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Abstract. In this expository note, I prove the following fact, which is originally due to Nguyen and Valette:

any d-dimensional definable subset of S ⊆ Rn in an o-minimal expansion of the ordered field of real numbers
satisfies the volume estimate Hd({x ∈ S : ‖x‖ < r}) ≤ Crd, where Hd denotes the d-dimensional Hausdorff

measure on Rn and C is a constant depending on S. Coupled with the theorem of Bishop and Stoll,

this result gives a quick proof of the GAGA theorem of Peterzil and Starchenko in the case of o-minimal
expansions of the ordered field of real numbers.

1. Introduction

The GAGA theorem of Peterzil–Starchenko [PS08] says that a closed analytic subset of Cn, which is defin-
able in an o-minimal expansion of the ordered field R, is algebraic. It is a crucial ingredient in (at least) two,
closely related, recent advances in Hodge theory: the paper by Bakker, Klingler and Tsimerman [BKT18],
which gives a new proof of the theorem of Cattani, Deligne and Kaplan [CDK95] on the algebraicity of the
Hodge locus, and the paper by Bakker, Brunebarbe and Tsimerman proving a conjecture of Griffiths on the
algebraicity of the image of the period map [BBT18]. Given these important results, it seems desirable to
have an understanding of the Peterzil–Starchenko theorem from several points of view.

The point of this expository note is to show that the Peterzil–Starchenko theorem follows directly from
a GAGA theorem originally due to Stoll [Sto64] and a volume estimate for definable sets. This volume
estimate was known to experts in o-minimal structures for some years now: it is a special case of Proposition
3.1 of a 2018 paper by Nguyen and Valette [NV18]. I will state it precisely in Theorem 4 below and prove it
from scratch in §5, but essentially it says the following: Suppose S is a d-dimensional subset of Rn, which is
definable with respect to an o-minimal expansion of Ralg (for example, Ran,exp). Then the Hausdorff measure
of the set S(r) := {x ∈ S : ‖x‖ < r} viewed as a function of r is in O(rd). In other words, the volume of the
intersection of S with a ball of radius r grows at most as fast as a constant multiple of rd. In §4.2, I use it
to give a very quick proof of the Peterzil-Starchenko theorem.

Peterzil and Starchenko published two proofs of their theorem. The first, in [PS08], works for o-minimal
expansions of arbitrary real closed fields and is based on results from model theory. The second proof,
in [PS09], like the proof presented in this note, relies on results from complex analysis. More precisely, it
relies on a paper of Shiffman that is directly related to Stoll’s theorem [Shi68] in that Shiffman’s results are
ultimately about bounds on volumes of complex analytic sets. Aside from brevity, the main advantage of my
approach is that it makes it clear that the proof uses volume estimates that hold for all definable sets, not
just complex analytic sets. Still, while I think the viewpoint and the brevity of this paper are worthwhile,
the techniques are similar to the techniques of [PS09].

The proof of Theorem 4 given in this paper is also very similar to the proof given by Nguyen and Valette
in [NV18], which I learned about after the first version of this paper appeared on the ArXiv. I decided to
keep my original proof of Theorem 4 in this note because it is self-contained and the exposition is aimed
at readers who are not experts in o-minimal structures. However, the reader should be aware that neither
Theorem 4 nor its proof are new.

To help make this paper approachable for algebraic geometers, I review the theory of o-minimal structures
in section §2. In §3, I review the notions of Hausdorff dimension and Stoll’s theorem, which is also sometimes
called the Bishop–Stoll theorem. (Bishop [Bis64] generalized and extended the result of Stoll used in this
paper.) In §4, I state the main volume estimate, Theorem 4.
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2. o-minimal structures

In defining o-minimal structures, I follow the book by van den Dries [vdD98].

Definition 1. An o-minimal structure on R is a sequence S = (Sn)n∈N of sets such that, for each n:

(i) Sn is a boolean algebra of subsets of Rn;
(ii) A ∈ Sn implies that A× R and R×A are in Sn+1;

(iii) If 1 ≤ i < j ≤ n, then {(x1, . . . , xn) ∈ Rn : xi = xj} ∈ Sn.
(iv) If π : Rn+1 → Rn denotes the projection onto a factor, then A ∈ Sn+1 =⇒ π(A) ∈ Sn;
(v) For each r ∈ R, {r} ∈ S1. Moreover, {(x, y) ∈ R2 : x < y} ∈ S2;

(vi) The only subsets in S1 are the finite unions of intervals and points.

Call a sequence S a structure if it satisfies all of the hypotheses of Definition 1 except possibly the last
two [vdD98, p.13]. If X ∈ Sn for some n, then we say that X is a definable subset of Rn with respect to the
structure S. Similarly, if f : X → Y is a function with X ⊂ Rn and Y ⊂ Rm for n,m ∈ N, then we say f is
definable if its graph (viewed as a subset of Rn × Rm = Rn+m) is definable.

