
FIXED POINTS, LOCAL MONODROMY, AND INCOMPRESSIBILITY
OF CONGRUENCE COVERS
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Abstract. We prove a fixed point theorem for the action of certain local monodromy
groups on étale covers and use it to deduce lower bounds in essential dimension. In
particular, we give more geometric proofs of many (but not all) of the results of the preprint
of Farb, Kisin and Wolfson, which uses arithmetic methods to prove incompressibility
results for Shimura varieties and moduli spaces of curves. Our method allows us to prove
results for exceptional groups, and also for the reduction modulo good primes of Shimura
varieties and moduli spaces of curves.
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1. Introduction

The purpose of this paper is to prove incompressibility results and lower bounds on
essential dimension using a new method for producing fixed points, which we formulate
in Proposition 16 and Theorem 18 below. This recovers many, but not all, of the
incompressibility results obtained using arithmetic methods in the preprint [FKW19] of
Farb, Kisin and Wolfson. For example, we get geometric proofs of the incompressibility
of congruence covers related to the moduli space Ag of principally polarized abelian
varieties (Corollary 41) and the moduli space Mg of smooth genus g curves (Theorem 23).
Our method also allows us to prove new results including an extension of the theorems
of [FKW19] on incompressibility of congruence covers of locally symmetric varieties
associated to certain groups of type E7. In contrast to the method of [FKW19], our
approach also allows us to prove incompressibility of congruence covers of both Ag and
Mg over fields of positive characteristic.

1.1. Essential dimension. Essential dimension is a numerical measure of the complexity
of algebraic objects which first appeared in a paper by J. Buhler and Z. Reichstein [BR97]
from 1997. Since then, many different, but equivalent, ways of looking at it have arisen.
To explain our results in more detail and to fix terminology, we give a quick review of the
concepts of incompressibility and essential dimension here in the introduction. However,
for more details, we refer the reader to §2 and to [BR97, FKW19, Mer13].

Let k be any field. By a variety over k we shall mean a reduced, separated scheme of
finite type. If f : X → Y is a generically étale morphism of varieties with Y integral, then
the essential dimension of f , ed f , is defined to be the minimum of the dimensions of
irreducible varieties Y ′ such that the following conditions hold:

(1) There is a dominant rational map Y 99K Y ′ and a finite étale morphism of schemes
X ′ → Y ′.

(2) Over the generic point of Y , the morphism X → Y is the pullback of the morphism
X ′ → Y ′.

We will often abuse notation slightly and write ed(X → Y ), or even edX, instead of
ed f . For any prime number p, we define ed(f ; p) (or ed(X; p)), the essential dimension
at p of f , to be the minimum of ed g, where g ranges over all morphisms of the form
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g : X ×Y Z → Z, with Z integral and Z → Y a generically finite dominant morphism of
degree prime to p such that X ×Y Z is reduced. (The above definitions can be extended
to allow reducible Y by setting ed f = maxi ed(X ×Yi Y → Yi), where the Yi run over the
irreducible components of Y , and similarly for ed(f ; p)).

If G is a finite group, Y is an integral variety and f : X → Y is a G-torsor, then f is
finite étale and the above definitions apply to X. A G-torsor is said to be incompressible
if edX = dimX and p-incompressible if ed(X; p) = dimX. The essential dimension edG
of G is defined to be the maximum of edX over all G-torsors X as above and we define
ed(G; p) analogously.

1.2. Incompressibility results. The recent paper of Farb, Kisin and Wolfson [FKW19]
mentioned above proves the incompressibility of a large class of congruence covers of
Shimura varieties. For example, let Ag,N denote the moduli space of principally polarized
abelian varieties of dimension g with (symplectic) level N -structure [FC90, Definition
I.4.4, p. 19]. If N > 3 and if p is a prime number not dividing N , then the natural
morphisms Ag,pN → Ag,N is an Sp2g(Fp)-torsor. One of the key theorems of [FKW19] is
the p-incompressibility of Ag,pN or, equivalently, of the cover Ag,pN → Ag,N .

The results of [FKW19] were proved using arithmetic methods involving reduction
modulo p and a subtle argument involving Serre–Tate coordinates. Their results go
far beyond the case of Ag,pN , proving incompressibility for congruence covers of many
interesting varieties related to Ag such as the moduli space of curvesMg and a large class
of Hodge type Shimura varieties (and even certain subvarieties thereof).

Following a suggestion of Z. Reichstein, our initial goal in this paper was to recover
the p-incompressibility of Ag,pN using an elementary (and, by now, standard) geometric
criterion for incompressibility, which we refer to as the fixed point method. As we explain
below, the fixed point method allows us not only to recover some of the results of [FKW19]
for Ag but also to prove several new results.

We will give a stronger statement (Proposition 10) of the fixed point method in §2.
However, for the purposes of this introduction it boils down to the following fact: Suppose
G is a finite group, X is a G-torsor over an irreducible variety Y , and X is a G-equivariant
compactification of X. If a finite abelian p-subgroup H 6 G of rank dimX has a smooth
fixed point on X, then X is p-incompressible.

In §3, we prove a criterion, Proposition 16, for the existence of fixed points in a
compactification of a variety X, which is presented as a finite étale Galois cover f : X → Y
with Galois group G. This criterion, which depends on a partial compactification Y of Y
and the local monodromy of the cover f on a partial toroidal resolution S of Y , leads to
Theorem 18, which combines Proposition 16 with the fixed point method to give lower
bounds on essential dimension based on local monodromy. Applying Theorem 18 to various
situations, e.g., where Y is the moduli space Mg[N ] of genus g curves with (symplectic)
level N structure or where Y is Ag,N or, more generally, a locally symmetric variety, allows
us to prove lower bounds on essential dimension and, in many cases, even incompressibility
results.

1.3. Contents of the paper. We now explain the incompressibility results in more detail
along with the topics of the sections in the paper. Section 2 briefly reviews essential
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dimension and the notion of versal and p-versal torsors. It also proves the version of
the fixed point method, Proposition 10, mentioned above. Most of this section is due to
Z. Reichstein, and we are grateful to him for allowing us to use it.

Section 3 proves our main general result on essential dimension and local monodromy,
Theorem 18. The rest of the paper consists essentially of examples. Section 4 proves the
incompressibility of two types of covers related to the moduli space Mg[N ] of genus g
curves with (symplectic) level N structure. The first result, Theorem 23, recovers the
p-incompressibility of the coverMg[pN ]→Mg[N ], which was proved by arithmetic means
in [FKW19, Theorem 3.3.2]. Our proof is characteristic free and works over all fields of
characteristic not dividing pN . The second result, Theorem 30, proves the incompressibility
of certain “quantum covers” ofMg[N ] arising from the TQFTs constructed in [BHMV95].

Section 5 proves our main general results on the essential dimension of congruence covers
of locally symmetric varieties. We begin by recalling the notion of a locally symmetric
variety in § 5.1 essentially following the terminology of Ash, Mumford, Rapoport and
Tai [AMRT10]. These are quotients Γ\D of Hermitian symmetric domains by arithmetic
subgroups Γ. (See Remark 36 for an explanation of why we prefer to use the language of
locally symmetric varieties rather than the closely related language of Shimura varieties in
the context of this paper.)

The main theorems of Section 5 are Theorem 33, which proves a general lower bound
on the essential dimension of congruence covers of locally symmetric varieties in terms of
boundary components, and Theorem 34, which deals with the special case where D is a
tube domain with a zero dimensional rational boundary component. In this special tube
domain case, our results often imply p-incompressibility. Both theorems are proved by
applying our main theorem on essential dimension and local monodromy, Theorem 18, to
the case where X → Y is a congruence cover of locally symmetric varieties and Y is the
Baily–Borel compactification of Y . In Corollary 41 of §5.2, we apply Theorem 34 to recover
the result from [FKW19] on the incompressibility of the congruence cover Ag,pN → Ag,N .
We also extend this result to fields of positive characteristic in §5.6 using the integral
toroidal compactifications of Faltings and Chai [FC90].

Section 6 considers the problem of constructing incompressible congruence covers of
locally symmetric varieties analogous to the congruence covers of modular curves with
full level structure. These are the covers that are called principal p-coverings in [FKW19],
and much of what we do in Section 6 is motivated by similar considerations in [FKW19].
However, owing to our methods, which depend on boundary components, we have to deal
with issues not present in [FKW19]. Our main result is Theorem 67. As an application,
we can produce p-incompressible congruence covers of certain locally symmetric varieties
of type E7 and with Galois group G(Fpn), where G is the simply connected form of E7

over Fp. We also recover most of the results of [FKW19] on existence of p-incompressible
principal p-covers for classical groups. The notable exception is when the group is of type
An for n even. See Remark 68.

There are two appendices in which we reproduce (with permission) results shown to us
by other people. Appendix A gives an argument by M. Nori, which proves a weak version
of Conjecture 1 below on essential dimension of variations of Hodge structure. Appendix B
gives a proof, due to Dave Benson, that the essential dimension at p of Sp2g(Fp) is pg−1.



FIXED POINTS, LOCAL MONODROMY AND INCOMPRESSIBILITY 5

This shows that there is a large (in fact, exponential) difference between the essential
dimension of congruence covers Ag,pN → Ag,N , which are very particular Sp2g(Fp)-torsors,
and the essential dimension of the versal torsor, which is pg−1. (See also Corollary 7 for a
general lower bound on essential dimension of groups with non-abelian p-Sylow subgroups.)

Jesse Wolfson has informed us that his student, Hannah Knight, has also, independently,
computed ed(Sp2g(Fp); p). Moreover, she has made significant progress towards the goal
of computing ed(G; p) for much more general finite quasisimple groups of Lie type. In
particular, she has computed it for groups G = Sp2g(Fpr) for r > 1 as well as for analogous
orthogonal groups.

1.4. Comparison with work of Farb, Kisin and Wolfson. The methods of this
paper and of [FKW19], although very different, have a key point in common, i.e., the use
of elementary abelian p-groups contained in the Galois group of the congruence covers.
We use these subgroups in a very direct way via the fixed point method, whereas their
appearance in [FKW19] is slightly indirect, as wild ramification groups of degenerations
of congruence covers. These different ways of exploiting such subgroups accounts, to a
large extent, for the fact that although the results of both papers have a large intersection,
there are results provable by each method not accessible to the other.

For example, the methods of [FKW19] apply to many congruence covers of Shimura
varieties whose connected components are compact. As these congruence covers are étale
(at least when the congruence subgroups involved are neat, see §5.3), the fixed point
method cannot possibly apply (as there are no fixed points). On the other hand, the
methods of [FKW19] rely on embedding Shimura varieties in Ag and the fact that Ag has
a good integral model over which the congruence covers degenerate (at primes dividing
the level). Therefore, they apply essentially only to Hodge type Shimura varieties, and, for
example, not to those of type E7 where our methods yield new incompressibility results.
Furthermore, they do not apply to Ag and Mg over fields of positive characteristic, since
the congruence covers over such a field cannot have unequal characteristic degenerations.

It would be interesting to prove p-incompressibility for locally symmetric varieties
associated to groups of type E6. Since such varieties are not of Hodge type, the methods
of [FKW19] do not apply, but, since they are not quotients of tube domains, our methods
also do not suffice to prove incompressibility (Remark 68(3)).

1.5. A conjecture. Recall from [Del79, §1] that Hermitian symmetric domains are special
examples of the period domains studied in Hodge theory. Given any integral variation of
Hodge structure H on a smooth variety B, we get an associated period map ϕ : Ban → Γ\D
where D is a period domain, or, more generally, a Mumford–Tate domain, with generic
Mumford–Tate group G, an algebraic group over Q, and Γ 6 G(Q) is an arithmetic
lattice depending on the monodromy. See the paper [BBT18] of Bakker, Brunebarbe and
Tsimerman for this notation and for their main theorem, which states that the image Y
of ϕ has the structure of a quasiprojective complex variety. We call Y the image of the
period map.

Combining the results obtained by our methods with those of [FKW19] along with
some wishful thinking leads us to guess that the dimension of the image of the period
map should bound the essential dimension of congruence covers from below. To make this
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explicit, suppose H is a torsion-free variation of Hodge structure on a smooth complex
variety B. Write HZ for the local system on B corresponding to H. Then, for each prime
p, we get a family of local systems HZ/p

n of free Z/pn-modules over B. Moreover, the
étalé spaces of the sheaves HZ/p

n are algebraic. So it makes sense to formulate:

Conjecture 1. Suppose H is a torsion-free integral variation of Hodge structure on a
smooth irreducible complex variety B. Let Y be the image of the period map and set
d = dimY . There exists an integer N such that, if p is a prime number and n is a
nonnegative integer with pn > N , then ed(H⊗Z Z/pn → B; p) > d.

We could modify the conjecture by replacing ed(H⊗Z Z/pn → B; p) with ed(HZ → B)
suitably defined. In Appendix A, we give a precise formulation and a proof, due to
M. Nori, of this modified statement. This is our main evidence for the validity of the
above conjecture beyond the case where the period domain is Hermitian symmetric.

1.6. General notation and notational conventions. We try to maintain the conven-
tion of writing algebraic groups G in boldface and abstract groups G, as well as Lie
groups, in non-bold. For an algebraic group G over a subring of R, we write G(R)+ for
the connected component of the identity of the Lie group G(R). If G is defined over Q,
then we write G(Q)+ := G(R)+ ∩G(Q). In §5, G is usually an adjoint group over Q, but,
in §6, G is usually taken to be simply connected with adjoint group Gad.

We warn the reader that we have reversed what seems to be the usual convention of
writing stacks such as the moduli stacks of curves or principally polarized abelian varieties
in calligraphic script and the associated course moduli spaces in roman font. Fortunately,
there are very few stacks in the paper and, with regard to the above moduli stacks, we
are usually taking a large enough level structure so that the stack and the space coincide.
Still, we apologize in advance if this causes confusion.

1.7. Acknowledgements. As we already mentioned, this work owes its existence to a
suggestion from Zinovy Reichstein. We are very grateful to him for this suggestion and for
many other smaller, but still very significant, contributions he generously made to this
paper.

