Lecture 14 : The Gamma Distribution and its Relatives

The gamma distribution is a continuous distribution depending on two parameters, α and β . It gives rise to three special cases

1 The exponential distribution
$$(\alpha = 1, \beta = \frac{1}{\lambda})$$

2 The *r*-Erlang distribution
$$(\alpha = r, \beta = \frac{1}{\lambda})$$

3 The chi-squared distribution
$$(\alpha = \frac{\nu}{2}, \beta = 2)$$

The Gamma Distribution

Definition

A continuous random variable X is said to have gamma distribution with parameters α and β , both positive, if

$$f(x) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, & x > 0\\ 0, & otherwise \end{cases}$$

What is $\Gamma(\alpha)$?

 $\Gamma(\alpha)$ is the gamma function, one of the most important and common functions in advanced mathematics. If α is a positive integer n then

$$\Gamma(n) = (n-1)!$$

(see page 17)

Definition (Cont.)

So $\Gamma(\alpha)$ is an interpolation of the factorial function to all real numbers. **Z** $\lim_{\alpha \to 0} \Gamma(\alpha) = \infty$

Graph of $\Gamma(\alpha)$

I will say more about the gamma function later. It isn't that important for Stat 400, here it is just a constant chosen so that

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

The key point of the gamma distribution is that it is of the form

(constant) (power of x)
$$e^{-cx}$$
, $c > 0$.

The *r*-Erlang distribution from Lecture 13 is almost the most general gamma distribution.

The only special feature here is *that* α *is a whole number r*. Also $\beta = \frac{1}{\lambda}$ where λ is the Poisson constant.

Comparison Gamma distribution

$$\left(\frac{1}{\beta}\right)^{\alpha} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}$$

r-Erlang distribution $\alpha = r, \beta = \frac{1}{\lambda}$
$$\lambda^{r} \frac{1}{(r-1)!} x^{r-1} e^{-\lambda x}$$

Proposition

Suppose X has gamma distribution with parameters α and β then

- (i) $E(X) = \alpha \beta$
- (ii) $V(X) = \alpha \beta^2$

so for the r-Erlang distribution

(i)
$$E(X) = \frac{r}{\lambda}$$

(ii) $V(X) = \frac{r}{\lambda^2}$

Proposition (Cont.)

As in the case of the normal distribution we can compute general gamma probabilities by standardizing.

Definition

A gamma distribution is said to be standard if $\beta = 1$. Hence the pdf of the standard gamma distribution is

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

The cdf of the standard

Definition (Cont.)

gamma function is called the incomplete gamma function (divided by $\Gamma(\alpha)$)

$$F(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} x^{\alpha-1} e^{-x} dx$$

(see page 13 for the actual gamma function) It is tabulated in the text Table A.4 for some (integral values of α)

Proposition

Suppose X has gamma distribution with parameters α and β . Then $Y = \frac{X}{\beta}$ has standard gamma distribution.

Proof.

We can prove this,
$$Y = \frac{x}{\beta}$$
 so $X = \beta y$.
Now $f_X(x)dx = \frac{1}{\beta^{\alpha}} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta} dx$.
Now substitute $x = \beta y$ to get
 $f_Y(y)dy = \frac{1}{\beta^{\alpha}} \frac{1}{\Gamma(\alpha)} (\beta y)^{\alpha-1} e^{-\frac{\beta y}{\beta}} d(\beta y)$
 $= \frac{1}{\beta^{\alpha}} \frac{1}{\Gamma(\alpha)} \beta^{\alpha-1} y^{\alpha-1} e^{-y} \beta dy$
 $= \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-t} dy$
standard gamma

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 9/18

Example 4.24 (cut down)

Suppose *X* has gamma distribution with parameters $\alpha = 8$ and $\beta = 15$. Compute

$$P(60 \le X \le 120)$$

Solution

Standardize, divide EVERYTHING by $\beta = 15$.

