
Unit Interval Orders and the Dot Action on the

Cohomology of Regular Semisimple Hessenberg

Varieties

Patrick Brosnan∗1 and Timothy Y. Chow†2

1University of Maryland, College Park
2Center for Communications Research, Princeton

February 5, 2018

Abstract

Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian
and Wachs conjectured that the characteristic map takes the character of
the dot action of the symmetric group on the cohomology of a regular
semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic
quasisymmetric function of the incomparability graph G of the corre-
sponding natural unit interval order, and ω is the usual involution on
symmetric functions. We prove the Shareshian–Wachs conjecture.

Our proof uses the local invariant cycle theorem of Beilinson–Bernstein–
Deligne to obtain a surjection, which we call the local invariant cycle map,
from the cohomology of a regular Hessenberg variety of Jordan type λ to
a space of local invariant cycles. As λ ranges over all partitions, the
local invariant cycles collectively contain all the information about the
dot action on a regular semisimple Hessenberg variety. We then prove a
result showing that, under suitable hypotheses, the local invariant cycle
map is an isomorphism if and only if the special fiber has palindromic
cohomology. (This is a general theorem, which independent of the Hes-
senberg variety context.) Applying this result to the universal family of
Hessenberg varieties, we show that, in our case, the surjections are ac-
tually isomorphisms, thus reducing the Shareshian–Wachs conjecture to
computing the cohomology of a regular Hessenberg variety. But this co-
homology has already been described combinatorially by Tymoczko, and,
using a new reciprocity theorem for certain quasisymmetric functions, we
show that Tymoczko’s description coincides with the combinatorics of the
chromatic quasisymmetric function.
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1 Introduction

Let G be the incomparability graph of a unit interval order (also known as an
indifference graph), i.e., a finite graph whose vertices are closed unit intervals on
the real line, and whose edges join overlapping unit intervals. It is a longstand-
ing conjecture [49] related to various deep conjectures about immanants that if
G is such a graph, then the so-called chromatic symmetric function XG stud-
ied by Stanley [47] is e-positive, i.e., a nonnegative combination of elementary
symmetric functions. (In fact, Stanley and Stembridge conjectured something
seemingly more general, but Guay-Paquet [19] has reduced their conjecture to
the one stated here.) Early on, Haiman [21] proved that the expansion of XG in
terms of Schur functions has nonnegative coefficients, and Gasharov [16] showed
that these coefficients enumerate certain combinatorial objects known as P -
tableaux. It is well known that if χ is a character of the symmetric group Sn,
then the image of χ under the so-called characteristic map ch

chχ :=
1

n!

∑
σ∈Sn

χ(σ) pcycletype(σ) (1)

(where p here denotes the power-sum symmetric function) is a nonnegative lin-
ear combination of Schur functions, with the coefficients giving the multiplicities
of the corresponding irreducible characters of Sn. One may therefore suspect
that XG is the image under ch of the character of some naturally occurring rep-
resentation of Sn, but until recently, there was no candidate, even conjecturally,
for such a representation.

Meanwhile, independently and seemingly unrelatedly, De Mari, Procesi,
and Shayman [10] inaugurated the study of Hessenberg varieties. Let m =
(m1,m2, . . . ,mn−1) be a weakly increasing sequence of positive integers satis-
fying i ≤ mi ≤ n for all i, and let s : Cn → Cn be a linear transformation. The
(type A) Hessenberg variety H (m, s) is defined by

H (m, s) := {complete flags F0 ⊆ F1 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi for 1 ≤ i < n}.
(2)

The geometry of a Hessenberg variety depends on the Jordan form of s. If the
Jordan blocks have distinct eigenvalues then we say that s is regular, and, by
extension, we also say that H (m, s) is regular. Similarly, if s is diagonalizable
then we say that H (m, s) is semisimple. We say that s has Jordan type λ if λ
is the partition of n given by the sizes of the Jordan blocks on s. Hessenberg
varieties have many interesting properties, but of particular interest to us is the
fact that there is a representation, called the dot action, of Sn on the cohomology
of regular semisimple Hessenberg varieties. This dot action was first defined by
Tymoczko, who asked for a complete description of it [52]; e.g., a combinatorial
formula for the multiplicities of the irreducible representations and/or for the
character values.

A connection between these two apparently unrelated topics has been con-
jectured by Shareshian and Wachs [42, 43]. Motivated by the e-positivity con-
jecture, they have generalized XG to something they call the chromatic qua-
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sisymmetric function XG(t) of a graph, which is a polynomial in t with power
series coefficients that reduces to XG when t = 1. They also noted that, if we
are given a sequence m as above, and we let G(m) be the undirected graph on
the vertex set {1, 2, . . . , n} such that i and j are adjacent if i < j ≤ mi, then
G(m) is an indifference graph, and moreover that every indifference graph is
isomorphic to some G(m). They then made the following conjecture. Let ω
denote the usual involution on symmetric functions [48, Section 7.6].

Conjecture 3. Let y be a regular semi-simple n×n-matrix and let χm,d denote

the character of the dot action on H2d(H (m, y)). Then chχm,d equals the
coefficient of td in ωXG(m)(t).

This conjecture is intriguing because not only would it answer Tymoczko’s
question, but it would also open up the possibility of proving the e-positivity
conjecture by geometric techniques.

The main result of the present paper is a proof of Conjecture 3 (Theo-
rem 129). The linchpin of our proof is the following result (which is stated more
formally later as Theorem 127).

Theorem 4. Let λ = (λ1, . . . , λ`) be a partition of n. Let s be a regular element
with Jordan type λ, and let Sλ := Sλ1

× · · · × Sλ` be the corresponding Young
subgroup of the symmetric group Sn. Consider the restriction of χm,d to Sλ.
Then the dimension of the subspace fixed by Sλ equals the Betti number β2d of
H (m, s).