Brosnan would also like to thank Michael Rapoport for several useful discussions about
Shimura varieties and toroidal compactifications and Dave Benson for showing us how
to compute the essential dimension of the group Sp2g(Fp). He would like to thank Jesse
Wolfson for several useful suggestions and encouraging emails as well as Burt Totaro
for typo corrections. Moreover, he thanks the Isaac Newton Institute for hosting the
workshop where the conversations with Benson took place in January of 2020 and the
Simons Foundation for a Collaboration Grant, which helped make it possible to travel
before the lockdown of March 2020. Fakhruddin would also like to thank Gregor Masbaum
for useful correspondence on TQFTs, Arvind Nair for useful conversations on Hermitian
symmetric domains, and Madhav Nori for useful discussions related to Conjecture 1. He
was supported by the DAE, Government of India, under project no. RTI4001.

2. Essential dimension, versality and the fixed point method

2.1. Essential dimension of G-varieties. Let G be a finite group and k be a base field.
In §1, we have defined the essential dimension edX of a G-torsor X → Y and also its
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essential dimension at p, ed(X; p). We have also defined edG, the essential dimension of
G, and ed(G; p), the essential dimension at p of G. In general, these numbers depend on
the field k, so we sometimes write edk(G) and edk(G; p) to emphasize this.

If X → Y is an irreducible G-torsor, then X is also an H-torsor for any subgroup H of
G (with base H\X), so we may also consider the essential dimension of X as an H-torsor.
In this case, we shall write edG(X) and edH(X) if there is any risk of confusion.

The following lemma is the analogue of [BR97, Lemma 2.2] for G-torsors and is very
similar to [FKW19, Lemma 2.1.4].

Lemma 2. Let X → Y be a G-torsor (with Y integral), Y ′ an integral variety with a
dominant rational map φ : Y → Y ′, and X ′ → Y ′ a finite étale morphism such that over
the generic point of Y , X ′ is equal to Y ×Y ′ X ′. Then there exists a finite étale cover Y ′′

of Y such that the rational map Y 99K Y ′ lifts to Y ′′ and there is a structure of G-torsor
on X ′′ = Y ′′ ×Y ′ X ′ → Y ′′ such that the induced rational map X → X ′′ is G-equivariant.

We omit the proof since it is essentially the same as the proof of [FKW19, Lemma 2.1.4].

Remark 3. Suppose X is an irreducible G-torsor and H 6 G. Then edH(X) 6 edG(X)
and edH(X; p) 6 edG(X; p) for every prime p. This follows from Lemma 2 since if we have
Y ′, φ as in the lemma and X ′ is a G-torsor then we may set Z to be X/H, Z ′ to be X ′/H,
and then the rational map Y 99K Y ′ induces a rational map Z → Z ′ such that X is equal
to Z ×Z′ X ′ over the generic point of Z.

Remark 4. Let k be a field of characteristic 6= p containing a primitive pth root of
unity, and suppose G is a finite p-group. By a theorem of Karpenko and Merkurjev,
edG = ed(G; p) is the smallest dimension of a faithful linear representation of G defined
over k; see [KM08, Theorem 4.1].

Of particular interest to us will be the case where G = (Z/p)r is an elementary abelian
group of rank r. Here edG = ed(G; p) = r. This special case predates the Karpenko–
Merkurjev theorem and is considerably easier to prove; see, [Rei10, Example 2.6] or [Mer13,
Example 3.5].

Now suppose k is an arbitrary field of characteristic 6= p and let k′ be the field ob-
tained from k by adjoining a primitive pth root of unity. Since [k′ : k] is prime to p,
we have edk(G; p) = edk′(G; p), see [KM08, Remark 4.8]. In particular, ed (Z/p)r >
ed((Z/p)r; p) = r over any field k of characteristic 6= p. ♠

2.2. Versality. In this section it will be convenient for us to also consider irreducible
varieties X with faithful G-actions which are not free. Since G is finite, X always has
a dense affine open G-invariant subset U on which G acts freely. Then U → U/G is a
G-torsor and we set edX := edU and ed(X; p) := ed(U ; p). It is easy to see that this is
independent of the choice of U .

We say that an irreducible G-variety V is weakly versal (respectively, weakly p-versal)
if, for every G-torsor X → Y , with Y integral, there exists a G-equivariant rational map
X 99K V (respectively a G-equivariant correspondence X  V of degree prime to p).
Here p is a fixed prime number and by a G-equivariant correspondence X  V of degree
prime to p we mean a dominant morphism Y ′ 99K Y of degree prime to p together with a
G-equivariant rational map Y ′ ×Y X to V . We say that V is versal (respectively, p-versal)
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if every dense open G-invariant subvariety V0 ⊂ V is weakly versal (respectively, weakly
p-versal). Note that versality and p-versality are birational properties of V , whereas weak
versality and weak p-versality are not.

Theorem 5 (Duncan–Reichstein). Let G be a finite p-group and X an irreducible G-variety
over a base field k. If X has a smooth G-fixed k-point, then X is p-versal.

Proof. See [DR15, Corollary 8.6]. ♠ ♠
Lemma 6. Let G be a finite group, X an irreducible G-variety and p a prime integer.

(a) If X is versal, then edX = edG.

(b) If X is p-versal, then ed(X; p) = ed(G; p).

Proof. (a) We need to show that edX ′ 6 edX for every G-torsor X ′ → Y ′. Let U be a
G-invariant affine open subset of X on which G acts freely. By shrinking U if necessary, we
may find a morphism α : U/G→ Z and a G-torsor W → Z such that U = (U/G)×Z W .
Since U is a G-invariant open subset of X, U is weakly versal. Thus there exists a
G-equivariant rational map X ′ 99K U , equivalently a map β : Y ′ → U/G inducing an
isomorphism X ′ = Y ′×U/G U . Composing β and α we obtain a rational map γ : Y ′ 99K Z
such that X ′ is (generically) equal to Y ′ ×Z W . We conclude that edY 6 dimZ = edX,
as claimed.

Part (b) is proved by the same argument, with rational maps replaced by correspondences
of degree prime to p. ♠
Corollary 7. Let G be a finite group, p a prime number, and Gp a Sylow p-subgroup of
G. If Gp is non-abelian, and X is a p-versal G-variety, then dimX > p.

Proof. We have dimX
(i)

> edG(X)
(ii)

> edGp(X; p)
(iii)
= ed(Gp; p)

iv)

> p.
Here (i) follows from the definition of essential dimension, (ii) from Remark 3, (iii) from

Lemma 6(b), and (iv) from [MR10, Theorem 1.3]. ♠

Since dimAg =
g(g + 1)

2
, Corollary 7 allows us to see easily that the congruence cover

Ag,pN → Ag,N of the moduli space of principally polarized abelian varieties from the
introduction is (usually) not p-versal.

Corollary 8. Fix g > 2. Then the Sp2g(Fp)-torsor ApN → AN from §1.2 is not p-versal

for any prime p >
g(g + 1)

2
.

Proof. By Corollary 7 it suffices to show that G = Sp2g(Fp) contains a non-abelian p-
subgroup H. Since G contains Sp4(Fp), we may assume without loss of generality that
g = 2. We may also assume that G is the automorphism group of the symplectic form
x1 ∧ x4 + x2 ∧ x3. Let H be the subgroup of lower-triangular matrices in Sp4(Fp). Clearly,
H is a p-group. An easy computation shows that the lower-triangular matrices

a =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 −1 1

 and b =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1
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do not commute. Thus H is a non-abelian subgroup of G, as claimed. ♠
Remark 9. As mentioned in the introduction, D. Benson showed us a proof that, for
p > 2, edC(Sp2g(Fp); p) = pg−1. With his permission, we give it below in Theorem 79 of
Appendix B.

2.3. The fixed point method. Throughout this paper we will refer to the following
result (and in particular to Proposition 10(b)) as “the fixed point method.”

Proposition 10. Let G be a finite group, X an irreducible generically free G-variety over
a base field k of characteristic 6= p, with p a prime number. Suppose G has a subgroup H
such that H is a p-group and H has a smooth fixed point X. Then

(a) edG(X0; p) > edH(X0; p) = ed(H; p) for any dense open G-invariant subvariety
X0 ⊂ X.

(b) If H = (Z/p)r, then edG(X0; p) > edH(X0; p) = r.

In the case, where char(k) = 0, Proposition 10(b) follows from [RY00, Theorem 7.7],
whose proof relies on equivariant resolution of singularities. The proof we present here does
not use resolution of singularities; in particular, it remains valid in prime characteristic, as
long as char(k) 6= p.

Proof. (a) The inequality edG(X0; p) > edH(X0; p) follows from Remark 3. Since essential
dimension at p is a birational invariant of H-varieties, edH(X0; p) = edH(X; p). Thus
we may assume without loss of generality that X0 = X. By Theorem 5, X is a p-versal
H-variety. Now Lemma 6 tells us that edH(X; p) = ed(H; p).

(b) By Remark 4, ed(H; p) = r. The rest follows from part (a). ♠

3. A criterion for the existence of fixed points

In this section k is an arbitrary algebraically closed field.

Definition 11.

(1) A toroidal singularity is a scheme S over k together with an isomorphism of S
(which we suppress from the notation unless there is a possibility of confusion) with
the spectrum of the completion of the local ring of a (normal) affine toric variety
over k at a torus fixed point. We say that a toroidal singularity is simplicial if the
corresponding affine toric variety is simplicial.

(2) An action of a finite abelian group on a toroidal singularity is said to be toroidal if
the action is induced via completion by the action of a finite subgroup of the torus
on the corresponding toric variety.

(3) A toroidal map of toroidal singularities is a morphism of schemes which is induced
by completion from a toric morphism, (i.e., a morphism induced by a map of the
corresponding semigroups) of the corresponding affine toric varieties.

Remark 12. The definitions (2) and (3) do depend on the choice of the toroidal structure,
i.e., the isomorphism in (1).

Lemma 13. Let π : T → S be a finite surjective toroidal map of toroidal singularities.
Then any normal scheme S ′ with a finite map π′ : S ′ → S through which π factors is
toroidal and the map π′ is also toroidal. Furthermore, if S is simplicial then so is S ′.
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Proof. By definition, there exist affine toric varieties UT and US and a toric morphism
p : UT → US inducing π by completion at the torus fixed points. The morphism p
corresponds to a map of lattices pM : MT →MS together with rational polyhedral cones
CT ⊂ MT ⊗ R, CS ⊂ MS ⊗ R, such that pM(CT ) ⊂ CS. Since π is finite and surjective,
MT and MS must have the same rank and pM must be injective. We claim that we must
also have pM(CT ) = CS: if this does not hold, then some positive dimensional face F of
CT must map to the interior of CS. This implies that the closure in UT of the torus orbit
corresponding to F , ZF , maps to the torus fixed point of US. Since ZF contains the torus
fixed point of UT , it follows that π cannot be finite, which gives a contradiction.

From pM (CT ) = CS it follows that p is finite, and then by the Galois correspondence we
see that S ′ is the completion of the toric variety corresponding to the cone induced by CT
in a sublattice MS′ of MS containing MT . The assertions of the lemma follow immediately
from this.

♠

Lemma 14. Let S be a simplicial toroidal singularity and So ⊂ S the open set which is
the complement of the completion of the boundary divisor. Let πo : T o → So be a connected
finite étale Galois cover of degree not divisible by char(k) and let T be the normalisation
of S in T o. Then T is a simplicial toroidal singularity and the induced map π : T → S is
also toroidal.

Proof. Since S is simplicial, there exists a smooth toroidal singularity S1 together with a
finite toroidal map π1 : S1 → S satisfying S1×S So = So1 , where So1 is the open complement
of the boundary. Let So2 be a connected component of So1 ×So T o. The projection πo2 to So1
makes So2 a finite étale Galois cover of S1 of degree not dividing char(k). Let S2 be the
normalisation of S1 in So2 and let π2 : S2 → S1 be the induced map.

By Abhyankar’s lemma [SGA71, Expose XIII, §5], which is applicable since S1 is
complete and regular and S1\So1 is a normal crossings divisor, there exists a formally
smooth toroidal singularity S3, a toroidal map π3 : S3 → S1 and a map π3,2 : S3 → S2

such that π3 = π2 ◦ π3,2. Lemma 13 now implies that S2 and π2 are both toroidal.
The composition of two finite toroidal maps of toroidal singularities is again toroidal,

so it follows that π1 ◦ π3 is toroidal. By construction, there is a map πT : S3 → T such
that π1 ◦ π3 = π ◦ πT , so by Lemma 13 once again, we see that T is a simplicial toroidal
singularity and π is also toroidal.

♠

The lemma below is a version of [RY00, Proposition A.2], which we also use in the proof.

Lemma 15. Let A be a finite abelian group acting on a variety U and p : U → V a proper
A-equivariant map, with A acting trivially on V . If there exists a toroidal singularity T
with a toroidal A-action and an A-equivariant rational map h : T 99K U such that the map
p ◦ h : T 99K V is a morphism, then A has a fixed point in U .

Proof. Let C be an affine toric variety with a torus fixed point c0 such that T ∼= Ôc0,C .
Let C] be the toric variety corresponding to the star subdivision of the cone corresponding
to C with respect to a ray in its interior. We have a birational proper morphism C] → C
with the property that the fibre over c0 is an irreducible divisor E. Let T ] = T ×C C]; T ]
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is normal because the local rings at its closed points, which are the closed points of E, are
the completions of the corresponding local rings on C] which is normal (and excellent).
The map C] → C induces a proper birational morphism φ : T ] → T whose fibre over t0,
the closed point of T , is E. Since the action of A on T is induced from the torus action
on C, A acts on T ] and E and the action on E is toric.