$$P(60 \le X \le 120) = P\left(\frac{60}{15} \le \frac{X}{15} \le \frac{120}{15}\right)$$
$$= P(4 \le Y \le 8) = F(8) - F(4)$$

from table A.4

= .547 - .051 = .496

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ の � 0/18

The Chi-Squared Distribution

Definition

Let v (Greek letter nu) be a positive real number. A continuous random variable X is said to have chi-squared distribution with v degrees of freedom if X has gamma distribution with $\alpha = v/2$ and $\beta = 2$. Hence

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2}} \Gamma(\nu/2)^{x^{\nu/2-1}} e^{-x/2}, x > 0\\ 0, \text{ otherwise.} \end{cases}$$

We will write $X \sim \chi^2(\nu)$. capital chi The reason the chi-squared distribution is that if

$$Z \sim N(0, 1)$$
 then $X = Z^2 \sim \chi^2(1)$

and if Z_1, Z_2, \ldots, Z_m are independent random variables the

$$Z_1^2+Z_2^2+\cdots Z_m^2\sim \chi^2(m)$$

(later).

Proposition (Special case of pg. 6)
If
$$X \sim \chi^2(\nu)$$
 then
(i) $E(X) = \nu$
(ii) $V(X) = 2\nu$

Appendix : The Gamma Function

Definition

For $\alpha > 0$, the gamma function $\Gamma(\alpha)$ is defined by

$$\bar{a}(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$

Remark 1

It is more natural to write

but I won't explain why unless you ask.

Remark 2

In the complete gamma function we integrate from 0 to infinity whereas for the incomplete gamma function we integrate from 0 to \underline{x} .

$$\mathsf{F}(x;\alpha)\int_{0}^{x}y^{\alpha-1}e^{-y}dx.$$

Thus

$$\lim_{x\to\infty}F(x;\alpha)=\Gamma(\alpha).$$

Remark 3

Many of the "special functions" of advanced mathematics and physics e.g. Bessel functions, hypergeometric functions... arise by taking an elementary function of x depending on a parameter (or parameters) and integrating with respect to x leaving a function of the parameter. Here the elementary function is $x^{\alpha-1}e^{-x}$. We "integrate out the x" leaving a function of α .

Lemma

 $\Gamma(1) = 1$

Proof.

$$\Gamma(1) = \int_{0}^{\infty} e^{-x} dx = (-e^{-x}) \bigg|_{0}^{\infty} = 1$$

The Functional Equation for the Gamma Function

Theorem

 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \quad \alpha > 0$

Proof.

Integrate by parts

$$\begin{aligned} \Gamma(\alpha+1) &= \int_{0}^{\infty} \underbrace{x^{-\alpha}}_{u} \underbrace{e^{-x} dx}^{u} dv \\ &= \left(-x^{\alpha} e^{-x}\right)\Big|_{0}^{\infty} - \int_{0}^{\infty} \underbrace{du}_{\alpha x^{\alpha-1}} (-e^{-x}) dx \\ &= \alpha \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ の�� 16/18

Corollary

If n is a whole number

$$\Gamma(n) = (n-1)!$$

Proof.

I will show you $\Gamma(4) = 3Q$

$$\begin{aligned} \Gamma(4) &= \Gamma(3+1) = 3\Gamma(3) \\ &= 3\Gamma(2+1) = (3)(2)\Gamma(2) \\ &= (3)(2)\Gamma(1+1) = (3)(2)(1)F(1) \\ &= (3)(2)(1) \end{aligned}$$

In general you use induction.

We will need Γ (half integers) e.g. $\Gamma\left(\frac{5}{2}\right)$.

Theorem

I won't prove this. Try it.

$$\Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2} + 1\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}$$
$$\Gamma\left(\frac{5}{2}\right) = \Gamma\left(\frac{3}{2} + 1\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)\left(\frac{1}{2}\right)\sqrt{\pi}$$

In general

$$\Gamma\left(\frac{2n+1}{2}\right) = \frac{(1)(3)(5)\dots(2n-1)}{2^n} \sqrt{\pi}$$

For statistics we will need only Γ (integer) = (integer-1)! and $\Gamma\left(\frac{\text{add integer}}{2}\right)$ = above