What Theorem 4 does is to reduce the problem of computing the dot action
on a regular semisimple Hessenberg variety to computing the cohomology of
regular (but not necessarily semisimple) Hessenberg varieties. Fortunately, this
latter task has already been largely carried out by Tymoczko [51], who has given
a combinatorial description of the Betti numbers β2d for all Hessenberg varieties
in type A. So with Theorem 4 in hand, all that remains to prove Conjecture 3 is
to give a bijection between Tymoczko’s combinatorial description and the com-
binatorics of ωXG(m)(t). More precisely, let mλ denote the monomial symmetric
function associated to the partition λ. (See [48, Section 7.3] or §2.2 below for
monomial symmetric functions.) It is then a standard fact, proved explicitly
in Proposition 10 below, that the dimension of the subspace fixed by Sλ in a
representation χ is the coefficient of mλ in the monomial symmetric function
expansion of chχ. So the first step of our proof is to compute the coefficients
cd,λ(m) of tdmλ in the monomial symmetric function expansion of ωXG(m)(t).
We do this with a generalization of a combinatorial reciprocity theorem of Chow
(Theorem 29). This yields a description of cd,λ(m) that is almost, but not quite,
identical to Tymoczko’s description of β2d; we show that the descriptions are
equivalent by describing an explicit bijection between the two (Theorem 35).
As a corollary (Corollary 36), we derive the fact that the Betti numbers of regu-
lar Hessenberg varieties form a palindromic sequence (even though the varieties
are not smooth), because Shareshian and Wachs have proved that ωXG(m)(t) is
palindromic.
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The idea behind the proof of Theorem 4 is to show that Tymoczko’s dot
action coincides with the monodromy action for the family H rs(m) → grs

of Hessenberg varieties over the space of regular semisimple n × n matrices
(Theorem 125). This allows us to apply results from the theory of local systems
and perverse sheaves to questions involving the dot action. In particular, the
local invariant cycle theorem of Beilinson–Bernstein–Deligne, which is stated
in our context as Theorem 54, implies that there is a surjective map from the
cohomology of a regular Hessenberg variety to the space of local invariants of the
monodromy action near a regular element s in the space g of all n×n-matrices.

In Theorem 57, we show that the local invariant cycle map is an isomorphism
if and only if the Betti numbers of the special fiber are palindromic in a suitable
sense. This is a general result in that it holds for any projective morphism of
smooth, complex, quasi-projective schemes. Then, in Theorem 126, we show
that the local invariant cycles near a regular element s with Jordan type λ
coincide with the Sλ invariants of the dot action on the regular semisimple
Hessenberg variety. The latter fact is proved by a monodromy argument that
uses the Kostant section.

Here is a brief description of the contents by section. Section 2 mainly fixes
notation and gives preliminary results. Section 3 proves the combinatorial reci-
procity theorem, Theorem 29, mentioned above. Section 4 proves Theorem 35
on the Betti numbers of regular Hessenberg varieties, and derives palindromicity
as a corollary of a theorem of Shareshian and Wachs. Section 5 reviews the con-
cept of local monodromy and the related notion of a good fundamental system
of neighborhoods to a point in topological space. Section 6 proves Theorem 57
on palindromicity and the local invariant cycle map. Along the way we review
the proof of the local invariant cycle map from [4] and prove a slightly stronger
version of it (Theorem 84) using the Kashiwara conjecture [25] (which, by the
work of several authors, is now a theorem). We also prove Theorem 102, a more
general version of our theorem on palindromicity and the local invariant cycle
map. Section 7 proves Proposition 106 on the local monodromy of a Galois
cover, which is applied later (in Lemma 112) to compute the local monodromy
near a matrix s of type λ. Section 8 introduces the family H (m) → g of Hes-
senberg varieties. Finally, Section 9 shows that the monodromy action coincides
with Tymoczko’s dot action, and uses this fact to prove Theorem 129, which is
a restatement of Conjecture 3.

1.1 Previous work

Prior to our work, Conjecture 3 was already known for some graphs G: a com-
plete graph (trivial), a complete graph minus an edge [50], a complete graph
minus a path of length three (Tymoczko, unpublished), and a path (by piec-
ing together known results as explained in [43]). In a different direction, Abe,
Harada, Horiguchi and Masuda (AHHM) proved that the multiplicity of the triv-
ial representation is indeed as predicted by Conjecture 3. Hearing about this
development and reading the last paragraph of the research announcement [2],
which explains how to compute the multiplicity of the trivial representation in

4



terms of the regular nilpotent Hessenberg variety, partially inspired our own
proof. (Full details of the work of AHHM appeared on the arXiv in [1] shortly
after the first draft [6] of this paper.) AHHM also computed the ring structure
on regular semisimple Hessenberg varieties of type (m1, n, . . . , n), and deduced
Conjecture 3 in that case from the computation.

In addition to the above work, very shortly after posting the first version of
this paper on the arXiv, we learned of the series of papers by Chen, Vilonen and
Xue (CVX) studying the the motives of certain generalized Hessenberg varieties
as well as the action of monodromy as they vary in families. (See, for example,
[7].) The context of this work is different from ours because, roughly speaking,
generalized Hessenberg varieties are much further from combinatorics than the
Hessenberg varieties which appear in our work. However, to the best of our
knowledge, CVX were the first to exploit the idea of studying a universal family
of Hessenberg varieties using its monodromy.

1.2 Later work

Since the first version of this paper appeared on the arXiv there have been a few
related developments that may be helpful for understanding this work. Firstly,
Guay-Paquet posted a proof of Conjecture 3 which is completely independent
of and, in many ways, complementary to our proof [20].

On the other hand, using her generalization [36] of Tymoczko’s computation
of the Betti numbers of Hessenberg varieties in type A, Precup generalized our
palindromicity results (Corollaries 36 and 37) to regular Hessenberg varieties
for arbitrary complex semi-simple Lie algebras [35]. As it happens, our proof of
palindromicity is rather indirect, relying in an essential way on the chromatic
quasisymmetric function and a palindromicity theorem for that function proved
by Shareshian and Wachs ([43, Corollary 4.6]). So, even in the type A case dealt
with in this paper, Precup’s direct proof is an important contribution.

Finally, using some of the ideas in this paper, Harada and Precup have
proved the e-positivity of the coefficients of XG(m)(t) for certain sequences m
corresponding to abelian ideals in the Lie algebra of strictly upper-triangular
matrices [22]. This generalizes Remark 4.4 to Theorem 4.3 of [49].
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2 Preliminaries

We fix some notation that will be used throughout the paper.

2.1 General notation

We let P denote the positive integers. If n ∈ P, we let [n] denote the set
{1, 2, . . . , n}.

The vector m = (m1, . . . ,mn−1) will always denote a Hessenberg function,
by which we mean a sequence of positive integers satisfying

1. m1 ≤ m2 ≤ · · · ≤ mn−1 ≤ n, and

2. mi ≥ i for all i.