Let OE,T ] be the local ring of E on T ]. Since E is a divisor and T ] is normal, OE,T ] is
a dvr. The map h may be viewed as an A-equivariant rational map from T ] to U , so it
gives an A-equivariant map Spec(Frac(OE,T ]))→ U . It follows from the assumptions that
the composite of the maps

Spec(OE,T ])→ T
h
99K U

p→ V.

is a morphism. By the valuative criterion of properness, the composed morphism
Spec(OE,T ]) → V lifts to a morphism Spec(OE,T ]) → U which is A-equivariant, so
we get an A-equivariant rational map from E to U . Since E lies over the closed point t0
of T , this rational map factors through Z = p−1(f̄ ◦ h(t0)) ⊂ U , which is a proper scheme.
We now replace E by any toric resolution Ẽ of E, so we have an A-equivariant rational
map from Ẽ to Z. Since the A-action on E comes from the torus and Ẽ is proper, E has
a (smooth) A-fixed point. By [RY00, Proposition A.2] it follows, that Z, hence also U ,
has an A-fixed point. ♠

Proposition 16. Let Y be an irreducible variety over k and f : X → Y an irreducible
finite étale Galois cover with Galois group G. Let S be a simplicial toroidal singularity
and So ⊂ S the complement of the boundary divisor. Suppose there exists a morphism

g : So → Y such that the image of the composite of πet
1 (So, s)

g∗→ πet
1 (Y, g(s)) � G 1 is

a finite (abelian) group A of order not divisible by char(k) (for s any geometric point
of So). Assume that g extends to a morphism ḡ : S → Y , where Y ⊃ Y is a partial
compactification of Y . Then

(1) Any G-equivariant partial compactification X ⊃ X admitting a proper morphism
f̄ : X → Y extending f has an A-fixed point.

(2) Any smooth proper variety X ′ with a G-action which is equivariantly birational to
X has an A-fixed point.

The statement and proof of this proposition have several elements in common with
[CGR06, §6].

Proof. Consider the scheme So ×Y X. It is finite étale over So and has an action of G
induced by the action on X. The assumption on the map on fundamental groups implies
that the connected components of S ×Y X are Galois covers of S with Galois group A.
Let T o be any one of these components and let πo : T o → So be the covering map.

Let T be the normalisation of S in the function field of T o, so T ×S So = T o. It follows
from Lemma 14 that T and the induced map π : T → S are both toroidal. Since A is the
Galois group of the covering πo : T o → So, the action of A on T is also toroidal.

Let h : T 99K X be the A-equivariant rational map corresponding to the natural
morphism from T to X. The composed map f̄ ◦ h is equal to ḡ ◦ π, so it is a morphism.

1The second map is well defined only up to conjugation, but the claim does not depend on this choice.



12 PATRICK BROSNAN AND NAJMUDDIN FAKHRUDDIN

We now apply Lemma 15, with U = X, V = Y , p = f̄ , to complete the proof of (1). Part
(2) follows from (1) and “going down” [RY00, Proposition A.2]. ♠

Remark 17. If k = C we may take S to be the analytic germ of a toric variety at a torus
fixed point, So the complement of the toric boundary in S, and g, ḡ to be complex analytic
maps. This follows from Proposition 16 by completing the local ring corresponding to S.

Theorem 18. Let X be a smooth variety over an algebraically closed field k with a free
action of a finite group G. Let A ⊂ G be an elementary abelian p-group of rank r and
let Y = X/G. Let S be a simplicial toroidal singularity and So ⊂ S the complement of
the boundary divisor. Suppose there exists a morphism g : So → Y such that the image

of the composite of πet
1 (So, s)

g∗→ πet
1 (Y, g(s)) is A. Furthermore, assume that g extends to

a morphism ḡ : S → Y , where Y ⊃ Y is a partial compactification of Y . If there exists
a smooth partial compactification X ⊃ X together with a proper morphism f̄ : X → Y
extending f then

edG(X; p) > edA(X; p) = r.

Note that the assumption on the existence of X is always satisfied if char(k) = 0.

Proof. Since the G-action on X is free, the quotient map f : X → Y is finite étale. By
Proposition 16, X has an A-fixed point, so the theorem follows by applying Proposition
10 (taking H there to be A). ♠

4. The moduli space of curves

In this section we prove incompressibility results for two types of covers of Mg, first for
covers that are pullbacks of congruence covers of Ag and then for certain covers arising
from TQFTs. For congruence covers, our proof is characteristic free and so extends the
incompressibility over fields of characteristic zero already proved in [FKW19] to positive
characteristics; for the covers of the second type, the methods of op. cit. do not apply.
Note that in op. cit., incompressibility for Mg is deduced using the Torelli map to Ag,
but our proof does not use this.

Both results are applications of Theorem 18. In §4.1 we make some monodromy
computations needed for both proofs, incompressibility for congruence covers is then
proved in §4.2 and for the “quantum” covers in §4.3.

For the basics of mapping class groups needed for this section the reader may consult
[FM12].

4.1. A monodromy computation.

4.1.1. Let g > 2 and let Σ be a closed oriented surface of genus g. Let Mod(Σ) be the
mapping class group of Σ. Corresponding to any pants decomposition of Σ, equivalently a
collection P of 3g − 3 mutually non-isotopic and non-intersecting loops γi in Σ, there is a
free abelian group FP (Σ) ⊂ Mod(Σ) of rank 3g − 3 generated by the Dehn twists around
these loops. Let ΓP be the dual graph of the pants decomposition given by P : the vertices
of ΓP are the connected components of Σ\ ∪i γi and for each γ ∈ P there is an edge eγ
joining the vertices corresponding to the two components of which γ is in the boundary.
This is a trivalent graph, possibly with loops and multiple edges.
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There is a canonical map hP : FP (Σ)→ Aut(H1(Σ,Z)) sending a diffeomorphism to its
action on homology. This map is not always injective; for example, the Dehn twist around
a separating loop acts trivially on homology. However, we have the following:

Lemma 19. For suitable choices of P the map hP is injective; in fact, for any integer
N > 1, the reduction of hP (FP (Σ)) in Aut(H1(Σ,Z/NZ)) is a free Z/NZ-module of rank
3g − 3.

Proof. We explain the construction of one such P by giving the dual graph as a graph
embedded in the plane: Start with a convex g-gon R with edges labelled (consecutively)
e1, e2, . . . , eg. Inside R we choose g − 2 distinct collinear points and connect them with
edges eg+1, eg+2, . . . , e2g−3. We then connect each of the vertices of R with one of the
chosen points in the interior by an edge in such a way that no edges intersect (except
at vertices) and such that the resulting graph is trivalent. It is easy to see that this is
always possible; the cases g = 2 require some minor modifications which we leave to the
reader. We call these edges e2g−2, e2g−1, . . . , e3g−3 and the resulting graph Γ. The edges
of Γ decompose the interior of R into g polygons with disjoint interiors; we label these
R1, R2, . . . , Rg with the edge ej lying in Rj, j = 1, 2, . . . , g.

We construct a genus g surface Σ and a pants decomposition P of Σ such that Γ ∼= ΓP by
“fattening” all the edges of Γ with the loops γi being circles (in R3) centered at a point on
the interior of each edge ei. A basis of H1(Σ,Z) is given as follows: let Aj, j = 1, 2, . . . , g
be the homology class of the circle γj . Each polygon Rj also gives rise to a simple loop on
Σ whose homology class we call Bj. Note that we have not specified orientations of the
various loops: for our purposes it suffices to arbitrarily fix one choice for each loop.

We now compute the effect on homology of the Dehn twist tγi around the loop γi,
starting with i = 1, 2 . . . , g. By construction, we have Aj · Bk = ±δj,k it follows that we
have:

tγi(Aj) = Aj ∀j
tγi(Bj) = Bj ∀j 6= i

tγi(Bi) = Bi ± Ai

We now consider the Dehn twists around the loops γi for i = g + 1, . . . , 3g − 3. For such i
it is clear that

tγi(Aj) = Aj ∀j.
The edge ei corresponding to the loop γi lies on the boundary of exactly two polygons Rk

and Rl, so

tγi(Bj) = Bj ∀j 6= k, l.

Finally, we have

tγi(Bk) = Bk ± Ak ± Al; tγi(Bl) = Bl ± Al ± Ak.

The condition that the graph Γ is trivalent implies that distinct polygons Rk and Rl share
at most one edge. From this and the formulae above it follows that the images of the
elements {hP (tγi)}

3g−3
i=1 in Aut(H1(Σ,Z/NZ)) are linearly independent for all N > 1 ♠
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4.1.2. Let Co be a totally degenerate stable curve of genus g over C, and let ν : C → B
be the (analytic) versal deformation of Co, so B is a ball of dimension 3g − 3 and Co is
the fibre over a point o ∈ B. Let D ⊂ B be the divisor over which ν is not smooth; this is
a normal crossings divisor with 3g − 3 irreducible components Di. Let Bo = B\D, and
let CBo = C ×B Bo, so ν : CBo → Bo is a family of smooth projective curves of genus
g. Fixing a point u ∈ Bo, we get a monodromy representation ρ : π1(Bo, u)→ Mod(Cu).
The image of this homomorphism is a free abelian group of rank 3g − 3; in fact, it is a
subgroup of the form FP (Σ) that we have considered above for a suitable P . This can be
seen as follows:

Choose a disc B′ in B centered at the point b0 corresponding to Co and meeting each
component Di of D transversally and let CB′ = C ×B B′. Since Co is totally degenerate it
has 3g − 3 singular points pi each of which is an ordinary double point. The divisors Di

are in a natural bijection with the singular points, Di being the locus of all points in B
over which the point pi “remains singular”. For each pi choose a small sphere Si in CBo (in
some fixed metric) centered at pi. Then if b ∈ B′ − {b0} is sufficiently close to b0, Si ∩ Cb
is a simple loop γi and these loops are pairwise disjoint (see, e.g., [SGA73, Expose XIV]).
These 3g − 3 loops give rise to a pants decomposition P of Cb (viewed as a differential
manifold) and as a topological space Co is obtained from Cb by contracting each γi to a
point. The monodromy representation then maps a loop δi in Bo based at b and going
round the divisor Di once to the Dehn twist (up to a sign depending on orientations)
corresponding to the loop γi [Don06, §2].

4.1.3. Any trivalent graph Γ with 2g− 2 vertices gives rise to a unique totally degenerate
stable curve CΓ of genus g over any field k. We choose a copy of P1

k with three marked
rational points for each vertex of Γ and label the marked points with the edges incident on
the vertex, a loop being counted twice. We glue these copies of P1

k along the marked points
by identifying pairs of points marked by the same edge of Γ. The pants decomposition P
that one gets by taking Co to be CΓ has ΓP ∼= Γ.

For an arbitrary field k and a totally degenerate stable curve Co over k, we have a versal
deformation ν : C → B of Co, where now B = Spec k[[x1, x2, . . . , x3g−3]]. As above, ν is
smooth outside a normal crossings divisor D ⊂ B (which we may take to be the zero set
of x1x2, . . . x3g−3) and we let Bo = B\D. Let u be a geometric point of Bo. Although
the mapping class group is no longer meaningful over k, we still have a monodromy
representation ρ : πet

1 (Bo, u)→ AutH1
et(Cu,Z/NZ), where (N, char(k)) = 1.

Lemma 20. Let k be an algebraically closed field with (N, char(k)) = 1. If the dual graph
of Co is as in Lemma 19, then the image of the monodromy representation ρ is a free
Z/NZ-module of rank 3g − 3.

Proof. If k = C, then the comparison theorem for étale fundamental groups and étale
cohomology shows that in this case the Lemma is implies by Lemma 19 and the discussion
in §4.1.2. This implies the lemma for k of characteristic zero by Abhyankar’s lemma.

If char(k) > 0 we let W (k) be the ring of Witt vectors of k and let B be the versal
deformation of Co over W (k). So B = SpecW (k)[[x2, x2, . . . , x3g−3]] and the universal
family ν : C → B is smooth over the complement Bo of a relative normal crossings divisor
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D ⊂ B. The lemma then follows from the case char(k) = 0 using the structure of the tame
fundamental group of Bo ([SGA71, Expose XIII, Corollaire 5.3]). ♠

4.2. Incompressibility for congruence covers ofMg. In this section k is an arbitrary
algebraically closed field.

4.2.1. Let Mg be the moduli space of smooth projective curves of genus g > 2 over k.
Let Mg be the moduli space of stable curves; this is an irreducible normal projective
variety. For an integer N > 2 not divisible by char(k), let Mg[N ] be the moduli space of
smooth curves with (symplectic) level N -structure. Although Mg is not smooth, Mg[N ]
is an irreducible and smooth variety. Let Mg[N ] be the normalisation of Mg in Mg[N ];
it is a normal projective variety but it is not smooth.

Lemma 21. Let Co be a totally degenerate curve of genus g over k whose dual graph Γ is
of the form described in Lemma 19. If N > 2 then Mg[N ] is smooth at all points lying
above the point corresponding to Co in Mg.

Proof. This follows immediately from [Mos83, Satz II], at least if char(k) = 0. We give a
self-contained proof below that also works if char(k) > 0.

Let B, C, etc., be as in §4.1.3. Let B0[N ] be the Sp(2g,Z/NZ)-torsor over B0 given by
adding (symplectic) level N structure and let B[N ] be the normalisation of B in B0[N ].
Let B′ be any connected component of B[N ]. It follows from Lemma 20 that the map
B′ is given by extracting N -th roots of all the xi, so B′ ∼= Spec k[[y1, y2, . . . , y3g−3]] with
yNi = xi. In particular, B′ is regular.

The finite group Aut(Co) acts on all the objects above. It acts faithfully onH1
et(Co,Z/NZ)

which is identified with the invariants of the monodromy on H1
et(Cu,Z/NZ). It follows

that B′ has trivial stabilizer in Aut(Co).
We have a natural map ι : B0[N ] →Mg[N ] since Mg[N ] is a fine moduli space and

this extends (by normality and the finiteness of the morphism B[N ]→ B) to a morphism
ῑ : B[N ]→Mg[N ]. Since the map B →Mg induces an isomorphism of B/Aut(Co) with
the formal neighbourhood of [C0] ∈Mg, the fact that B′ has trivial stabilizer in Aut(Co)
implies that ῑ identifies B′ with the formal neighbourhood of ῑ(o′) ∈Mg[N ], where o′ is
the closed point of B′. The lemma follows from this since B′ is regular.