It is clear that, if we let Sn = P(Rn), i.e., the power set of Rn, then we get a structure. (But obviously
not an o-minimal one.) It is also relatively easy to see that the intersection of structures is a structure. So,
given an arbitrary collection Tn ⊂ P(Rn) (for n ∈ N), there is a smallest structure (Sn)n∈N containing Tn.
This is the structure generated by the Tn.

If {Sn} and {S′n} are both structures with S′n ⊂ Sn for all n, then {Sn} is called an expansion of {S′n}. If
{Tn} is any collection with Tn ⊂ P(Rn), the structure generated by {Sn ∪ Tn}n∈N is called the expansion of
{Sn} generated by {Tn}.

One classical example of an o-minimal structure on R is the structure Ralg consisting of all semi-algebraic
sets. (The fact that Ralg satisfies (iv) is the content of the Tarski-Seidenberg theorem.) The example that is
most important for the recent applications to Hodge theory mentioned in the introduction is the one called
Ran,exp. This is the expansion of Ralg generated by the graph of the real exponential function x 7→ ex and
the collection of all graphs of analytic functions on [0, 1]. (See [vdDM96] for references. The o-minimality of
the expansion Rexp of Ralg generated by the graph of the real exponential function is a celebrated theorem
of Wilkie [Wil96].)

It is convenient to think about definable sets in a structure in terms of logic as subsets of Rn defined by
the formulas in a language L interpreted in the field of real numbers. This point of view is explained (a little
informally) in [vdD98, Chapter 1]. (For a more precise explanation of the model theory point of view, see,
for example, Marker’s book [Mar02]). Here subsets ψ of Rn are thought of as properties ψ(x1, . . . , xn) of
n-tuples (x1, . . . , xn) of real numbers with ψ(x1, . . . , xn) being the property that (x1, . . . , xn) ∈ ψ. Suppose
S = {ψi} is a collection of such subsets, with ψi ⊂ Rni . Then the expansion of Ralg generated by ψ consists
of the subsets of Rn definable by formulas involving the field operations on R, the real numbers (viewed as
constants), the symbols < and =, variables (xi)

∞
i=1, and the ψi along with the ∀,∃ and the usual logical

connectives.

3. Volumes and the Bishop–Stoll Theorem

My main reference for this section is G. Stolzenberg’s book [Sto66].

Let X = (X, dX) be a metric space. For ∅ 6= S ⊂ X, the diameter of S is diamS := sup{dX(x, y) : x, y ∈
S}. By convention, write diam ∅ = −∞.
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Suppose S ⊂ X, and ε is a positive real number. An ε-covering of S is a countable collection {Si}∞i=1 of
subsets of S of diameter less than ε such that S ⊂ ∪∞i=1Si. Fix a non-negative real number d and set

I(d, ε, S) := inf

{ ∞∑
i=1

(diamSi)
d : {Si}∞i=1 is an ε-covering of S

}
.

The d-Hausdorff measure of S is

Hd(S) :=
1

2d
lim
ε→0+

I(d, ε, S).

If d is a non-negative integer and S is a closed d-dimensional sub-manifold of Rn, then the volume vold S
(defined in the usual way with respect to the standard metric on Rn) is given by

(2) vold(S) =
πd/2

Γ(d2 + 1)
Hd(S).

As it turns out, we want to refer to volume instead of Hd(S) in general. So we use the equation (2) as a
definition to define vold(S) for an arbitrary non-negative real number d. (Note that Federer’s normalization
for Hausdorff measure in his book [Fed69, §2.10.2] differs from that of Stolzenberg. For Federer, the d-
dimensional Hausdorff measure Hd(S) is just what we call vold(S).)

Let’s also make the convention that we always regard a subset S ⊂ Rn as a metric subspace of Rn with
its standard metric. For a positive real number r, set B(r) = Bn(r) := {x ∈ Rn : |x| < r}. Then, if S ⊂ Rn,
set

S(r) := S ∩B(r).

We use the Big-O notation: if f, g are two real valued functions defined on an interval of the form (a,∞),
then we write f = O(g) if there exists a constant C and a real number b > a such that

x > b⇒ |f(x)| ≤ Cg(x).

Theorem 3 (Stoll). Suppose that Z is a closed analytic subset of Cn of pure dimension d. If vol2d Z(r) =
O(r2d), then Z is algebraic.

See [Sto66, p. 2, Theorem D] for the statement. A proof is given in [Sto66, Chapter IV]. According to
Cornalba and Griffiths [CG75, E. 4.2], the converse also holds. (This also follows directly from the main
result of this note, Theorem 4 below.)