We also define

|m| :=
n−1∑
i=1

(mi − i). (5)

Given m, let P (m) denote the poset on the vertex set [n] whose order relation
≺ is given by

i ≺ j ⇐⇒ j ∈ {mi + 1,mi + 2, . . . , n}.

Such a poset is called a natural unit interval order. The incomparability graph
G(m) is the undirected graph on the vertex set [n] in which i and j are adjacent
if and only if i and j are incomparable in P (m). In other words, if i < j then i
and j are adjacent in G(m) if and only if j ≤ mi.

An integer partition λ = (λ1, λ2, . . . , λ`) of a positive integer n is a weakly
decreasing sequence of positive integers that sum to n. Each λi is a part of λ,
and the number of parts of λ is denoted by `(λ). The Young diagram of λ
comprises ` rows of boxes, left-justified, with λi boxes in the ith row from the
top. We write λ ` n to indicate that λ is a partition of n.

A composition α = (α1, α2, . . . , α`) of a positive integer n is a (not necessarily
monotonic) sequence of positive integers that sum to n. Each αi is a part of α,
and the number of parts of α is denoted by `(α). It can be useful to visualize
a composition of n by drawing vertical bars in some subset of the n− 1 spaces
between consecutive objects in a horizontal line of n objects; the parts are then
the numbers of objects between successive bars. Motivated by the equivalence
between compositions and sets of bars, we define:

• |α| for the number of bars of α (equivalently, |α| = `(α)− 1; CAUTION:
|α| is not the sum of the parts of α);
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• α for the composition that has bars in precisely the positions where α does
not have bars;

• α ∪ β for the composition whose bars comprise the union of the bars of α
and the bars of β; and

• α ≤ β if the bars of α are a subset of the bars of β.

We write Sn for the symmetric group. If Sn acts in the usual way on a set of
size n, and α is a composition of n, then the Young subgroup Sα is the subgroup

Sα1 × Sα2 × · · · × Sα` ⊆ Sn (6)

comprising all the permutations that permute the first α1 elements among them-
selves, the next α2 elements among themselves, and so on.

An ordered (set) partition σ = (σ1, σ2, . . . , σ`) of a finite set S is a sequence
of pairwise disjoint non-empty subsets of S whose union is S.

A sequencing q of a finite set S of cardinality n is a bijective map q : [n]→ S.
It is helpful to think of q as the sequence q(1), . . . , q(n) of elements of S.

By a digraph we mean a finite directed graph with no loops or multiple edges
but that may have bidirected edges, i.e., it may contain both u→ v and v → u
simultaneously. If D is a digraph, we write D for the complement of D, i.e., the
digraph with the same vertex set as D but with a directed edge u → v if and
only if there does not exist a directed edge u→ v in D.

2.2 Symmetric and quasisymmetric functions

We mostly follow the notation of Stanley [48] for symmetric and quasisymmetric
functions. For convenience, we recall some of the notation here.

Let x = {x1, x2, x3, . . .} be a countable set of independent indeterminates.
If κ : [n] → P is a map then we write xκ for the monomial xκ(1)xκ(2) · · ·xκ(n).
A formal power series in Q[[x]] = Q[[x1, x2, . . .]] is a symmetric function if it
is of bounded degree and invariant under any permutation of the variables x.
We write Λ for the subring of Q[[x]] consisting of symmetric functions. Then
Λ = ⊕n≥0Λn where Λn denotes the space of homogeneous symmetric functions
of degree n.

If λ = (λ1, λ2, . . . , λ`) is an integer partition, then the monomial symmetric
function mλ is the symmetric function of minimal support that contains the
monomial xλ1

1 xλ2
2 · · ·x

λ`
` . For example,

m2,1,1 = x21x2x3 + x22x1x3 + x23x1x2 + x21x3x4 + x23x1x4 + x24x1x3 + · · ·

There is an unfortunate conflict between our notation for monomial symmetric
functions and our notation m for Hessenberg functions. It should be clear from
context which is meant since the subscript of a monomial symmetric function
is a partition, whereas the entries of m have integer subscripts.

Set hn :=
∑
λ`nmλ. Then, if λ is a partition, set hλ =

∏
hλi . The hλ are

called the complete homogeneous symmetric functions [48].
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Both {hλ}λ`n and {mλ}λ`n form bases of Λn. So we get a non-degenerate
scalar product on Λn (and on Λ as well) by setting

〈mλ, hµ〉 = δλµ (Kronecker delta) (7)

as in [48, Equation 7.30]. This scalar product is symmetric [48, Proposition
7.9.1].

Write CFn for the space of Q-valued class functions on Sn, and set CF =
⊕n≥0CFn. The characteristic map ch : CFn → Λn is a function that sends class
functions χ on the symmetric group to symmetric functions via the formula

chχ :=
1

n!

∑
σ∈Sn

χ(σ) pcycletype(σ) (8)

where cycletype(σ) is the integer partition consisting of the cycle sizes of σ,
listed with multiplicity in weakly decreasing order, and p denotes the power-
sum symmetric function. It turns out that ch is an isomorphism of Q-vector
spaces. Moreover, if we give CFn the standard inner product 〈·, ·〉 on class
functions, then ch is an isometry [48, Proposition 7.18.1]:

〈ch f, ch g〉 = 〈f, g〉. (9)

Note that all complex characters of finite dimensional representations of Sn
are actually rational. In fact, even the representations themselves are realizable
over Q [41, Example 1, page 103]. So it makes sense to work with the Q-valued
class functions even if we are interested in complex representations of Sn.

As we explained in the introduction, the following standard fact is an im-
portant ingredient in our proof.

Proposition 10. Let ρ be a finite-dimensional complex representation of Sn,
and let χ be its character. Let chχ =

∑
λ cλmλ be the monomial symmetric

function expansion of chχ. Then cλ equals the dimension of the subspace fixed
by any Young subgroup Sλ ⊆ Sn. In particular, knowing cλ for all λ uniquely
determines χ.

Proof. Let χ↓SnSλ denote the restriction of χ to Sλ, and let dλ be the dimension
of the subspace fixed by Sλ. Then dλ equals the multiplicity of the trivial
representation 1 in χ↓SnSλ , i.e., dλ = 〈1, χ↓SnSλ 〉. By Frobenius reciprocity [39,
Theorem 1.12.6],

〈1, χ↓SnSλ 〉 = 〈1↑SnSλ , χ〉, (11)

where 1↑SnSλ is the induction of 1 from Sλ up to Sn. But ch 1↑SnSλ is just the homo-
geneous symmetric function hλ [48, Corollary 7.18.3]. The monomial symmetric
functions and the complete homogeneous symmetric functions are dual bases,
so dλ = 〈hλ, chχ〉 = cλ.