♠
Remark 22. We only need Lemma 21 for the g for which there is no graph Γ as in Lemma
19 such that Aut(Γ) is trivial. It can be easily checked that such graphs exist for all g > 7.

As above, we continue to assume that char(k) - N . Suppose p is a prime such that
p - char(k)N . Then forgetting the level p structure induces a finite étale morphism
f :Mg[pN ]→Mg[N ] making Mg[pN ] into an Sp2g(Fp)-torsor over Mg[N ].

The following theorem gives a new proof of [FKW19, Corollary 4] and also extends it
to fields of positive characteristic.

Theorem 23. Mg[pN ] is p-incompressible as an Sp2g(Fp)-torsor. Furthermore, for g > 2,
and any n > 1 such that p | n and char(k) - n, the map Mg[n]→Mg is p-incompressible.

Proof. Let Co be a totally degenerate stable curve of genus g with dual graph as in Lemma
19. Let B be the versal deformation space of Co as in §4.1.3. Let S0 be a connected
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component of the étale cover of Bo given by trivialising the finite local system R1ν∗(Z/NZ)
and let S be the normalisation of B in S0. Then S is a simplicial toroidal singularity
since char(k) - N ; it is in fact smooth, but we will not need this. The pullback of C to S0

induces a morphism g : S0 →Mg[N ] and since p - N , by Lemma 20 for any geometric

point s of S0 the image of the composite πet
1 (S0, s)

g∗−→ πet
1 (Mg[N ], g(s))� Sp2g(Fp) is

an elementary abelian p-group of rank 3g − 3 = dim(Mg[N ]).
By Lemma 21 there exists a nonsingular Zariski open subset U (resp. V ) of Mg[pN ]

(resp. Mg[N ]) containing Mg[pN ] (resp. Mg[N ]) and all the points parametrising curves
isomorphic to Co such that the map f :Mg[pN ]→Mg[N ] extends to a finite morphism
f̄ : U → V . We now set X = Mg[pN ], Y = Mg[N ], X = U , Y = V and f : X → Y ,
f̄ : X → Y as above. The first part of the theorem will follow from Theorem 18 if we can
show that the map g : S0 → Y extends to a morphism ḡ : S → Y

To see this, we note that the universal family of stable curves over B induces a morphism
h : B → Mg. Let B′ = B ×Mg

Mg[N ]. B′ is finite over B and the map g : S0 → Y

clearly factors through B′. Since S is normal and finite over B, the map S0 → B′ extends
to a morphism S → B′ which gives an extension of g as a map g′ : S → Mg[N ]. By
construction, the closed point of S maps to a point in X, so it follows that g extends to a
morphism ḡ : S → Y as desired.

To prove the second statement, we may assume that n = p. Choose any integer N > 2
such that (N, p char(k)) = 1. Since g > 2, the generic curve of genus g has no nontrivial
automorphisms, soMg[p]×MgMg[N ] is equal toMg[pN ] over the generic point ofMg[N ].
We complete the proof by applying the first part of the theorem. ♠

Remark 24. The second part of Theorem 23 for g = 2 follows from the corresponding
statement for Ag proved in Corollary 41 and Theorem 50.

4.3. Incompressibility for some “quantum” covers of Mg. We now apply Proposi-
tion 16 to prove incompressibility for certain covers of moduli spaces of curves arising from
certain (3-dimensional) Topological Quantum Field Theories. Although our method is
quite general, for the sake of concreteness we restrict ourselves to the TQFTs constructed
explicitly in [BHMV95].

Throughout this section the base field is C.

4.3.1. We first recall some of the properties of the TQFTs that we shall need. Let
g > 2 and let Σ be a closed oriented surface of genus g. The three dimensional TQFTs
constructed in [BHMV95], which are indexed by integers p > 1, give rise to a projective
representation ρp of the mapping class group Mod(Σ) in a vector space Vp(Σ) (over the
cyclotomic field Q(exp(2πi

4p
))).

We now assume that p is odd for simplicity: this is not a significant restriction since
the Vp(Σ) for even p can be expressed as a tensor product of Vp(Σ) for odd p and another
simple representation (depending only on g). For each P as in §4.1.1 there is a natural
basis {uσ} of Vp(Σ) in which the action of FP (Σ) is diagonalised [BHMV95, Theorem 4.11].
The basis is parametrised by admissible colorings of ΓP [BHMV95, Definition 4.5] which
are maps

σ : E(ΓP )→ {0, 2, . . . , p− 2}
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satisfying the following admissibility condition: for all vertices v of ΓP , if e1, e2 and e3 are
the three edges incident on v (for a loop the same edge is repeated twice) then

(25) |σ(e1)− σ(e2)| 6 σ(e3) 6 σ(e1) + σ(e2).

The Dehn twist corresponding to an edge γ acts on uσ by multiplication by a p-th root
of unity depending only on the colour σ(eγ): if A = exp(2πi

4p
) then for any colour i this

is (−1)iAi
2+2i [BHMV95, §5.8, Remark 7.6 (ii)]. One sees from the formula that if p is

an odd prime, then these roots of unity are distinct p-th roots of unity for distinct even
colours.

Lemma 26. The groups ρp(FP (Σ)) are elementary abelian p-groups of rank 3g − 3 if
p > 5 is a prime.

Proof. Let γ ∈ P . If γ is a loop, let σγ be the coloring of ΓP given by

(27) σγ(eγ′) =

{
2 if γ′ = γ

0 if γ′ 6= γ.

If γ is not a loop let σγ be the coloring of ΓP given by

(28) σγ(eγ′) =

{
4 if γ′ = γ

2 if γ′ 6= γ.

One easily sees that σγ is an admissible coloring in both cases. Moreover, the Dehn twist
tγ around γ acts by a non-trivial p-th root of unity on uσγ in both cases, whereas the other
Dehn twists tγ′ all act by a different root of unity independent if γ 6= γ′.

Let σ0 (resp. σ2) be the coloring which is the constant function 0 (resp. 2). Suppose∏
γ∈P t

aγ
γ is in ker(ρp(FP (Σ))). If γ is a loop then by considering the restriction of the

representation to the subspace spanned by uσ0 and uσγ we see immediately that aγ must
be a multiple of p. If γ is not a loop we get the same conclusion by using the subspace
spanned by uσ2 and uσγ . Thus, ρp(FP (Σ)) is is an elementary abelian p-group of rank
equal to #P = 3g − 3. Since FP (Σ) acts trivially on uσ0 we conclude that the same holds
for the projective image in PGL(Vp(Σ)). ♠

4.3.2. Since Mod(Σ) is finitely generated, the representations ρp (for any p > 1) can
be reduced modulo all but finitely many primes q of the subring of C generated by the
matrix coefficients, giving rise to an infinite sequence of finite quotients Gp,q of Mod(Σ). In
general, these quotients might depend on the choice of lattice used to define the reduction
of the representations, but for p an odd prime the explicit lattices in Vp(Σ) invariant under
the action of Mod(Σ) that were constructed in [GM07] can be used to uniquely specify
the Gp,q (for all q).

The group Mod(Σ) can be identified (after choosing a base point) with the fundamental
group of the moduli stack Mg of smooth projective curves of genus g over C. Therefore,
the finite quotients Gp,q of Mod(Σ) give rise to étale covers of the stack Mg, which we
denote by Mp,q

g .

Lemma 29. Suppose p > 3 is a prime and n 6= p is also a prime. Let Γp,q be the kernel
of the surjection Mod(Σ) → Gp,q and let Γn be the kernel of the surjection Mod(Σ) →
Aut(H1(Σ,Z/nZ)). Then Γp,q · Γn = Mod(Σ).
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Proof. From the proof of Lemma 26 we see that the Dehn twists δ around any of the
loops γ maps to an element of order p under ρp, so δp ∈ Γp,q. Since p 6= n, if γ is a
non-separating loop then δp is an element of exact order n in Aut(H1(Σ,Z/nZ)). Since
the only normal subgroup of this group is its centre, it follows that Γp,q surjects onto
Aut(H1(Σ,Z/nZ)). ♠

For any integer N > 2, let Mg[N ] be the moduli stack of smooth projective curves of
genus g with level n structure. It is in fact equal to its coarse moduli space, the variety
Mg[N ] from §4.2. We set Mp,q

g [N ] := Mp,q
g ×Mg Mg[N ]. By Lemma 29, Mp,q

g [N ] is
irreducible and the projection map πp,qg :Mp,q

g [N ]→Mg[N ] is a finite etale Gp,q-cover.

Theorem 30. The Gp,q-covers πp,qg :Mp,q
g [N ]→Mg[N ] are p-incompressible for p > 5,

N > 2 and p - N (and all but finitely many primes q of the relevant cyclotomic field).

Remark 31.

(1) If g > 2 then Mg is generically a variety, so we have a finite Gp,q-cover πp,qg :
Mp,q

g →Mg (which is only generically étale). Theorem 30 implies that this cover
is generically incompressible.

(2) If g > 3 there exists a totally degenerate stable curve with trivial automorphism
group. In this case the proof below may be carried out without the level N -structure.

Proof. Let Co be a totally degenerate stable curve of genus g, and let ν : C → B, D,
B, etc. be as in §4.1.2. By the discussion there and Lemma 26, the image in Gp,q of
FP (Σ) (identified with π1(Bo, b)) is an elementary abelian p-group of rank 3g − 3. On the
other hand, the image of the monodromy representation in Aut(H1(Cb,Z/NZ)) is a finite
abelian group of exponent N (since the mondromy around each irreducible component of
D is unipotent).

Let So be a connected component of Bo ×Mg Mg[N ], where the map to Mg is the
classifying map. The map So → Bo is an abelian cover of exponent N . Let S be the
normalisation of B in So, so this is a (simplicial) toroidal singularity and So ⊂ S is the
complement of the boundary divisor. Since p - N , for s ∈ So the image of the monodromy
representation π1(S

o, s) → π1(Mg[N ]) → Gp,q is still an elementary abelian p-group of
rank 3g − 3.

We conclude by applying Theorem 18 with Y = Mg[N ], X = Mp,q
g [N ], f = πp,qq ,

Y =Mg[N ], X any equivariant smooth compactification of Mp,q
g [N ] which has a map f̄

to Mg[N ] extending f (which exists because k = C), So and S as above and g and ḡ the
natural classifying maps.

♠

Remark 32. By a theorem of Masbaum and Reid [MR12], for each g > 2 there are
infinitely many integers N , and for each such N an infinite set of (rational) primes PN ,
such that the group PSL(N, r), for r ∈ PN , occurs as one of the groups Gp,q. In contrast
to this, it follows from the congruence subgroup property of Sp2g(Z), g > 2, that there
are no such covers of Ag for g > 2 if N > 2g.
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5. Locally symmetric varieties

In this section, we first (in §5.1) fix some notation involving algebraic groups and
Hermitian symmetric domains and state our main theorems regarding locally symmetric
varieties: Theorems 33 and Theorem 34. Theorem 33 is then proved in §5.5 and Theorem 34
is proved in §5.4.

Our basic references for Hermitian symmetric domains are [Hel78] (where they are called
Hermitian symmetric spaces of noncompact type) and [AMRT10].

5.1. Locally symmetric varieties, boundary components and incompressibility.
We say that a semisimple algebraic group G over R is of Hermitian type if the Lie
group G := Gad(R)+ is isomorphic to Aut(D)0, the identity component of the group of
biholomorphisms of a Hermitian symmetric domain D. We note that G and D determine
each other, D being biholomorphic to G/K, where K is a maximal compact subgroup of
G and G/K having its natural G-invariant complex structure. The choice of isomorphism
does not matter for our purposes, we fix one and then identify D with G/K. A semisimple
algebraic group over Q is of Hermitian type if GR is of Hermitian type.

Suppose G = Gad and Γ is an arithmetic subgroup of G(Q) contained in G, then, by
Baily–Borel [BB66], the complex-analytic space Γ\D has the structure of a quasi-projective
complex variety. Moreover, if Γ is neat, then this structure is unique by Borel’s Extension
Theorem [Bor72]. (See §5.3 for a review of the notions of arithmetic and congruence
subgroups.) In other words, there is a uniquely defined quasi-projective variety MΓ whose
analytification Man

Γ is Γ\D. The varieties MΓ will be called locally symmetric varieties.
We often abuse notation and write Γ\D for MΓ.

Now suppose that ∆ is a finite index subgroup of Γ. We then have a morphism
∆\D → Γ\D of complex analytic spaces and, again using [Bor72], we get a corresponding
morphism π : M∆ →MΓ of quasi-projective varieties. Moreover, if we assume that Γ is
neat and ∆E Γ, then MΓ is smooth and π is a Γ/∆-torsor.

We have D = G/K where K is a maximal compact subgroup of G. Moreover, the
Cartan involution σ corresponding to K gives us a splitting g = k⊕ p, where g and k are
the Lie algebras of G and K respectively. Here k and p are the +1 and −1 eigenspaces of
σ respectively. The space p, which can be identified with the tangent space of D at the
point corresponding to K, has a complex structure J . This gives rise to a decomposition
pC = p+ ⊕ p−, where p± is the ±i-eigenspace of J . The Harish-Chandra embedding
theorem [AMRT10, Theorem 2.1], then gives a holomorphic embedding of D into p+.

WriteD for the closure ofD in p+. Then the action ofG onD extends toD, which is itself
a union of Hermitian symmetric domains called boundary components [AMRT10, Definition
3.2]. The normalizer of a boundary component F is then N(F ) := {g ∈ G : gF = F}.
(Note that the space D itself is a boundary component with N(F ) = G.) If we write G as
a product G1×· · ·×Gk with Gi simple, then the association F 7→ N(F ) sets up a one-one
correspondence between boundary components and parabolic subgroups P 6 G of the
form P1 × · · · × Pk with each Pi containing a maximal parabolic subgroup of Gi. (So each
Pi is either maximal parabolic in Gi or equal to Gi itself.) Let W (F ) be the unipotent
radical of N(F ) and U(F ) the centre of W (F ).
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A boundary component is said to be rational if N(F ) = P(R) ∩ G where P is a
rational parabolic subgroup of G. We will call such a parabolic subgroup d-cuspidal if the
corresponding boundary component is d-dimensional. The Baily–Borel compactfication
of Γ\D involves adding strata corresponding to rational boundary components [BB66],
the stratum associated to a d-cuspidal parabolic being of dimension d. (When D has no
rational boundary components the space Γ\D is compact for any arithmetic subgroup
Γ 6 G(Q) ∩G(R).)

