , fn2+1} (e.g. 1, x, x2, . . . , xn2

). Then

{f1(T ), f2(T ), . . . , fn2+1(T )}

is a set of n1 + 1 elements in L (V, V ), an n2 dimensional vector space.

Hence there is a relation

n2+1∑
i=1

cifi(T ) = 0, ci 6= 0.

Then
n2+1∑
i=1

cifi ∈ Ker(ΦT) is a non-zero elements is an infinite

dimensional vector space?



The Minimal Polynomial

We just saw I, T, T 2, . . . , Tn2

must be linear independent since
dimL (V, V ) = n2. Hence there exits scalars a0, a1, . . . , an2 so that

a0I + a1T + . . . + an2Tn2

So f(x) = a0I + a1x+ . . .+ an2xn2

is in Ker(ΦT). In other words, there

is a linear relation between the power I, T, T 2, . . . , Tn2

Remark: In fact, we will see later that there is always a linear relation
between the powers

I, T, T 2, . . . , Tn2

and often we can get a even smaller power k.



Fundamental Question

What is the smallest power k so that there is a nontrivial linear relation
among I, T, T 2, . . . , Tn2

?

First–there is a unique such k. Let

R =
{
` : there is a linear relation among the powers I, T, T 2, . . . , T `

}
Since n2 ∈ R, R is nonempty.

The smallest possible is k = 1.

If k = 0, we would have

a0T
0 = 0, a0 6= 0.

But T 0 = I, a contradiction.



If k = 1, we would have

a0T
0 + a1T = 0⇐⇒ T is a scalar ( a multiple of )I.

If T is not scalar, k ≥ 2.

Choose a minimal degree linear relation

akT
k + ak−1T

k−1 + . . . + a1T + a0I = 0

Divide by ak to make it monic:

T k + bk−1T
k−1 + . . . + b1T + b0I = 0

Define
m(x) = xk + bk−1x

k−1 + . . . + b1x + b0I = 0

so m(T ) = 0.



We need

Lemma

Suppose f(x) satisfies deg (f) < k. Then

f(T ) = 0⇐⇒ f(x) = 0(= the zero-polynomial).

Proof. By definition, k is the smallest degree so that there is a nonzero
polynomial satisfying f(T ) = 0.



Theorem

Suppose 0 6= f(x) ∈ F [x] satisfies f(T ) = 0. Then m(x)|f(x).

Proof. By the lemma, deg (f) ≥ deg (m). So we can divide f by m.

f(x) = Q(x)m(x) + R(x)

with deg (R(x)) < deg (m(x)). Now evaluate

f(T ) = Q(T )m(T ) + R(T )

But f(T ) = m(T ) = 0. Hence R(T ) = 0. But deg (R(x)) < deg (m(x)),
so R(T ) = 0 =⇒ R(x) = 0 by the lemma.



Corollary

m(x) is unique.

Proof. Suppose m1(x) is another monic polynomial of degree k so that
m1(T ) = 0. Then m(x)|m1(x) so (since we have the same degree),
m1(x) = cm(x). But since both m(x) and m1(x) are monic, we have
c = 1.

Definition

m(x) is called the miniminal polynomial of the linear transformation T .
Sometimes we will write mT .

Note: It’s hard to compute–it is even hard to compute k = deg (mT ).
Now let A ∈Mn(F ). We can repeat the whole theory to define

mA = the monic polynomial f of smallest degree such that f(A) = 0.



Theorem

Suppose T ∈ L (V, V ), B = (b1, b2, . . . , bn) is an ordered basis of V
and A = M(T ) = [T ]B B.
Then

mT = mA

We will need

Lemma

Let f(x) ∈ F [x], A, T , B be as above. Then

M (f(T )) = f(A).



Proof of Lemma. f(x) = amxm + am−1x
m−1 + . . . + a1x + a0I . So

f(T ) = akT
k + ak−1T

k−1 + . . . + a1T + a0I

But M is a ring homomorphism, so

M (f(T )) = M(akT
k + ak−1T

k−1 + . . . + a1T + a0I)

= M(akT
k) + M(ak−1T

k−1) + . . . + M(a1T ) + M(a0I)

= akM(T k) + ak−1M(T k−1) + . . . + a1M(T ) + a0M(I)

= akA
k + ak−1A

k−1 + . . . + a1A + a0I = f(A).

Corollary

f(T ) = 0⇐⇒ f(A) = 0.



mT is the monic nonzero polynomial of lowest degree in the space

NT = {f ∈ F [x] : f(T ) = 0}

mA is the monic polynomial of lowest degree in the space

NA = {f ∈ F [x] : f(A) = 0}

But we just saw that NT = NA so the smallest degree monic polynomial
in each of the subspaces is the same.