Let α = (α1, α2, . . . , α`) be a composition of n. The monomial quasisym-
metric function Mα is the formal power series defined by

Mα :=
∑

i1<···<i`

xα1
i1
· · ·xα`i` , (12)

8



where the sum is over all strictly increasing sequences (i1, . . . , i`) of positive
integers. In addition, we define a degree-zero monomial quasisymmetric function
by M∅ := 1. A formal power series is a quasisymmetric function if it is a
finite rational linear combination of monomial quasisymmetric functions. We
write Q for the algebra of quasisymmetric functions and Qn for the space of
homogeneous quasisymmetric functions of degree n [48, Section 7.19]. Clearly,
we have Q = ⊕Qn, and clearly Λ is a subalgebra of Q. Note that it is a proper
subalgebra. (For example, M2,1 ∈ Q \ Λ.)

The fundamental quasisymmetric function Fα of Gessel [17] is defined by

Fα :=
∑
β≥α

Mβ , (13)

and again we set F∅ := 1. By inclusion-exclusion,

Mα =
∑
β≥α

(−1)|β|−|α|Fβ . (14)

2.3 Hessenberg varieties

As mentioned in the introduction, if m is a Hessenberg function and s : Cn → Cn
is a linear transformation, then we define the Hessenberg variety (of type A,
which is the only type that we consider in this paper) by

H (m, s) := {complete flags F0 ⊆ F1 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi for 1 ≤ i < n}.

If the Jordan blocks of s have distinct eigenvalues then we say that H (m, s)
is regular, if s is diagonalizable then we say that H (m, s) is semisimple, and
if s is nilpotent then we say that H (m, s) is nilpotent. Since H (m, s) can
equal H (m, s′) for s 6= s′ (e.g., if s′ − s is a constant), this is a (very minor)
abuse of terminology. We adopt the convention of writing y for s in the regular
semisimple case.

Remark 15. The Hessenberg varieties are defined on affine open subsets of the
complete flag variety by fairly obvious equations. So they are closed subschemes
of the complete flag variety in a natural way. In general, they are not irreducible.
For example, the regular semisimple Hessenberg variety corresponding to the
function ` = (1, 2, . . . , n − 1) is a collection of n! distinct points. They are
also not always reduced. For example, when n = 2 and m = ` as above,
the regular nilpotent Hessenberg variety is defined by the equation x2 = 0 in
A1. (See [3, Theorem 7.6] for a much more general statement.) Hartshorne
defines an abstract variety to be an integral separated scheme of finite type
over an algebraically closed field [23, p.105]. So, perhaps, it is unfortunate that
Hessenberg varieties are called varieties as they are not, in general, integral.
However, it happens that we are only interested in the Betti cohomology of
these varieties in this paper. So the non-reduced structure will not play a
role. Moreover, we will reserve the term “Hessenberg scheme” for the families
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discussed in §8. So we will stick with tradition and continue to call the schemes
H (m, s) Hessenberg varieties.

However, we ask the reader to regard “Hessenberg variety” as one word. The
term variety by itself will still refer to an integral, separated scheme of finite
type over an algebraically closed field.

3 The chromatic quasisymmetric function

Given a graph G whose vertex set is a subset of P, Shareshian and Wachs [43]
define the chromatic quasisymmetric function XG(x, t) of G.

Definition 16. Let G be a graph whose vertex set V is a finite subset of P.
Let C(G) denote the set of all proper colorings of G, i.e., the set of all maps
κ : V → P such that adjacent vertices are always mapped to distinct positive
integers. Then

XG(x, t) :=
∑

κ∈C(G)

tascκ xκ, (17)

where

ascκ := |{{u, v} : {u, v} is an edge of G and u < v and κ(u) < κ(v)}| .

As Shareshian and Wachs point out, it is obvious that XG(x, t) ∈ Q[t]. On
the other hand, while the proof of the following result, [43, Theorem 4.5], is not
long, the result itself is not at all obvious:

Theorem 18 (Shareshian–Wachs). Suppose G = G(m) is the incomparability
graph of a natural unit interval order. Then XG(x, t) ∈ Λ[t].

For brevity, we sometimes write XG(t) for XG(x, t). It will be convenient
for us to restate the definition of XG(t) in terms of monomial quasisymmetric
functions.

Proposition 19. Let G be a graph whose vertex set V is a finite subset of P.
Then

XG(x, t) =
∑

σ=(σ1,...,σ`)

tascσM|σ1|,...,|σ`|, (20)

where the sum is over all ordered partitions σ of V such that every σi is a stable
set of G (i.e., there is no edge between any two vertices of σi), and ascσ is the
number of edges {u, v} of G such that u < v and v appears in a later part of σ
than u does.

Proof. Given a coloring κ ∈ C(G), let σi be the set of vertices that are assigned
the ith smallest color. Then it is immediate that

1. σ = (σ1, . . . , σ`) is an ordered partition of the vertex set of G;

2. σi is a stable set for all i; and
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3. ascκ = ascσ.

It is easy to see that if we sum xκ over all κ ∈ C(G) that yield the same ordered
partition σ, then we obtain the monomial quasisymmetric function Mα where
the ith part αi of the composition α is the cardinality |σi| of σi. The proposition
follows.

We remark that if we set t = 1 then the chromatic quasisymmetric function
specializes to the chromatic symmetric function XG of Stanley [47].

3.1 Reciprocity

If f is a symmetric function, then a “reciprocity theorem,” loosely speaking,
is a result that gives a combinatorial interpretation of ωf , where ω is a well-
known involution on symmetric functions [48, Section 7.6]. Since Conjecture 3
concerns ωXG(t) rather than XG(t) itself, one might expect a reciprocity theo-
rem to be relevant. This is indeed the case. Specifically, the coefficients of the
monomial symmetric function expansion of ωXG(t) play an important role in
our arguments, so we now introduce some notation for them.

Definition 21. Given a Hessenberg function m, we let cd,λ(m) be the coeffi-
cients defined by the following expansion of ωXG(m)(x, t) in terms of monomial
symmetric functions:

ωXG(m)(x, t) =
∑
d

td
∑
λ

cd,λ(m)mλ. (22)

It is possible to derive a combinatorial interpretation for cd,λ(m) by using
the reciprocity theorem of Shareshian and Wachs [43, Theorem 3.1]. However,
as we now explain, we shall take a different route.