With the above notation, we can state a theorem.

Theorem 33. Let G be an algebraic group over Q of Hermitian type with corresponding
Hermitian symmetric domain D, let F be a rational boundary component of D and set
U := U(F ). Let ∆ and Γ be neat arithmetic subgroups of G ∩G(Q) with ∆E Γ, and set
U := (U ∩ Γ)/(U ∩∆). Then any smooth U-equivariant compactification M∆ of M∆ has a
U-fixed point.

Coupled with the fixed point method, Theorem 33 can be used to give lower bounds for
the essential dimension of congruence covers. Tube domains, see §5.4, are a special class
of Hermitian symmetric domains, and if D is such and P is 0-cuspidal then we can even
prove incompressibility for certain covers. Since the proof in this case is very simple and
does not use the general theory of Hermitian symmetric domains, we state and prove this
special case as Theorem 34 below.

(See §5.3 for the notion of a subgroup defined by congruence conditions, which we use
in the statement.)

Theorem 34. Let U be a finite dimensional real vector space and let D = C + iU be a
tube domain in UC associated to a self-adjoint homogenous open cone C ⊂ U . Let G be an
adjoint algebraic group over Q such that G := G(R)+

∼= Aut(D)0. Let P be the normalizer
of U in G (U acts on D by translations) and assume that P = P(R)∩G, where P ⊂ G is
a parabolic subgroup. Let ∆ and Γ be neat arithmetic subgroups of G ∩G(Q) with ∆E Γ,
and set U := (U ∩ Γ)/(U ∩∆). Then:

(1) Any smooth U-equivariant compactification M∆ of M∆ has a U-fixed point.
(2) If the rank of U ⊗ Fp is equal to dim(D) then the cover π : M∆ → MΓ is p-

incompressible.

Furthermore, given Γ as above, for any prime p there exists ∆E Γ such that the rank of
U⊗ Fp is equal to dim(D).

A proof of Theorem 34 will be given in Section 5.4.

Remark 35. One can sometimes get essentially the same conclusions as in Theorems 33
and 34 even when Γ and ∆ are not neat by using a simple base change trick. See the proof
of the last part of Corollary 41 for an illustration.

Section 6 is devoted to constructing examples, see in particular, Theorem 67 and Remark
68.

Remark 36. Our definition of groups of Hermitian type forces all the simple factors of G
to be noncompact. For the purpose of constructing the locally symmetric varieties MΓ,
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for Γ an arithmetic subgroup of G, this is not necessary, and such varieties are commonly
studied, e.g., in the theory of Shimura varieties. However, if G is simple and G has a
compact factor, then MΓ is compact [BB66, Lemma 3.2 on page 469] and in this case our
methods do not apply.

As we mentioned earlier, Farb, Kisin and Wolfson have been able to prove incompress-
ibility of congruence covers in many instances where D has no nontrivial rational boundary
components; i.e, where MΓ is compact. So, we feel that, taken together, Theorem 34
and [FKW19] provide enough evidence to motivate the following conjecture. It is a spe-
cialization of Conjecture 1 from the introduction, but we feel that it is worthwhile here to
make it separately in the context of locally symmetric varieties.

Conjecture 37. Let p be a prime, D a Hermitian symmetric domain, G = Aut0(D) and
Γ an arithmetic subgroup of G as above. Then there exists a normal subgroup ∆E Γ of
finite index such that the Galois cover M∆ → MΓ is p-incompressible. That is, viewing
M∆ as a Γ/∆-variety, we have ed(M∆; p) = dim(D).

Remark 38. Using Corollary 7 and the method of Corollary 8, it is not hard to see that
the covers M∆ →MΓ studied in Theorem 34 are rarely p-versal.

5.2. The example of Ag. One typical example where we can apply Theorem 34 occurs
in the case of the moduli space of principally polarized abelian varieties considered above
when G = PSp2g,Q and D is the Siegel upper half-space (which is a tube domain, see
Example 44). In fact, this is the example which motivated this paper. It also concretely
illustrates several of the issues that we will have to deal with later in a more abstract
setting, so we explain it here.

For each positive integer N > 3, set

(39) ΓN := ker(Sp2g(Z) −→ Sp2g(Z/N)).

(Here we view Sp2g as the group of symplectomorphisms of the lattice Z2g with a fixed
symplectic form—a reductive group scheme over SpecZ.) Since N > 3, the restriction of
the central isogeny Sp2g,Q → G to ΓN is injective. So ΓN is naturally isomorphic to its

image ΓN in G(Q). Moreover, this image is contained in G = G(R)+. (This follows from
the fact that Sp2g(R) is connected.)

The variety MΓN
is the coarse moduli space Ag,N of principally polarized g-dimensional

abelian varieties with level N -structure, and, if p is a prime not dividing N , the map
π : Ag,pN → Ag,N is an Sp2g(Fp)-torsor. In other words, if we set Γ := ΓN and ∆ := ΓpN ,
then the map Ag,pN → Ag,N can be identified with the map M∆ →MΓ.

Let P̃ denote a parabolic in Sp2g,Q corresponding to a maximal isotropic subspace for
the symplectic form on Q2g. For definiteness, fix the symplectic form φ (on Z2g) given by
the matrix (

0 −I
I 0

)
,

where I denote the g × g identity matrix. It is not hard to see that the unipotent radical

of P̃ consists of matrices of the form

(40)

(
I T
0 I

)
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where T is a symmetric g × g matrix. So the unipotent radical of P̃ is abelian, and is,
therefore, its own center.

Let P denote the image of P̃ in G, and let P := G∩P. Then P is a maximal parabolic
and corresponds to a unique boundary component F (which is actually a single point in
D). In fact, in the tube domain description of D (see Example 44), this P is exactly the
P in Theorem 34. In particular, U(F ) is equal to the abelian algebraic group defined by
the matrices in (40). The group U = U(F ) ∩ Γ/U(F ) ∩∆ from Theorem 33 is just the
group Sym2 Fgp, the vector space of symmetric 2× 2-matrices over Fp viewed as a group.
So we get the following result recovering [FKW19, Theorem 2]:

Corollary 41. Any smooth U-equivariant compactification Ag,pN of Ag,pN has a U-fixed
point. Consequently, the Sp2g(Fp)-torsor Ag,pN → Ag,N described above is p-incompressible.
Furthermore, for any n > 1 and p | n, the map Ag,n → Ag is p-incompressible.

Proof of Corollary 41 assuming Theorem 34. The Siegel upper half-space is a tube domain
so, since U ⊂ Sp2g(Fp) and rank(U) = dimAg,pN , the first and second parts of the corollary
follow from Theorem 34.

To prove the second part, we may assume that p = n. Let N > 2 be any integer such
that p - N . The natural finite surjective morphism from Ag,pN to the normalisation A′g,pN
of the component of the fibre product Ag,p ×Ag Ag,N dominating Ag,N is U-equivariant,
so it follows from the first part that any U-equivariant compactification of A′g,pN has a
U-fixed point. By Proposition 10, the map A′g,pN → Ag,N is p-incompressible, from which
we deduce that the same holds for the map Ag,n → Ag. ♠

5.3. Arithmetic and Congruence Subgroups. Here we recall some standard facts
and terminology about congruence subgroups. Our main references are [Ser95, Rag04].

Let G be a linear algebraic group defined over Q and let Af denote the ring of finite
rational adeles. The embedding of Q in Af induces an embedding of G(Q) in G(Af ), and
we use this embedding to regard the first group (of rational points) as a subgroup of the
second group (of adelic points).

A subgroup Γ ≤ G(Q) is said to be a congruence subgroup if Γ = K ∩ G(Q) for a
compact open subgroup K of G(Af). A subgroup Γ ≤ G(Q) is said to be arithmetic if
it is commensurable with a congruence subgroup. Here two subgroups A and B of an
abstract group G are commensurable if [A : A ∩B] and [B : A ∩B] are both finite.

Let Tc denote the subspace topology induced on G(Q) by its inclusion in G(Af ). So Tc
has a neighborhood basis of the identity consisting of congruence subgroups. Let Ta denote
the topology on G(Q) obtained by taking the arithmetic subgroups as a neighborhood
basis of the identity. Then the topology Ta is a priori at least as fine as the topology
Tc. The congruence subgroup problem asks whether they are the same. In other words,
the congruence subgroup problem for G asks whether every arithmetic subgroup of G(Q)
is congruence. For G solvable this is known to be the case [Rag76, p. 108]. On the
other hand, it is not the case for G = SL2 [Ser95], a fact which was apparently already
known to F. Klein. Moreover, for G semisimple, it is never the case unless G is simply
connected [Ser95, 1.2c]. See [Rag04] for a more complete account of what is known.
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If Γ ≤ G(Q), we say that a subgroup ∆ of Γ is defined by congruence conditions if
∆ = Γ ∩K for some compact open subgroup of G(Af). Equivalently, ∆ is open in Γ for
the subspace topology induced by Tc.

The group GLn(Af) is a locally compact Hausdorff space, and, if ρ : G → GLn,Q is
a faithful linear representation, then the induced map ρ(Af) : G(Af) → GLn(Af) is a
homeomorphism of G(Af ) onto its image, which is necessarily closed. It follows that the
topology Tc on G(Q) has a basis of open neighborhoods of 1 of the form ρ−1(Φn,d), where
Φn,d denotes the set of n × n matrices in GLn(Z) which are congruent to the identity
modulo d.

5.4. Tube domains. All the facts about tube domains that we use in this section can be
found in [FK94, Chapter X].

Definition 42. A tube domain is a set of the form

(43) D = U + iC ⊂ UC

where U is a finite dimensional real vector space and C is an open homogeneous self-adjoint
cone in U . Then D is an open subset of the complexification UC of U so it has a natural
structure of complex manifold; in fact, it is always a Hermitian symmetric domain [FK94,
Theorem X.1.1].

A tube domain is said to be irreducible if the cone C cannot be written as a product of
two cones in a nontrivial way. Any tube domain can be written as a product of irreducible
tube domains in an essentially unique way [FK94, Proposition III.4.5].

The group U acts holomorphically on D by translations, so it is a subgroup of Aut(D)0.
In fact, it is the unipotent radical of a parabolic subgroup P of Aut(D)0. The tube domain
is irreducible iff P is a maximal parabolic.

We say that a pair (G,P) with G a semisimple algebraic group over Q and P a parabolic
subgroup is of tube type if there is an isomorphism of G := Gad(R)+ with Aut(D)0, for D
a tube domain as above, such that P(R) ∩G corresponds to P .

Example 44. The basic example of a tube domain is the Siegel upper half-space Hg. In
this case, U is the space of symmetric real g× g matrices, C is the cone of positive definite
matrices and the group PSp2g(R) acts on Hg by

γ · Ω = (AΩ +B) · (CΩ +D)−1

for γ =
(
A B
C D

)
∈ Sp2g(R) (with A,B,C,D real g× g matrices) and Ω ∈ Hg. The parabolic

subgroup corresponding to this presentation is the subgroup P consisting of elements γ as
above with C = 0. The group U , acting by translation on Hg, is naturally identified with
the unipotent radical of P .

Although not needed for the proof of Theorem 34, we give a characterisation of Hermitian
symmetric domains which are of tube type.

Lemma 45. Let D = G/K be a Hermitian symmetric domain with boundary component
F and let N(F ), W (F ) and U(F ) be as in §5.1. Then the following are equivalent:

(1) dimU(F ) = dimD;
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(2) D is biholomorphic to a tube domain (as in Definition 42) in such a way that N(F )
corresponds to P (equivalently, W (F ) corresponds to U , the unipotent radical of
P ).

Furthermore, if (1) or equivalently (2) holds, then F is a 0-dimensional boundary compo-
nent.

Note: In Lemma 45, dimD denotes the dimension of D as a complex manifold, and
dimU(F ) denotes the dimension of U(F ) as a real Lie group.

Proof. The reduction to the case that D is irreducible is easy. So we assume D is irreducible
and leave the reduction to the reader.

For any boundary component F , by [AMRT10, III, (4.1)] there is a real analytic isomor-
phism D ∼= F × C(F )×W (F ), where C is a self-adjoint homogenous open cone in U(F ).
It follows that dimU(F ) = dimD iff F is 0-dimensional and W (F ) = U(F ). Assuming
this is the case, it follows from [AMRT10, III, Lemma 4.7] that D is biholomorphic to the
tube domain corresponding to the cone C(F ) (and U(F ) = W (F ) corresponds to U).

Conversely, if D is a tube domain as defined above and if we take F to be the boundary
component corresponding to the maximal parabolic subgroup P , then U(F ) = U so
dimU(F ) = dimD. ♠

Remark 46. For the explicit classification of tube domains, the reader may consult [FK94,
X.5 ]. The irreducible ones correspond to simple Lie groups G of Hermitian type with
(real) root system of type Cr, where r = rank(G).

Lemma 47. Let (G,P) be a pair of tube type with G adjoint. Suppose that Γ 6 G∩G(Q)
is an arithmetic subgroup. Let p be a prime number. Then there is a normal subgroup ∆ of
Γ defined by congruence conditions such that the p-torsion subgroup of H := (Γ∩U)/(∆∩U)
has rank dimU .

Proof. Set UΓ := Γ∩U . The group pUΓ is of finite index in UΓ, so it is itself an arithmetic
subgroup of U . In fact, since U is unipotent, any arithmetic subgroup of U is congruence.
Therefore, pUΓ is a congruence subgroup of U .