4. Volumes of Definable Sets

My main goal in this letter is to prove the Peterzil–Starchenko GAGA theorem (Theorem 5 below) using
Theorem 3 and a general fact about definable sets and Hausdorff measures. To explain this general fact, let
me first explain cells. To do this, fix an o-minimal expansion Ralg,∗ of Ralg.

4.1. Cells. These are certain special definable subsets (with respect to Ralg,∗) of Rn defined inductively. See
page 50 of [vdD98] for a complete definition, but, roughly speaking, cells in Rn are defined inductively with
respect to n as either

(a) graphs of continuous definable functions f on cells in Rn−1 or,
(b) nonempty open regions in between graphs of continuous definable functions in Rn−1.

There is a dimension function d defined inductively on the set of all cells by setting d(S) = d(T ) if S ⊂ Rn
is constructed inductively from T ⊂ Rn−1 via procedure (a) and setting d(S) = d(T ) + 1 if it is constructed
via procedure (b). Moreover, as a consequence of the cell decomposition theorem [vdD98, 2.11 on p. 52],
every definable subset of Rn can be written as a finite disjoint union of cells. (This is one of the most crucial
properties of definable sets in o-minimal structures.) If X is then any definable subset of Rn, van den Dries
defines dimX to be the maximum of the dimensions d(S) as S ranges over all cells contained in X [vdD98,
p. 63]. Since, by [vdD98, p. 64], dim(X ∪ Y ) = max(dimX,dimY ), dimX is also the maximum of the
dimensions d(S) of the cells S appearing in a decomposition of X into disjoint cells.

Now, I am ready to state the main theorem of this note.
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Theorem 4. Suppose S ⊂ Rn is a set which is definable in an o-minimal expansion of Ralg. Set d = dimS.
Then

vold S(r) = O(rd).

4.2. Peterzil–Starchenko. Before proving Theorem 4, I want to use it to prove the Peterzil–Starchenko
GAGA theorem.

Theorem 5 (Peterzil–Starchenko). Let A be a closed complex analytic subset of Cn, which is definable with
respect to an o-minimal expansion of Ralg. Then A is an algebraic subset of Cn.

Proof of Theorem 5 using Theorem 4. Take a closed complex analytic subset Z ⊂ Cn of complex dimension
d, and assume Z is definable. Then Z has a definable dense open subset U which is submanifold of Cn. It
follows that the dimension of Z as a definable subset of Cn (in the sense of [vdD98, Definition 4.1.1]) is 2d.
Then, by Theorem 4, we have vol2d Z(r) = O(r2d). So, by Theorem 3, Z is algebraic. �

In the next section, I prove Theorem 4. The elementary proof mainly relies on the Gauss map and change
of variables.

5. Proof of the Volume Estimate

In what follows it will be convenient to note that, since linear transformations between finite dimensional
real vector spaces are definable in any expansion of Ralg, any finite dimensional real vector space V comes
equipped with a canonical definable structure (via any linear isomorphism to RdimV ).

If X is a definable subset of Rn of dimension d, we say that Theorem 4 holds for X if voldX(r) = O(rd).
Note that, if Theorem 4 holds for X, then, for d′ > d, we have vold′ X(r) = 0 for all r. (See [Fed69, §2.10.2].)
For each nonnegative integer d, write P (d) for the assertion that Theorem 4 holds for all definable sets X of
dimension ≤ d. The goal of the section is to prove P (d) for each nonnegative integer d by induction on d.
Since zero dimensional definable sets are finite, P (0) obviously holds.

Write Gr(d, n) for the Grassmannian of real d-dimensional planes through the origin in Rn. The set
Gr(d, n) has a natural structure of a definable C∞-manifold. In the language of [vdD98, Chapter 10],
Gr(d, n) is a definable space, which is also (compatibly) a compact C∞-manifold. (See also [Fis08] for a
precise definition.) As it is also a regular space, [vdD98, Theorem 10.1.8] implies that it is isomorphic (as
a definable space) to an affine definable space, i.e., a definable subset of Rn. However, the method used
in [vdD98, Example 10.1.4] to show that Pn(R) is affine, can be imitated to realize Gr(d, n) as a closed
definable C∞-submanifold of RN for some suitable N .

To be explicit about this last point, endow Rn with the usual dot product. For each L ∈ Gr(d, n), choose

an ordered basis L̃ = (`1, . . . , `d), and set ∧dL̃ := `1 ∧ · · · ∧ `d. Then let φ(L) denote the point

φ(L) :=
1

‖∧dL̃‖2
(∧dL̃)⊗ (∧dL̃) ∈ Sym2(∧dRn).

The resulting map φ : Gr(d, n)→ Sym2(∧dRn) is a well-defined and definable smooth morphism, embedding
Gr(d, n) as a closed, definable, smooth submanifold of Sym2(∧dRn). So we can identify Gr(d, n) with the
image of φ.