Our starting point is the observation that Chow [8, Theorem 1] has proved
a reciprocity theorem for a symmetric function invariant of a digraph called the
path-cycle symmetric function ΞD. There is a certain precise sense in which ΞD
is equivalent to Stanley’s XG in the case of posets, but the nice thing about
reciprocity for ΞD is that it naturally yields a combinatorial interpretation for
the coefficients of the monomial symmetric function expansion of ωΞD, which is
not immediately evident from Stanley’s reciprocity theorem [47, Theorem 4.2]
for XG. This fact suggests the following plan: Generalize ΞD to ΞD(t) (just
as Shareshian and Wachs have generalized XG to XG(t)), prove reciprocity for
ΞD(t), and read off the desired combinatorial interpretation of cd,λ(m). This
plan works, and we now show how to carry it out.

We define the path quasisymmetric function ΞD(x, t) of a digraph D; as its
name suggests, it enumerates paths only and not cycles (since for our present
purposes we do not care about enumerating cycles), and it has a definition
analogous to that of the chromatic quasisymmetric function.

Definition 23. Let D be a digraph whose vertex set V is a subset of P. An
ordered path cover of D is an ordered pair (q, β) such that q is a sequencing

11



of V , β = (β1, . . . , β`) is a composition of n := |V |, and

q(βi−1 + 1)→ q(βi−1 + 2)→ · · · → q(βi)

is a directed path in D for all i ∈ [`] (adopting the convention that β0 = 0).
Define

ΞD(x, t) :=
∑
(q,β)

tasc qMβ (24)

where the sum is over all ordered path covers (q, β) of D and asc q is the number
of pairs {u, v} of vertices of D such that

1. either u→ v and v → u are both edges of D or neither one is,

2. u < v, and

3. v appears later in the sequencing q than u does.

For brevity, we sometimes write ΞD(t) for ΞD(x, t). The chromatic quasi-
symmetric function and the path quasisymmetric function coincide for posets.
More precisely, we have the following proposition.

Proposition 25. Let P be a poset whose vertex set V is a finite subset of P.
Let D(P ) be the digraph on V that has an edge u→ v if and only if v ≺ u in P .
Let G(P ) be the incomparability graph of P . Then ΞD(P )(x, t) = XG(P )(x, t).

Proof (sketch). The proof is mostly a routine verification that the two definitions
coincide in this special case. Only a few points require some attention. First,
if S is a stable subset in G(P ), then S is a totally ordered subset of P , and
hence there is exactly one directed path in D(P ) through the vertices of S.
Hence ordered partitions σ of V such that every σi is a stable set of G(P ) are
in bijective correspondence with ordered path covers (q, α) of D(P ). Second,
because P is a poset, it is not possible for u ≺ v and v ≺ u simultaneously, so
the condition that “either u→ v and v → u are both edges of D(P ) or neither
one is” is equivalent to adjacency in G(P ). Third, one might worry that asc q
counts some pairs {u, v} where v appears later in the sequencing but in the
same path while ascσ counts only pairs from different parts, but in fact this
cannot happen because vertices in the same path are part of the same totally
ordered subset of P and thus have a directed edge between them in exactly one
direction.

Although we are ultimately interested in expansions in terms of monomial
symmetric functions, it turns out that the proofs are more naturally stated in
terms of monomial quasisymmetric functions. So we need to describe the action
of ω on monomial quasisymmetric functions.

Definition 26. The linear map ω on quasisymmetric functions is defined by
the following action on monomial quasisymmetric functions.

ωMβ := (−1)|β|
∑
α≤β

Mα. (27)

12



It is known (e.g., see the proof of [47, Theorem 4.2]) that the usual map ω is
characterized by the equation ωFα = Fα, so the following proposition confirms
that our definition of ω coincides with the standard one.

Proposition 28. ωFα = Fα.

Proof. Applying ω to Equation (13) and invoking Equation (27) yields

ωFα =
∑
β≥α

ωMβ =
∑
β≥α

(−1)|β|
∑
γ≤β

Mγ .

So the coefficient of Mγ in ωFα is

∑
β:(β ≥ α and β ≥ γ)

(−1)|β| =
∑

β≥α∪γ

(−1)|β| =

{
1, if α ∪ γ = ∅;

0, otherwise.

But α ∪ γ = ∅ is equivalent to γ ≥ α, so ωFα =
∑
γ≥αMγ = Fα.

We are ready for the reciprocity theorem for ΞD(t).

Theorem 29. Let D be a digraph whose vertex set V is a subset of P. Then
ωΞD(x, t) = ΞD(x, t).

Proof. Let us apply ω to both sides of Equation (24) and invoke the definition
of ω.

ωΞD(x, t) =
∑
(q,β)

tasc qωMβ =
∑
(q,β)

tasc q(−1)|β|
∑
α≤β

Mα.

Now we interchange the order of summation; i.e., we want to compute the
coefficient of Mα in ωΞD(t). This involves a sum over all ordered path covers
(q, β) such that β ≥ α. The summands involving a fixed sequencing q are∑

β≥α

tasc q(−1)|β| = tasc q
∑
β≥α

(−1)|β|. (30)

Now note that if (q, α) is an ordered path cover and β is any composition such
that β ≥ α, then (q, β) is also an ordered path cover, because deleting an
edge from a directed path simply subdivides it into two smaller directed paths.
Therefore the alternating sum in Equation (30) is zero unless the only β ≥ α
for which (q, β) is an ordered path cover is the maximal composition (βi = 1
for all i), in which case the alternating sum equals one. But this condition is
equivalent to the condition that there is no directed edge in D between any
consecutive vertices in the sequencing q that are in the same segment of α, i.e.,
that (q, α) is an ordered path cover of D. Finally, note that the definition of asc q
is invariant under taking complements of the digraph. The theorem follows.

Theorem 29 gives us a nice combinatorial interpretation of cd,λ(m).
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Corollary 31. Let m be a Hessenberg function, and let D(m) denote the di-
graph on [n] that has an edge u → v if and only if v ≺ u in P . Then for any
composition α whose parts are a permutation of the parts of λ, cd,λ(m) equals

the number of ordered path covers (q, α) of D(m) with asc q = d.