Now, by [PR94, Proposition 4.2], we can find a positive integer n and a faithful linear
linear representation ρ : G→ GLn,Q such that Γ is a finite index subgroup of ρ−1GLn(Z).
Since pUΓ is a congruence subgroup of U , there exists a positive integer d such that
ρ−1(Φn,d)∩U ≤ pUΓ. So set ∆ = Γ∩ ρ−1Φn,d. Since Φn,dEGLn(Z), ∆EΓ. So the lemma
follows. ♠

Lemma 48. Let U be a real vector space and C ⊂ U an open convex cone. Let L ⊂ U
be a lattice. Let p : UC → T := UC/L be the quotient map and T ⊂ T the partial
compactification of T defined by a maximal dimensional smooth rational polyhedral cone
C ′ ⊂ C. For any c ∈ U , let Dc ⊂ UC be the open set

{u ∈ UC | im(u)− c ∈ C} .

For any sufficiently small polydisc S centred at the torus fixed point t0 of T , S = S ∩ p(Dc)
is a product of punctured polydiscs.
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Proof. We may choose coordinates such that L = Zn ⊂ Rn = U for some n > 0, UC = Cn,
and T = (C×)n. We may also assume that

C ′ = {(x1, x2, . . . , xn) ∈ Rn | xi > 0 ∀ i}
and then T = Cn, with p : Cn → (C×)n given by

(z1, z2, . . . , zn) 7→ (e2πiz1 , e2πiz2 , . . . , e2πizn) .

Since C ′ ⊂ C, and C is open and convex, {(z1, z2, . . . , zn) ∈ Cn | im(zi)� 0 ∀ i} ⊂ Dc.
It follows that p(Dc) contains

{(w1, w2, . . . , wn) ∈ (C×)n | |wi| < ε ∀ i}
if ε is sufficiently small. ♠

Proof of Theorem 34. Let X = M∆, Y = MΓ, K := Γ/∆, and f : X → Y the natural
map making X into a K-torsor over Y . Let Y be the Baily–Borel [BB66] compactification
of Y and X a smooth U-equivariant compactification of X such that there is a morphism
f̄ : X → Y extending f .

The group U ∩Γ, which is a lattice in U , gives rise to an algebraic torus T = (U ∩Γ)\UC
containing (U ∩ Γ)\D. Let C ′ ⊂ C be a smooth rational polyhedral cone of maximal
dimension, where the integral structure defining smoothness is given by U ∩ Γ. The cone
C ′ gives rise to a torus embedding T ⊂ T with T an affine space. Since C ′ ⊂ C, the
intersection of a polydisc S around t0, the torus fixed point of T , with S is a product S of
punctured polydiscs (apply Lemma 48 with c = 0) and the map π1(S)→ π1(T ) = (U ∩∆)
is an isomorphism.

The natural map (U ∩ Γ)\D → Γ\D induces a holomorphic map g : S → Y with the
property that the induced map on π1 corresponds to the inclusion U ∩ Γ→ Γ. Therefore,
the image of the map g∗ : π1(S)→ K = Γ/∆ is the finite abelian group U. By the Borel
extension theorem [Bor72], the map g extends to a holomorphic map ḡ : S → Y . By
Proposition 16, U has a fixed point in X, so this proves part (1) of the theorem.

Part (2) of the theorem follows from this by Proposition 10 and part (3) of the theorem
is the content of Lemma 47. ♠

5.5. General Hermitian symmetric domains. General Hermitian symmetric domains
do not have as simple a description as do tube domains, but the theory of Siegel domains
of the third kind (see, e.g., [AMRT10, III §4]) allows us to give a proof of Theorem 33
which is very similar to the proof of Theorem 34.

Let D, G, G be as in §5.1 and let F be a rational boundary component. We let N(F )
be the normalizer of F , W (F ) its unipotent radical and U(F ) the centre of W (F ).

We have already mentioned the Harish-Chandra embedding, which is a holomorphic
embedding of D in p+. Recall that D = G/K where K is a maximal compact subgroup of
G (the stabilizer of a given element of D). Let GC (resp. KC) denote the complexification
of G (resp. K) [Bou98, III §6, Proposition 20]. The subspaces p± of pC are abelian
subalgebras of g corresponding to subgroups P± = exp p± of GC. Moreover, KC normalizes

P− and the resulting subgroup KCP− is parabolic. Set qD := GC/KCP−; this space, a
complex generalized flag variety, is called the compact dual of D. The exponential map

exp : p+ → GC followed by the quotient map to qD then gives rise to an open immersion of p+
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in qD [AMRT10, Theorem III.2.1]. The composition of the two embeddings D ↪→ p+ ↪→ qD
is known as the Borel embedding.

5.5.1. All the results stated in this subsection can be found in [AMRT10, III §4.3] (esp. pp
152-153) and the references therein.

Let D(F ) = U(F )C · D ⊂ qD. This is a submanifold of qD on which there is an
action of U(F )C such that D is preserved by U(F ). The group U(F )C acts freely (and
holomorphically) on D(F ) and the quotient by this action is a complex manifold D(F )′,
so we have a map π′F : D(F )→ D(F )′ whose fibres are principal homogenous spaces over
U(F )C. Furthermore, D(F )′ is contractible.

For any w ∈ D(F )′, we may identify (π′F )−1(w) with U(F ) by choosing any point as
the origin. Then

(49) Dw := (π′F )−1(w) ∩D = {u ∈ U(F )C| im(u) ∈ C(F )− c(w)}
where C(F ) is an open self-adjoint homogenous cone in U(F ) and c(w) ∈ U(F ).

5.5.2.

Proof of Theorem 33. The proof is very similar to the case of tube domains.
Set U := U(F ). The inclusion of D in D(F ) induces an inclusion (Γ ∩ U)\D →

(Γ ∩ U)\D(F ) which induces an isomorphism on fundamental groups. Since the map
π′F is equivariant for the action of U(F )C, it is also equivariant for the action of U ∩ Γ.
For any w ∈ D(F )′, the inclusion (U ∩ Γ)\(π′F )−1(w) → (U ∩ Γ\D(F )) also induces an
isomorphism on fundamental groups. We now apply Lemma 48 to get S ⊂ (U ∩ Γ)\Dw, a
product of punctured discs, and a sequence of maps

S → (U ∩ Γ)\Dw → (U ∩ Γ)\D → Γ\D.
The discussion above shows that the image of the map on fundamental groups induced by
the composite of these maps is U ∩ Γ. We may now complete the proof as in the case of
tube domains by using the Baily–Borel compactification of D/Γ and the Borel extension
theorem. ♠

5.6. Incompressibility in positive characteristic. In many cases the locally symmet-
ric varieties MΓ have a modular interpretation which leads to a natural model defined over
a well-defined number field L. In fact, they often have natural smooth models MΓ over a
localisation R of the ring of integers of L, so we can reduceMΓ modulo maximal ideals P
of R. When M∆ also has such a model, we get a finite étale coveringM∆,k →MΓ,k, where
k = R/P . It is then natural to ask when these covers are incompressible or p-incompressible
(over k̄).

Our proof of incompressibility in the case of the moduli space of curves was characteristic
free, but for locally symmetric varieties the proof was complex analytic and does not
immediately extend to fields of positive characteristic: for example, in this case there is
no analogue of Borel’s extension theorem, even for Ag. However, the theory of toroidal
compactifications of integral models allows us to bypass this difficulty by using the existence
of fixed points in characteristic zero to get fixed points (on suitable compactifications) over
k as well, from which we can deduce incompressibility using the fixed-point method. All
this is best done using the language of Shimura varieties, however, rather than explaining
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this in detail we give a proof of the analogue of Corollary 41 and then point out the
references which can be used to generalize this result.

Let k be an algebraically closed field of characteristic l > 0. The varieties Ag,N are
moduli spaces of g-dimensional principally abelian varieties with level N structure, so can
be defined over k as long as l - N [MFK94]. If p is a prime not dividing N and l 6= p,
then the cover Ag,pN/k → Ag,N/k is defined and is an Sp(2g,Fp)-torsor if N > 3. Here
we use /k to emphasize that the varieties are over the field k. The theorem below extends
[FKW19, Theorem 2] to fields of positive characteristic.

Theorem 50. The Sp2g(Fp)-torsor Ag,pN/k → Ag,N/k is p-incompressible if p - N , N > 3
and l - pN . Furthermore, for any n > 1 and prime p such that p | n and (n, p char k) = 1,
the map Ag,n → Ag is p-incompressible.

Proof. Let R be the ring Z[1/n, ζn], where ζn is a primitive n-th root of unity in C, and
assume n > 3. By results of Mumford [MFK94], there exists a smooth scheme Ag,n/R
whose fibre at any prime P of R is the variety Ag,n/kP , where kP denotes the residue field
at P . By [FC90, IV, Theorem 6.7] there exist smooth proper algebraic spaces Ag,n/R
(depending on some auxiliary data which we suppress) which contain Ag,n/R as a fibrewise
dense open subspace and such that the natural action of Sp2g(Z/nZ) on Ag,n/R extends

to Ag,n/R. Furthermore, by [FC90, V, Theorem 5.8], the auxiliary data may be chosen so
that Ag,n/R is projective, so in particular, it is a scheme.

We now take n = pN . Since Ag,pN/C is a smooth compactification of Ag,pN/C, it
follows from the discussion in §5.2, that the group U ⊂ Sp2g(Fp) ⊂ Sp2g(Z/pNZ) has a

fixed point in Ag,pN (C). Since Ag,pN/R is proper, by specialisation it follows that U has a
fixed point in Ag,pN(k). Since U is contained in Sp2g(Fp), the Galois group of the cover
under consideration, and rank(U) = dimAg,pN/k, the theorem follows from the fixed point
method (Proposition 10).

To prove the second part of the theorem, we may assume that p = n. If p > 2, then
Ag,p/k is smooth and the above shows that it has a U-fixed point so the statement follows
from the fixed point method. Now suppose p = 2, let N > 2 be any integer such that
(N, p char k) = 1, and consider the morphism Ag,pN/k → A′g,pN/k as in the proof of
Corollary 41. Since p = 2 this is an isomorphism, so the statement follows from the second
part of the theorem. ♠

Remark 51. As mentioned earlier, versions of Theorems 33 and 34 can be proved for
certain more general locally symmetric varieties, by essentially the same argument as
above, using integral toroidal compactifications of Shimura varieties of Hodge type; see
[Lan13] for the PEL case and [MP19] for the general Hodge type setting. Here we need to
assume that Γ is a congruence subgroup which is hyperspecial at the prime l in order to get
a model which is smooth: this corresponds to the condition l - N above. We leave this as
an exercise for the interested reader. However, we note that the theory of integral toroidal
compactifications is not needed to prove these results for the reductions modulo primes of
large (undetermined) residue characteristic: this follows immediately from the results in
characteristic zero by “spreading out” any smooth proper equivariant compactification
and applying the fixed point method to the reduction modulo such a prime.
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6. Incompressible hyperspecial congruence covers

Pick a prime p, which we will keep fixed for this section. Our goal is to prove generaliza-
tions of some of the results of [FKW19, §4] producing congruence covers with group G(Fq)
where the G are certain semisimple algebraic groups over Fq with q = pr for some positive
integer r. The main theorem here is Theorem 67. As explained in Remark 68, this allows
us to produce congruence covers for most, but not all, of the classical groups G considered
in [FKW19]. The main new result is the existence of p-incompressible congruence covers
for locally symmetric varieties of type E7 with congruence group also of type E7.

The main technical tools and references are as follows:

(1) Results from SGA3 [SGA70] used to control the reduction modulo p of the subgroup
scheme U(F ) 6 G associated to the group U(F ) of Theorem 33.

(2) A well-known approximation result for number fields, Proposition 69 below.
(3) A theorem of Prasad and Rapinchuk on producing isotropic groups with specific

behavior at a set of primes [PR06].

6.1. General notation. Suppose H is an algebraic group over Q, and let Af := AQ
denote the finite rational adeles. If p is a prime number, we write Af,p for the prime to p
adeles. So Af = Af,p ×Qp.

If K is a compact open subgroup of H(Af ) we set ΓK := K∩H(Q) and Γ+
K = K∩H(Q)+.

We say that K is neat if it is neat in the sense of Pink [Pin90]. For K neat, ΓK is neat as
well.

We say that H has strong approximation if H(Q) is dense in H(Af). This obviously
implies that H(Q)K = H(Af ) for any compact open subgroup K 6 H(Af ).

Proposition 52. Suppose that H is either

(a) a simply connected semisimple algebraic group over Q without compact Q-simple
factors, or

(b) a Cartesian power Gn
a of the additive group.

Then

(1) the Lie group H(R) is connected;
(2) H has strong approximation.

Proof. Assertion (1) is obvious in case (b) and assertion (2) follows from the case n = 1,
which is the usual strong approximation for the adeles. In case (a), strong approximation
is proven in [PR94, Theorem 7.12] and assertion (1) is due to E. Cartan. See [BT72,
Corollaire 4.7] or [PR94, Proposition 7.6]. ♠

6.2. Smooth Zp-models and principal p-pairs. Suppose H is an algebraic group of Q.
A smooth Zp-model of H is a smooth scheme Hx over Zp together with an isomorphism
HQp

∼= Hx×ZpQp. If H is reductive (resp. semisimple), then a reductive (resp. semisimple)
Zp-model is a smooth model which is also a reductive (resp. semisimple) group scheme
over Zp.
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Given a smooth Zp-model Hx, suppose Kp 6 H(Af,p) is a compact open subgroup.
Define compact open subgroups Kp and Lp of H(Qp) by setting

Kp = Hx(Zp),
Lp = ker(Hx(Zp)→ Hx(Fp)).

Then set K = Kp ×Kp and L = Kp × Lp. Clearly, LEK. Moreover, since Hx is smooth,
reduction mod p induces an isomorphism

(53) K/L ∼= Hx(Fp).
For future reference, we call (K,L) the principal p-pair arising from the smooth Zp-model
Hx and the compact open subgroup Kp 6 H(Af,p).

Remark 54. Given Hx, it is easy to see that there exists an open neighborhood V of the
identity in H(Af,p) such that K is neat as long as Kp ⊆ V . In particular, as long as H
has a smooth Zp-model, there exists principal p-pairs (K,L) with K neat.