We can also view Gr(d, n) as a quotient of the orthogonal group O(n) in the usual way. Note that the
orthogonal group O(n) (of real n × n-matrices which are orthogonal with respect to the standard inner

product) is a closed definable and smooth submanifold of Rn2

. Moreover, it is a group in the category
of definable spaces. It acts definably, properly and transitively on the space Gr(d, n). The stabilizer of
L ∈ Gr(d, n) is the definable, closed subgroup O(L)×O(L⊥), which is definably isomorphic to O(d)×O(n−d).
From this, it is not hard to see that, in the language of [vdD98, p. 162], Gr(d, n) is a definably proper quotient
of O(n), and, in fact, Gr(d, n) is definably isomorphic to the quotient O(n)/(O(d)×O(n− d)).

If L ∈ Gr(d, n) is a d-dimensional linear subspace, we write πL : Rn → L for the orthogonal projection
onto the subspace L. The map z 7→ (πL(z), πL⊥(z)) is then an isometric (and, thus, volume-preserving)
definable isomorphism from Rn to L× L⊥.

Lemma 6. Suppose L ∈ Gr(d, n). There exists a definable open neighborhood UL of L in Gr(d, n) such that
the following two statements hold:
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(i) πL(L′) = L for all L′ ∈ UL.
(ii) Suppose C = {(x, y) ∈ D × L⊥ : y = f(x)} where D ⊂ L is a definable d-dimensional cell and

f : D → L⊥ is a C2 definable function. Assume that the tangent space TzC is in UL for all
z = (x, y) ∈ C. Then, for all r ∈ R, vold C(r) ≤ 2 voldD(r).

Proof. Since the group O(n) acts transitively on Gr(d, n) and preserves the metric (and hence the volume
form) on Rn, we can assume L = Rd = {(x1, . . . , xn) ∈ Rn : xi = 0 for i = d + 1, . . . , n}. Write ei for the
tangent vector ∂/∂xi, and write Φ : D → Rn for the map x 7→ (x, f(x)). Let A(x) = Df(x) denote the
derivative of f at x. For z = (x, f(x)) ∈ C, the tangent space TzC is the d-dimensional space generated by

the vectors vi = ei +A(x)ei ∈ Rn. For r ∈ R, πL(C(r)) ⊂ D(r). Therefore, vold C(r) ≤
∫
D(r)

√
det gij(x) dx

where gij(x) is the matrix vi · vj = δij + ei · A(x)∗A(x)ej . (See [Fed69, §3.2.46] for the relevant formula
computing the volume in terms of gij .) For TzC sufficiently close to L, the matrix A(x) will be close to
0. Therefore, gij(x) will be close to the identity matrix. From these considerations, the lemma follows
easily. �

For the rest of the section, pick definable neighborhoods UL for each L ∈ Gr(d, n) once and for all. For
each definable set X, we let Reg2X denote the locus in X consisting of all points x ∈ X such that there is an
open subset U of Rn such that U ∩X is a C2-manifold. This is a definable subset of X, and the complement
X \Reg2X has dimension strictly less than the dimension of X. (This follows from the Cell Decomposition
Theorem of [vdDM96, §4.2].)

Corollary 7. Suppose L ∈ Gr(d, n) and M is a d-dimensional C2 definable submanifold of Rn such that
TxM ∈ UL for each x ∈M . Then, assuming that P (k) holds for k < d, we have voldM(r) = O(rd).

Proof. We can write M as a finite union of cells of dimension ≤ d. Moreover, we can assume that L = {x ∈
Rn : xi = 0 for i > d}. Then, using the assumption that P (k) holds for k < d, we can assume that M is,
in fact, a single cell. Since DπL(x) : TxM → L is onto for all x ∈ M , we see easily that M has the form of
the subset C in Lemma 6. So M = {(x, y) ∈ D × L⊥ : y = f(x)} with f and D as in Lemma 6. As D is a
d-dimensional cell in Rd, it is open. So it is obvious that voldD(r) = O(rd). Then the volume estimate for
M follows from Lemma 6. �

Proof of Theorem 4. Suppose P (k) holds for k < d and that S is a d-dimensional definable set. We can
write S as a finite union of C2-cells, so, since we are assuming P (k) holds for k < d, we can assume that S
is itself a C2 cell. In particular S is a C2 submanifold of Rn.

Write Γ : S → Gr(d, n) for the Gauss map sending x ∈ S to TxS. Then Γ is definable and continuous. So
cover Gr(d, n) with finitely many opens of the form ULi

for i = 1, . . . ,m. Then each set Si := Γ−1(ULi
) is

definable open in S. In particular, Si is a C2 submanifold of Rn and TxSi ∈ ULi
for all i and for each x ∈ Si.

The fact that vold Si(r) = O(rd) then follows form Corollary 7. Since m <∞, this proves the theorem. �
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