Proof. By Proposition 25, we know that XG(m)(t) = ΞD(m)(t). By Theorem 18,
XG(m)(t) is actually a symmetric function (whose coefficients are polynomials
in t). Therefore ωXG(m)(t) = ωΞD(m)(t) is also a symmetric function, and

the coefficient of tdmλ equals the coefficient of tdMα for any composition α
whose parts are a permutation of the parts of λ. The result then follows from
Theorem 29.

Corollary 32. For a sequencing q of a digraph whose vertex set is a subset
of P, let the definition of des q be the same as the definition of asc q except with
“u < v” replaced by “v < u.” then Corollary 31 holds with des q in place of
asc q.

Proof. For a proper coloring κ of a graph whose vertex set is a subset of P,
let the definition of desκ be the same as the definition of ascκ except with
“κ(u) < κ(v)” replaced by “κ(u) > κ(v).” Shareshian and Wachs prove [43,
Corollary 2.7] that the value of XG(t) is unchanged if “asc” is replaced by
“des.” It is readily checked that the proofs of Proposition 25 and Theorem 29
go through if “asc” is replaced by “des” everywhere.

As we remarked before, Corollaries 31 and 32 can be derived from Shareshian–
Wachs [43, Theorem 3.1], but we have taken our approach because we believe
that Theorem 29 is of independent interest.

4 Betti numbers of regular Hessenberg varieties

The main result of this section is that if H (m, s) is a regular Hessenberg variety
and s has Jordan type λ, then its Betti number β2d equals cd,λ(m).

Tymoczko [51, Theorem 7.1] has already done a lot of the work needed to
prove this result, by showing that Hessenberg varieties admit a paving (or cellu-
lar decomposition) by affine spaces, and obtaining a combinatorial interpretation
of the dimensions of the cells. For regular Hessenberg varieties, Tymoczko’s the-
orem simplifies as follows. If λ is an integer partition of n then by a tableau of
shape λ we mean any filling of the boxes of the Young diagram of λ with one
copy each of the numbers 1, 2, . . . , n.

Theorem 33 (Tymoczko). Let H (m, s) be a regular Hessenberg variety and
let the partition λ encode the sizes of the Jordan blocks of s. Then H (m, s) is
paved by affines. The nonempty cells are in bijection with tableaux T of shape λ
with the property that k appears in the box immediately to the left of j only if
k ≤ mj. The dimension of a nonempty cell is the sum of:

1. the number of pairs i, k in T such that
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(a) i and k are in the same row,

(b) i appears somewhere to the left of k,

(c) k < i, and

(d) if j is in the box immediately to the right of k then i ≤ mj;

2. the number of pairs i, k in T such that

(a) i appears in a lower row than k, and

(b) k < i ≤ mk.

It remains for us to establish a correspondence between the combinatorics of
Theorem 33 and the combinatorics of ωXG(m)(t), or equivalently (by the results
of the previous section) the combinatorics of ordered path covers.

Definition 34. If X is a topological space and i is an integer, we write βi or
βi(X) for the ith Betti number dim Hi(X,C) of X.

Theorem 35. Let H (m, s) be a regular Hessenberg variety and let the Jordan
type of s be λ. Then the Betti number β2d of H (m, s) equals cd,λ(m), and
βi = 0 for i odd.

Proof. As Tymoczko [51, Proposition 2.2] mentions, it is well known that if we
have a paving by affines, then β2d is just the number of nonempty cells with
dimension d. Furthermore, βi = 0 for i odd [51, Corollary 6.2]. On the other
hand, by Corollaries 31 and 32, we know that cd,λ(m) is the number of ordered

path covers (q, α) of D(m) with des q = d, where we may take the parts of the
composition α to be any permutation of the parts of λ. So it suffices to show,
firstly, that there is a bijection between nonempty cells and ordered path covers
(q, α), and secondly, that under this bijection, the dimension of the nonempty
cell is equal to des q.

First we should specify α. If λ has ` parts λ1, . . . , λ`, we set αi := λ`+1−i.
That is, the parts of α are the parts of λ in reverse order.

Instead of nonempty cells, we use the tableaux T of Theorem 33 to describe
our bijection. Given an ordered path cover (q, α) of D(m), take the elements of
the ith path

q(αi−1 + 1)→ q(αi−1 + 2)→ · · · → q(αi)

and place them from left to right in the ith row (from the bottom) of T . We
need to verify that Tymoczko’s condition k ≤ mj is equivalent to the condition

that k → j is a directed edge in D(m). By definition, there is a directed edge
k → j in D(m) if and only if there is not a directed edge k → j in D(m), i.e.,
if and only if either k and j are incomparable in P (m), or k ≺ j in P (m). The
only way this property can fail is if j ≺ k in P (m), i.e., if k > mj . So indeed
the conditions are equivalent.

Let us call a pair i, k satisfying the conditions in Theorem 33 a “T-inversion.”
Using the above bijection, we can think of T-inversions as certain pairs i, k in an
ordered path cover (q, λ). The statistic des can also be thought of as counting
certain pairs i, k of (q, λ), namely those satisfying
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1. either i→ k and k → i are both edges of D(m) or neither is,

2. i > k, and

3. k appears later in the sequencing q than i does.

Call such a pair an “SW-inversion.” We claim that for any ordered path cover,
the number of T-inversions equals the number of SW-inversions. This will prove
the theorem.

First let us note that the condition k < i implies that k ≤ mi (since m is
a Hessenberg function) and therefore, by the argument we gave above, k → i
is an edge of D(m). That is, if k < i then it is not possible for neither i → k
nor k → i to be an edge of D(m), so in fact both must be, and in particular we
must have i→ k, or in other words i ≤ mk. Therefore an SW-inversion can be
redefined as a pair i, k such that

1. i appears earlier in the sequencing q than k does, and

2. k < i ≤ mk.

It is now immediate that if i and k are in different paths then i, k is a T-inversion
if and only if i, k is an SW-inversion, because by construction, i appearing in
an earlier path than k is equivalent to appearing in a lower row than k in the
tableau.

If i and k are in the same path then the situation is more complicated because
T-inversions and SW-inversions do not necessarily coincide. However, we now
give a bijection from the set of SW-inversions to the set of T-inversions, thereby
showing that they are equinumerous.