Proposition 55. Suppose H is an algebraic group over Q with strong approximation and
with H(R) connected. Let (K,L) be a principal p-pair arising from Hx and Kp as above.
Then inclusion induces an isomorphism of groups ΓK/ΓL ∼= K/L.

Proof. The homomorphism ΓK/ΓL → K/L is obviously one-one by the definition of ΓL.
Since H has strong approximation, H(Q)L = H(Af). So, for any k ∈ K, we can find
` ∈ L and h ∈ H(Q) such that k = h`. Then h = `k−1 ∈ H(Q) ∩K = ΓK . It follows that
ΓK/ΓL → K/L is onto. ♠

If H is a semisimple group, then H has a semisimple Zp-model if and only if the Qp-
group HQp is quasisplit and split over an unramified extension of Qp [Tit79]. If these two
conditions hold, then HQp is called an unramified group and we say that H is unramified at
p. Isomorphism classes of semisimple Zp-models of H are then in one-one correspondence
hyperspecial points x in the Bruhat–Tits building of HQp . This motivates our notation for
smooth models.

6.3. Congruence subgroups for simply connected groups. For the rest of this
section we fix a simply connected group G over Q of Hermitian type (as in §5.1). We
write ρ : G→ Gad for the canonical homomorphism to the adjoint group, which we call
the adjoint homomorphism.

For K 6 G(Af,p) a compact open subgroup, we set Γad
K = ρ(ΓK). By Proposition 52,

G(R) is connected. So Γad
K is an arithmetic subgroup of Gad(Q)+. Analogously to §5.1,

we set MK = Γad
K \D.

Lemma 56. Suppose L and K are compact open subgroups of G(Af,p) with LEK and
with K neat. Then

(1) The adjoint homomorphism ρ induces an isomorphism ΓK → Γad
K .

(2) We have

Γad
K /Γ

ad
L
∼= ΓK/ΓL ∼= K/L.

(3) The natural morphism ML →MK is a finite étale Galois cover with Galois group
K/L.
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Proof. (1) Since K is neat, K does not meet the center of G. It follows that ρ|ΓK : ΓK → Γad
K

is one-one. But this homomorphism is onto by the definition of Γad
K .

(2) This follows from (1) and Proposition 55.

(3) Since K is neat, ΓK is torsion free. So, by (1), Γad
K is torsion free as well. It follows

that ML →MK is étale and Galois with Galois group Γad
K /Γ

ad
L = K/L. ♠

Corollary 57. Suppose G is unramified at a prime p, x is a hyperspecial point of the
Bruhat–Tits building of GQp, K

p is a compact open subgroup of G(Af ) and (K,L) is the
principal p-pair arising from this data. Assume that K is neat. Then ML → MK is an
étale Galois cover with Galois group Gx(Fp).

Proof. By Lemma 56, ML →MK is étale and Galois with Galois group K/L. But, under
the hypotheses, K/L ∼= Gx(Fp). ♠

6.4. Boundary components and reduction modulo p. Now fix a rational boundary
component F of D and let N(F ), W (F ), U(F ) be as before. Write Nad(F ) (resp.
Wad(F ),Uad(F )) for the corresponding algebraic subgroups of Gad, and write N(F ) for
the inverse image of Nad(F ) in G, a parabolic subgroup. Write W(F ) for the unipotent
radical of N(F ) and U(F ) for the center of W(F ). Then ρ induces a isomorphisms
W(F ) ∼= Wad(F ) (resp. U(F ) ∼= Uad(F ). Moreover, the group of real points of W(F )
(resp. U(F )) is isomorphic to the Lie group W (F ) (resp. U(F )).

Since F will be fixed in this section, we allow ourselves to drop it from the notation
writing, for example, N instead of N(F ).

Suppose further that G is unramified and fix a hyperspecial point x giving us a group
scheme Gx as above in §6.2. As in [SGA70, Exposé XXVI], write Par Gx for the Zp-scheme
representing the functor of parabolic subgroup schemes of Gx. Then Par Gx is proper over
Zp. So it follows that the parabolic subgroup N extends uniquely to a parabolic subgroup
scheme Nx of Gx.

Write Wx for the unipotent radical of Nx [SGA70, XXII.5.11.4]. This is a closed
subgroup scheme of Nx whose geometric fibers are connected and unipotent with the
property that Nx/Wx is reductive. In particular, it is an extension to Zp of W.

Proposition 58. The subgroup U of W extends to a smooth central closed subgroup
scheme Ux of Wx. Moreover, if we set Vx = Wx/Ux we have

Ux
∼= GrU

a ;

Vx
∼= GrV

a

with rU = dim U and rV = dim W/U.

Proof. First note that, we have an exact sequence of unipotent algebraic groups over Q,

(59) 1→ U→W→ V→ 1

where both U and V are abelian. Moreover, the Lie algebras of U and W are defined in
terms of root spaces relative to a suitable maximal R-split torus of G. (See [AMRT10,
p. 143].)
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Now, from [SGA70, Exposé 26, Proposition 2.1], it follows that Wx admits a finite
filtration by closed subgroup schemes

(60) W0 = Wx ⊇W1 ⊇W2 ⊇ · · · ⊇Wn = {1}
where the quotients Wi/Wi+1 are group schemes associated to vector bundles on Zp. So,
since any vector bundle on Zp is trivial, for each i, we have Wi/Wi+1

∼= Gri
a for some

nonnegative integer ri.
In fact, when G is pinned the vector bundles are root spaces of G and, in the general

case, the result is deduced by descent. Examining the proof, one sees that, given Wx as
above, there are at most two nontrivial vector bundles involved and that Ux is a central
subgroup scheme of Wx with Ux ⊗Zp Qp = U. The proposition then follows easily. ♠

Theorem 61. Suppose G is unramified at p and (K,L) is the principal p pair associated
to a smooth Zp-model Gx and a compact open subgroup Kp 6 G(Af,p). Set

U :=
ΓK ∩U(Q)

ΓL ∩U(Q)
6

ΓK
ΓL

.

Then U is an Fp-vector space with

dimFp U = rU .

Proof. Since Ux is a closed subgroup scheme of Gx with generic fiber U, Proposition 58
implies that U(Qp) ∩Kp = U(Qp) ∩Gx(Zp) = Ux(Zp) ∼= ZrUp .

Let Rp := ker[Ux(Zp)→ Ux(Fp)]. Then, we have a commutative diagram of short exact
sequences

1 Rp Ux(Zp) Ux(Fp) 1

1 Lp Gx(Zp) Gx(Fp) 1

where the vertical arrows are monomorphisms and the nontrivial arrows on the right are
reduction module p. From this, it follows that Rp = Lp∩Ux(Zp). But then, since Lp 6 Kp

and Kp ∩U(Qp) = Ux(Zp), we have Rp = Lp ∩U(Qp) as well.
Set Kp

U := Kp ∩ U(Af,p), KU = K ∩ U(Af) and LU = L ∩ U(Af). Then Kp
U (resp.

KU , LU) is a compact open subgroup of U(Af,p) (resp. U(Af )).
Moreover,

KU = (Kp ×Kp) ∩U(Af ) = (Kp ×Kp) ∩ (U(Af,p)×U(Qp))

= (Kp ∩U(Af,p))× (Kp ∩U(Qp)) = (Kp ∩U(Af,p)×Ux(Zp).
Similarly,

LU = (Kp × Lp) ∩U(Af ) = (Kp ∩U(Af,p))× (Lp ∩U(Qp))

= (Kp ∩U(Af,p))×Rp.

It follows that KU/LU ∼= Ux(Zp)/Rp
∼= FrUp .

We have ΓKU = U(Q)∩K ∩U(Af ) = G(Q)∩K ∩U(Af ) = ΓK ∩U(Q). And, similarly,
ΓLU = ΓL ∩U(Q).

Now apply Proposition 55 to deduce that U = ΓKU/ΓLU
∼= KU/LU . ♠
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6.5. Hermitian pairs adapted to semisimple groups over Fp. Suppose p is a prime
number and G is a simply connected semisimple group over Fp for some prime p. Our
goal is to find a simply connected group G of Hermitian type with a 0-cuspidal parabolic
subgroup P such that

(1) G is unramified at p.
(2) For some, hence any, reductive model Gx of G over Zp, we have Gx ⊗Zp Fp ∼= G.

We will say that such a pair (G,P) is adapted to G.

Proposition 62. Suppose (G,P) is adapted to G. Then there exists a neat principal
p-pair (K,L) in G(Af ) with ΓK/ΓL ∼= G. Consequently, the cover

(63) ML →MK

is finite étale with Galois group G(Fp) and with

(64) edG(Fp) ML > dimU(F )

where F is any 0-dimensional boundary component. If (G,P) is of tube type then the cover
(63) is p-incompressible.

Proof. Using Remark 54, we can find a neat principal p-pair (K,L). As in §6.2, this gives
rise to the étale Galois cover (63). Then, by Theorem 61, we have dimFp U = dimU(F ).
Then (64) follows from Theorem 33, and the incompressibility for tube domains follows
from Lemma 45, or directly from Theorem 34. ♠

6.6. Reduction and Statement of Theorem. The following lemma reduces the prob-
lem of finding an adapted pair (G,P) to the case where G is almost simple over Fp.

Lemma 65. Suppose (Gi,Pi) are adapted to Gi for i = 1, 2. Then (G1 ×G2,P1 ×P2)
is adapted to G1 ×G2.

Proof. This follows by noting that if P1 and P2 are 0-cuspidal, then so is P1 ×P2. ♠

We can write any simply connected, semisimple, algebraic group H over a field L as

(66) H =
k∏
i=1

ResKiL Hi

where the Ki are finite separable extensions of L, the Hi are absolutely almost simple,
simply connected groups and Res denotes Weil restriction. Moreover, the description of
H in (66) is essentially unique in that the list of Ki and Hi appearing is unique up to
reordering and isomorphisms. Let us say that a semisimple group H over a finite field is
of potentially Hermitian type if the following two conditions are satisfied:

(1) None of the Hi in (66) are of type E8, F4 or G2.
(2) None of the Hi are triality forms of D4.

Theorem 67. Suppose that G is a simply connected group of potentially Hermitian type
over Fp. Then there exists a 0-cuspidal Hermitian pair (G,P) adapted to G.

Remark 68.
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(1) It will follow from the proof of the theorem and the classification of tube domains
[FK94, p. 213] that we can choose the pair (G,P) to be of tube type in the cases
that G has no factors of triality type D4, no factors over Fp of type Ar, with r
even, and no factors of type E6. In particular, we may take (G,P) to be of tube
type when G is of type E7.

When (G,P) is of tube type, by combining Theorem 34, Theorem 61 and
Theorem 67 we get p-incompressible congruence covers with Galois group G(Fp).

(2) In contrast to (1), in [FKW19] split factors of type Ar with r even are also allowed,
but factors of type E7 are not. However, we do get weaker results for groups of
type Ar with r even.

(3) If G is a form of E6, the dimension of the Hermitian symmetric domain correspond-
ing to G is 16, but we only get a lower bound of 8—the dimension of the centre
of the unipotent radical of P—for the p-essential dimension of congruence covers
with Galois group G(Fp).

6.7. Satake–Tits Index. Associated to any reductive group G over a field L we have
the Satake–Tits index [Tit66, p. 38]. This consists of the following data:

(1) The Dynkin diagram D = Dyn G.
(2) An action τ : Gal(Lsep/L) → AutD of the absolute Galois group of L on the

Dynkin diagram, sometimes called the ∗-action.
(3) A collection of D0 of vertices called the uncircled vertices.

The vertices of D, which are defined in terms of simple roots, can be identified with
conjugacy classes of maximal parabolic subgroups in GLsep . Conjugation then gives the
∗-action. The uncircled vertices correspond to simple roots in the anisotropic kernel of
G. Then conjugacy classes of maximal parabolic subgroups defined over L are in one-one
correspondence with τ orbits in DrD0. These are the orbits that Tits calls distinguished,
and, in the Satake–Tits index these orbits are drawn with circles around them.

If K/L is a field extension, then we can identify D with the Dynkin diagram DK of
GK . So the first ingredient in the Satake–Tits index is insensitive to field extension.
However, the ∗-action obviously changes: for example, if K ⊂ Lsep, then the ∗-action
τK : Gal(Lsep/K) → AutD is obtained by restriction. If we write DK,0 for the set of
uncircled vertices in the Satake–Tits index of GK , then we have DK,0 ⊆ D0.

In the case that L = R and (G,P) is a 0-cuspidal pair, the ∗-action of Gal(C/R) on
D = DR is the opposition on the Dynkin diagram. It preserves connected components of
D and, for G almost simple, it is

(1) the unique nontrivial action in types A, Dn for n odd, and in type E6,
(2) the trivial action in all other types.

If G is almost simple, then Deligne’s special vertex s (see [Del79, p. 258]) lies in DR,0.
Its orbit under the Gal(C/R) ∗-action corresponds to conjugacy class of real parabolics
associated to the 0-dimensional boundary components. For general G, there is a special
vertex in each component of D, whose orbit is circled in the real Satake–Tits index. Write
Z∞ for the union of the orbits of these special vertices under the real ∗-action. Then there
exists a 0-dimensional rational boundary component if and only if Z∞ is contained in the
circled vertices of the Satake–Tits index of G.
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6.8. Lemmas. We believe the following result on approximation for number fields is
probably well-known, but for the convenience of the reader and lack of a published
reference we give a proof following ideas we learned from [Sal82].

Proposition 69. Suppose n is a positive integer, F is a number field and S is a finite set
of places of F . Then the map

H1(F, Sn)→
∏
ν∈S

H1(Fν , Sn)

is surjective.

Proof. An Sn-torsor or, equivalently, a degree n étale algebra, over a field K is determined
by a monic, separable polynomial of degree n over the field. So write Un(K) for the set of
such polynomials. We get a surjective map Un(K)� H1(K,Sn) taking a polynomial p to
the isomorphism class of the étale algebra K[x]/p.

Now Un(Fν) is an open subset of the space F n−1
ν of all monic degree n polynomials.