Given an SW-inversion i, k, let k1, k2, . . . , kr denote the remaining elements,
in order, that succeed k in the path. For convenience, set k0 := k and kr+1 :=∞.
Now let j be the smallest number such that i ≤ mkj+1

. Then we claim that i, kj
is a T-inversion, and that this is a bijection.

First let us verify that i, kj is a T-inversion. Condition 1(d) is satisfied
almost by definition because what the construction is doing is scanning to the
right until condition 1(d) is satisfied, and it will always succeed, since we just
take j = r in the worst case. So we just need to verify that i > kj . If j = 0 then
we are done, because (i, k0) = (i, k) is an SW-inversion by assumption, and in
particular i > k. Otherwise, by minimality of j, we know that i > mkj ≥ kj .

Thus the construction scans rightwards from k until the first T-inversion
i, kj is reached.

To see that this map is injective, observe that by minimality of j, we have
i > mkj′ for every 0 ≤ j′ ≤ j, so (i, kj′) is not an SW-inversion. Thus, as
we scan rightwards from k in search of the first T-inversion i, kj , we do not
encounter any other SW-inversions en route. If more than one SW-inversion
were mapped to the same T-inversion, then the leftmost one would have to
cross over the other ones en route.

To see that the map is surjective, we can define an inverse map, that scans
leftwards from a T-inversion until it finds a pair that satisfies i ≤ mk. Such a
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scan always succeeds because in the worst case it ends up at the successor i′

of i, and i ≤ mi′ because they are consecutive elements of a path. Then by
minimality, if we arrive at a pair i, k with k′ being the successor of k, we must
have k > mk′ ≥ k, so what we have arrived at is indeed an SW-inversion.

Let us remark that our proof shows that at least in the case of regular
Hessenberg varieties, the two cases of Theorem 33 can be unified, namely that
the dimension is just the number of pairs i, k such i appears to the left of k or
in a lower row than k, and k < i ≤ mk.

Corollary 36. Let H (m, s) be a regular Hessenberg variety with s of type λ
as in Theorem 35. Set

q = qH (m,s) :=
∑
i∈Z

βit
i−|m|.

Then q(t) = q(t−1).

Proof. First note that |m| (as defined in Equation (5)) is the number |E| of
edges in the incomparability graph G = G(m) of P (m). This follows directly
from the description of G(m) given in §2.1. By [43, Corollary 4.6], XG(x, t) is
palindromic. More precisely, we have XG(x, t) = t|m|XG(x, t−1). Therefore, for
each partition λ, we have∑

d

cd,λ(m)td = t|m|
∑
d

cd,λt
−d.

So

q(t) =
∑
i

βit
i−|m| =

∑
d

cd,λ(m)t2d−|m|

= t−|m|
∑
d

cd,λ(m)t2d = t−|m|t2|m|
∑
d

cd,λ(m)t−2d

= t|m|
∑
d

cd,λ(m)t−2d =
∑
d

cd,λ(m)t|m|−2d

= q(t−1).

Corollary 37. Suppose s is a regular matrix. Then, for all i ∈ Z, we have
βi = β2|m|−i. Consequently, dim H (m, s) = |m|.

Proof. The first assertion follows (after a few algebraic manipulations) from
Corollary 36. It is well known that, for a complex, projective variety X, we
have dimX = max{i : H2i(X,C) 6= 0}. So, the second assertion is a direct
consequence of the first.
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5 Local monodromy and local fundamental groups

5.1 Local systems

In this subsection, we review some terminology concerning local systems. This
material is standard (going back in some ways to Riemann [38]), but we realized
that including it might help to make our paper more broadly accessible. More-
over, since we are making considerable use of local systems, it seems appropriate
to be as precise as possible about what they are. To have a specific (modern)
reference, we follow the dictionary on page 3 of Deligne’s book on differential
equations [11].

By a locally constant sheaf on a topological space X, we simply mean a
sheaf of sets F which is locally isomorphic to a constant sheaf of sets. In other
words, each x ∈ X has an open neighborhood U such that the restriction of F
to U is constant. We can consider the class of locally constant sheaves as a full
subcategory of the class of all sheaves. On the other hand, it is well known and
easy to see that the category of locally constant sheaves on X is equivalent to
the category of covering spaces of X (c.f. [53, Definition and Proposition 3.41]).

By a local system on a topological space X, we mean a sheaf of finite di-
mensional C-vector spaces F on X which is locally isomorphic to a constant
sheaf of C-vector spaces. Note that this definition differs slightly from Deligne’s
in [11] in that Deligne requires the dimension of the stalks to be constant. How-
ever, this is guaranteed by our definition if X is connected, which is the most
important case, and the added flexibility is useful.

For any ring R, we could equally well define R-local systems by replacing C
with R (and finite dimensional vector spaces by finitely generated R-modules).
But, to avoid cluttering up the notation, we refer the reader to [14] for this
notion. (For most of the paper we only use C-local systems, however, we do use
Z-local systems in §8 and A-local systems for A a polynomial ring in §9.)

We view the class of local systems as a full-subcategory of the category of
sheaves of C-vector spaces on X. Clearly, there is a forgetful functor from the
category of local systems on X to the category of locally constant sheaves on X
(by forgetting the C-vector space structures).

Suppose now that X is non-empty. Pick a point x0 ∈ X, which we call a
“basepoint.” Then the fundamental group π1(X,x0) acts on the fiber Fx0 of any
locally constant sheaf F giving us a homomorphism ρ : π1(X,x0) → AutFx0 .
If F is a local system then ρ respects the C-vector space structure giving us a
group homomorphism

ρ : π1(X,x0)→ GL(Fx0
) (38)

which is usually called the monodromy representation. The fundamental fact
about local systems and locally constant sheaves is then the following standard
result (which can be found on pages 3 and 4 of [11]).

Theorem 39. Suppose that X is a locally path connected, locally simply con-
nected, connected topological space equipped with a point x0. Then the functor
F  Fx0

induces an equivalence from the category of locally constant sheaves
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(resp. local systems) on X to the category of π1(X,x0)-sets (resp. finite dimen-
sional complex representations of π1(X,x0)).

Sketch. Since Deligne does not actually prove Theorem 39 in [11], we give a
sketch.

The main point is that, under the assumption that X is locally path con-
nected, locally simply connected and connected, there exists a universal cover X̃
of X. For a proof, see the discussion starting on page 64 of Hatcher’s book [24],
where X̃ is constructed as a space of homotopy classes of paths starting from
the point x0. Moreover π1(X,x0) acts freely on X̃ with quotient X. Given a
π1(X,x0)-set E (resp. a finite dimensional π1(X,x0)-representation E), we con-
sider the quotient FE := (X̃ ×E)/π1(X,x0) where the fundamental group acts
on the product by γ(x̃, e) = (γx̃, γ−1e). That is, we form the Borel construction,
where here E is given the discrete topology.