This gives rise to a commutative diagram

(70)

Un(F )
∏

ν∈S Un(Fν)

H1(F, Sn)
∏

ν∈S H1(Fν , Sn)

where the top horizontal arrow is just (the diagonal) inclusion and the bottom horizontal
arrow is restriction.

Now, it is well-known and easy to see that the fibers of the right vertical arrow are
open. (In fact, the bottom right set is finite and the right vertical arrow is continuous.)
And it follows from weak approximation that the image of the top arrow is dense. From
these two facts along with the surjectivity of the downward arrows, the proposition follows
directly. ♠

Remark 71. In [Sal82, Theorem 5.8], Saltman gives variants of this argument which are
applicable to finite groups G admitting a generic Galois extension. In particular, this holds
for any group G admitting a faithful linear representation V such that V // G is rational.

Lemma 72. Suppose p is a prime number and q = pn with n ∈ Z+. Then there exists a
totally real extension L/Q of degree n in which the prime p is inert.

Proof. This follows immediately from Proposition 69. ♠

The next lemma applies an approximation theorem of Prasad and Rapinchuk [PR06] to
produce isotropic algebraic groups H with specific behavior at places of L.

Lemma 73. Suppose H is an absolutely almost simple, simply connected group over Fq
which is of potentially Hermitian type. Let L/Q be a field extension as in Lemma 72.
Write S∞ for the set of real places of L and {ν} for the place lying above p. Then there
exists a simply connected group H over L such that

(1) Hω is of Hermitian symmetric type for each place ω ∈ S∞.
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(2) H is unramified at ν, and, for some, hence any, reductive model Hx of H over the
ring Rν of integers in Lν, we have Hx ⊗Rν Fq ∼= H.

(3) The special vertices of Hω are all the same in the Dynkin diagram Dyn H of H.
Moreover, the orbit Z∞ of this vertex under the opposition is stable under the
Gal(L) action and circled in the Satake–Tits index of H over L.

Proof. Let D denote the Dynkin diagram of H with vertices α1, . . . , αr corresponding to
the simple roots as in the diagrams in [Hel78, p. 532]. Notice that, if H is of type D4,
then, owing to our assumption that H is not triality, we can assume that α1 is fixed by
action of Gal(Fq) on D.

Now we want to choose a simply connected real group H∞ for each possible type of H
as follows. (For most of the types there is no real choice, but we want to choose carefully
in type A and D.)

(a) If H is type Ar, then H∞ if SU( r+1
2
,
r+1

2

) is r is odd and SU( r
2
,
r
2

+1
) if r is even.

(b) If H is of type Br, then we take H∞ to be the unique form of Hermitian symmetric
type: Spin2r−1,2.

(c) If H is of type Cr we take H∞ to be the symplectic group Sp2r.
(d) If H is of type Dr, then we take H∞ to be the group Spin2r−2,2.
(e) In types E6 and E7, we take H∞ to be the unique form of Hermitian type.

In each of these choices, we also choose an identification of Dyn H∞ with D. We can do
this so that the labels on the vertices in [Hel78, p. 532] match up with the labels α1, . . . , αr
for D. This is especially important for H of type D4, where it implies that Deligne’s
special vertex, which is in that case α1, is fixed by the action of Gal(Fp) on D.

Now, note that we have

(74) AutD =


Z/2, for H of type A, E6 or Dr with r 6= 4;

S3, for H of type D4;

{1}, otherwise.

Let V denote the subgroup of AutD stabilizing the Gal(C/R)-orbit of the special vertex
in H∞. It is easy to see that V = AutD itself except in the case where H is of type D4.
In that case, V is the subset of AutD = S3 stabilizing α1. It follows from our nontriality
assumption that, in any case, the *-action of Gal(Fq) on D factors through V . Using
Proposition 69 for the group V , we can find a quasisplit group Hqs over L, which is split
by a quadratic extension M/L with Gal(M/L) acting on D through V , such that Hqs is
an inner form of H∞ at each infinite place of L, and, at the prime ν, Hqs is an unramified
group over Rν with reduction modulo ν equal to H. For example, if H is of type Dr for r
odd, then H∞ is of outer type over R. If H is split, then producing Hqs is equivalent to
finding a totally imaginary quadratic extension M/L in which ν splits. On the other hand,
if H is the unique nonsplit simply connected group over Fq of type Dr, then we need to
find a totally imaginary quadratic extension M/L in which ν is inert. As Proposition 69
allows us to produce quadratic extensions of L with arbitrary behaviour at the ω and at ν,
we can produce such groups Hqs.

Since the Gal(L) action on Hqs factors through V , the orbit Z∞ of Deligne’s special
vertex in D = Dyn H∞ is fixed by Gal(L).
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Now, by [PR06, Theorem 1], we can find an inner form H of Hqs such that H⊗Lω = H∞
at all real primes ω and H⊗Rν is unramified with reduction equal to H. Moreover, by [PR06,
Theorem 1 (iii)], we can do this in such a way that Z∞ is contained in the set of circled
vertices for the Satake–Tits index of DL. This completes the proof. ♠

6.9. Proof of Theorem 67. By Lemma 65, we can assume that G is almost simple. So

G = Res
Fq
Fp H for some q = pn and some absolutely almost simple group H of potentially

Hermitian type over Fq. Let L/Q be a field extension as in Lemma 72 and let H be a
group as in Lemma 73. Set G = ResLQ H.

Since Weil restriction commutes with base change, G is of Hermitian type and the
base-change of G to Qp is unramified with reduction modulo p isomorphic to G.

Let Σ be the orbit under the opposition of the set of special vertices in the Dynkin diagram
Dyn G. This is the subset of the Dynkin diagram corresponding to the 0-dimensional
boundary components. Since Z∞ ⊂ Dyn H is stable under Gal(L) and contained in the
circled vertices, it follows that Σ is stable under Gal(Q) and it also follows that Σ is
contained in the circled vertices of Dyn G. Therefore, G contains a 0-cuspidal parabolic
P.

6.10. The group of type E7. There is a unique simply connected form of E7 over R
of Hermitian type, and this group has R-rank 3 ([Hel78, p. 518]). As a special case of
Theorem 67, or more directly from [PR94], we see that there exists a form G of E7 over
Q of Hermitian type which has a 0-cuspidal parabolic P or, equivalently, has Q-rank 3.

Lemma 75. Any (simply connected) form G of E7 over Q of Hermitian type with Q-rank
3 is split at all finite primes p. Furthermore, such a group is unique up to isomorphism
and extends to a reductive group scheme over Z which is also unique up to isomorphism.

Such a group over Z was constructed explicitly by Baily in [Bai70] using integral
octonions and by Gross in [Gro96] using Galois cohomology.

Proof. Only the first part of the lemma is perhaps not explicitly in the literature. To
prove this, we note that for each prime p, the Qp-rank of G is at least 3 and the special
vertex must be circled in the Satake–Tits diagram of GQp , since both statements hold
over Q (the second because it holds over R and the ranks are the same over Q and R). By
consulting the table of forms of E7 in [Tit66, p. 59], we see that the only such form of E7

over any p-adic field is split.
The uniqueness of G over Q up to isomorphism follows from the Hasse principal for

simply connected groups (see [Gro96, p. 266]) and the existence of an integral model
follows, for example, from [Gro96, Proposition 1.2]. The uniqueness of integral models
follows from [Gro96, Proposition 2.1, 1)] and the fact that hyperspecial subgroups of
G(Qp) are conjugate under Gad(Qp) for all primes p: these facts, together with the central
exact sequence

1→ µ2 → G→ Gad → 1

of group schemes over Q imply that given any two extensions of G to reductive group
schemes over Z, there exists an element g of Gad(Q) such that conjugation by g on G
extends to an isomorphism of the two integral models. ♠
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For the rest of this section we shall use G to also denote a reductive integral model
of the Q-group as in Lemma 75. The group Γ := G(Z) is then an arithmetic subgroup
of G(R) (and is in fact a maximal arithmetic subgroup [Bai70, Theorem 5.2]). For any
integer n > 1, let Γ(n) be the kernel of the (surjective) reduction map Γ → G(Z/nZ).
We set MΓ = Γ\D and MΓ(n) = Γ(n)\D, where D is the Hermitian symmetric domain
corresponding to G. Note that the actions on D are not always faithful, but the quotients
have a natural algebraic structure such that the maps MΓ(n) →MΓ are algebraic [BB66].

Corollary 76. For any integer n > 1 and any prime p | n, the cover MΓ(n) → MΓ is
p-incompressible.

Proof. We may clearly assume that n = p. Since the group Γ is not neat we cannot
immediately apply Theorem 34. However, by embedding G in GLr,Z for some r, we see
that if N > 2 is any integer then Γ(N) is neat. Using this, and the fact that D is a tube
domain, the corollary follows in exactly the same way as Corollary 41. ♠

Appendix A. Essential dimension of variations of Hodge structure

Let B be an irreducible variety over C and let L be a locally constant sheaf on Ban. The
purpose of this appendix is to define the essential dimension ed(L) of L and give a lower
bound for this when L is the local system HZ underlying a variation of Hodge structure
(or VHS, for short) H.

Analogously to the definition of ed(f) for a generically étale morphism in the introduction,
we define the essential dimension ed(L) of L to be the minimum of the dimensions of
irreducible varieties B′ such that the following condition holds:

• There is a locally constant sheaf L′ on B′an, a dense open subvariety U of B, and
a morphism f : U → B′, such that L|Uan ∼= (f an)−1(L′).

We then have the following result, which provides some weak evidence for Conjecture 1
beyond the case of variations whose associated period domain is Hermitian symmetric.

Proposition 77. Let B be a smooth irreducible variety over C and let H be an integral
(polarised) variation of Hodge structure on B with underlying local system HZ. Then

ed(HZ) > d,

where d is the dimension of the image of the period map associated to the VHS H (as
defined in §1.5).

The simple proof below was explained to us by Madhav Nori.

Proof. Suppose ed(HZ) = n. It follows from the definitions that there exists a nonempty
open subvariety U ↪→ B, a variety B′ of dimension n, a morphism f : U → B′, and a local
system L′ on B′ such that HZ|Uan ∼= (f an)−1(L′). Replacing B by U , we may assume that
f is defined on all of B. Clearly (f an)−1(L) is constant on (the analytification of) all fibres
of f , so the local system HZ is also constant on these fibres.

Let φ : Ban → Γ\D be the period map as in §1.5. Then, since HZ is constant on the
fibers of f , it follows from the theorem of the fixed part that φ is constant on the connected
components of the fibers of f [Del71, Corollaire 4.1.2], [Sch73, Theorem 7.22]. This implies
that dimV > dimY , where Y is the image of the period map, i.e., n > d. ♠



38 PATRICK BROSNAN AND NAJMUDDIN FAKHRUDDIN

Remark 78.

(1) For the purposes of Proposition 77, the algebraicity of the image of the period map
proved in [BBT18] is irrelevant. Without knowing anything about the image, we
may define the “dimension of the image of the period map” simply to be the rank
of dφ at a general point of Ban.

(2) The inequality in Proposition 77 can be strict: HZ can be a nonconstant local
system even if Hx is a constant Hodge structure. However, one can see that there
always exists a finite étale cover p : B̃ → B such that ed(p∗(H)) is equal to the
dimension of the image of the period map.

Appendix B. Essential dimension of Sp2g(Fp)

The purpose of this appendix it to give the computation, due to Dave Benson, of the
essential dimension at p of the group Sp2g(Fp).

Theorem 79 (Benson). Let p be an odd prime and g a positive integer. Then

edC(Sp2g(Fp); p) = pg−1.

Proof. Let V := F2g
p with basis e1, . . . , e2g and let φ be the symplectic form on V given by

(80) φ =

g∑
i=1

e∗2g+1−i ∧ e∗i .

Then the group G of linear transformations of V preserving φ is an explicit presentation
of Sp2g(Fp).

Now, G has a faithful irreducible representation M of degree (pg−1)/2 [War72, Proposi-
tion 2.7]. In fact, although we do not need this fact, (pg−1)/2 is the minimum dimension of
a nontrivial irreducible representation of G [LS74]. So M is a faithful linear representation
of G of minimum possible dimension.

Write P for the subgroup of G consisting of all upper-triangular matrices in G with 1s
on the diagonal. Then P is a p-Sylow subgroup of G. So, by Karpenko–Merkurjev [KM08],
ed(G; p) = edP = dimW , where W is a faithful representation of P of minimal dimension.

Let H denote the set of matrices in G with 1s on the diagonal but with 0s everywhere
else except the top row and rightmost column. Then it is not hard to see that H is an
extraspecial p-group: its center is the subgroup Z consisting of matrices with 1s on the
diagonal and 0s everywhere else except the top-right entry. And H/Z ∼= C2g−2

p . Moreover,
it is easy to see that the center of P is also Z.

Since P is a p-group with cyclic center, it follows that any faithful representation of
P has a faithful irreducible constituent (and similarly for H). So, letting W denote (as
above) a faithful representation of P of minimal dimension, it follows that W is irreducible.
Since the degree of any complex character divides the order of the group [Ser77, Corollary
6.5.2, p. 52], it follows that dimW is a power of p. From this, and the fact that G has a
faithful representation of degree (pg − 1)/2, it follows that dimW = pk with k 6 g − 1.

On the other hand, since H is an extraspecial p-group of order p2g−1, any faithful
representation of H has dimension at least pg−1 [Gor80, Theorem 5.5, p. 208]. It follows
that dimW = pg−1, and this completes the proof. ♠
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Remark 81. As mentioned in the introduction, in work in progress, Jesse Wolfson’s PhD
student Hannah Knight has computed edC(G; p) for groups such as G = Sp2g(Fpr) for
r > 1 as well as for analogous orthogonal groups. See also [BMKS16] for results which
can be used to compute the essential dimension at p of groups such as GLn(Fp).
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[Mos83] Samy M. Mostafa, Die Singularitäten der Modulmannigfaltigkeit Mg(n) der stabilen Kurven
vom Geschlecht g > 2 mit n-Teilungspunktstruktur, J. Reine Angew. Math. 343 (1983), 81–98.
MR 705878 15

[MP19] Keerthi Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of
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