The space FE is naturally a covering space of X via the map FE → X
induced by projection on the first factor in the product X̃ × E. If E is a C-
vector space, the sheaf corresponding to FE has the natural structure of a sheaf
of C-vector spaces. We leave the rest of the verification to the reader.

Corollary 40. Suppose F is a local system on a topological space X as in

Theorem 39. Then there is a natural isomorphism H0(X,F) = Fπ1(X,x0)
x0 .

Proof. Write CX for the constant local system on X, which corresponds to the
trivial representation of π1(X,x0). Then we have Fπ1(X,x0) = Hom(CX ,F) by
Theorem 39. But it is easily seen that the natural map Hom(CX ,F) → F(X)
is an isomorphism.

Remark 41. By Proposition A.4 on page 531 of Hatcher’s book [24], CW com-
plexes are locally contractible. It follows that, if X is a CW complex and Y is
a closed subcomplex, then X \ Y is locally contractible. In particular, if X \ Y
is connected then it satisfies the hypotheses of Theorem 39.

5.2 Local homotopy type

In this section we review the definition and some of the main properties of local
homotopy type. This material is probably well known to some readers, but we
feel that it will be convenient to review it. Our treatment follows the book by
Looijenga [29], a paper by Kumar [27] and another paper by Prill [37].

Suppose X is a topological space and x ∈ X. A fundamental system of
neighborhoods U of x is a system of open neighborhoods such that any open
neighborhood V of x contains a U ∈ U .

The following Lemma is [27, Lemma 1.1].

Lemma 42. Suppose X is a CW complex, x ∈ X and Y is a closed subcomplex
of X containing x. Then there exists a fundamental system {U}U∈U of open
neighborhoods of x in X such that the following condition is satisfied:

For any U, V ∈ U with V ⊂ U , the inclusion V \Y ↪→ U \Y
is a homotopy equivalence.

(43)
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A system of neighborhoods U as in Lemma 42 is called a good fundamental
system of neighborhoods relative to Y .

Lemma 44. Suppose C is a category and

A
f→ B

g→ C
h→ D

is a sequence of morphisms. Assume that g ◦ f and h ◦ g are isomorphisms.
Then f, g and h are all isomorphisms.

Proof. Easy exercise.

We have adapted the proof of the following Proposition from Looijenga’s [29,
p. 114], and Prill’s Proposition 2 [37].

Proposition 45. Suppose {Uα}α∈I is a non-empty collection of good funda-
mental systems of neighborhoods as in Lemma 42. Then so is U := ∪α∈IUα.
Consequently, the union of all good fundamental systems of neighborhoods is
itself a good fundamental system of neighborhoods.

Proof. Take U ∈ Uα and V ∈ Uβ with V ⊂ U . We can find U ′ ∈ Uα such
that U ′ ⊂ V , and V ′ ∈ Uβ such that V ′ ⊂ U ′. Then apply Lemma 44 to the
sequence of inclusions

V ′ \ Y → U ′ \ Y → V \ Y → U \ Y.

This shows that the inclusion V \ Y → U \ Y is a homotopy equivalence.

Definition 46. Suppose X is a CW complex and Y is a closed subcomplex
containing a point x. We say an open neighborhood U of x is good relative to
Y if U is an element of a good fundamental system of neighborhoods. The local
homotopy type of X \Y at x is the homotopy type of U \Y where U is any good
neighborhood.

If A and B are objects in any category C, we say that A is a retract of B if
there are morphism i : A → B and r : B → A such that r ◦ i = idA. In other
words, we follow Mac Lane’s terminology in [30, p. 19].

Suppose U is a good neighborhood of x and W is an arbitrary (not neces-
sarily good) open neighborhood of x contained in U . Then we can find a good
neighborhood V such that V ⊂W . Since V is good, Proposition 45 shows that
the composition

V \ Y →W \ Y → U \ Y
is a homotopy equivalence. In other words, the local homotopy type of X \ Y
at x is a retract of the homotopy type of W \ Y .

Now suppose X is an analytic space, Y is a Zariski closed subspace and
x ∈ Y . We can find an analytic open neighborhood W of x in X such that
W has the topological structure of a CW complex with W ∩ Y a subcomplex.
(See, for example, [28].) Consequently, there exist good neighborhoods of x in
X relative to Y .

The following fact is certainly well known (see, e.g., [37, Corollary 1]), but
we give a proof because it is short.
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Fact 47. Suppose X is a complex manifold and Y is a closed, nowhere dense,
analytic subspace of X containing a point x. Then U \ Y is non-empty and
connected for any good neighborhood of x.

Proof. Let U be a good neighborhood of x and let V be any connected neigh-
borhood of x contained in U . Then V \ Y is connected (for example, by the
Criterion for Connectedness on page 133 of [18]). It is also non-empty. But the
homotopy type of U \ Y is a retract of the homotopy type of V \ Y . So U \ Y
is connected and non-empty as well.

If X is smooth at x, we can find a contractible good neighborhood U of x.
(See [37].) In fact, we can take a sufficiently small ball as in the following
theorem, which follows from Theorem 5.1 of Dimca’s [12].

Theorem 48. Suppose X is a complex manifold of dimension n at x and Y is
a closed analytic subspace of X containing x. For each positive real number r,
write Br for the ball of radius r centered at 0 in Cn. Then there exists a good
neighborhood U of x relative to Y and biholomorphism ϕ : U → B1 such that
the following holds: For each r ∈ (0, 1), ϕ−1Br is a good neighborhood of x.

5.3 Local fundamental group

Fact 47 leads to the following definition.

Definition 49. Suppose X is a complex manifold, and Y is a closed, nowhere
dense, analytic subspace of X containing a point x. Then the local fundamental
group of X \ Y at x is the isomorphism class of the group π1(U \ Y, p) where U
is any good neighborhood of x (with respect to Y ) and p ∈ U \ Y .

Since the smoothness of X in the Definition 49 (together with Fact 47)
implies that U \ Y is connected, the isomorphism class of π1(U \ Y, p) is indeed
well-defined. But, since we have not given a way to fix a base point, it is only
defined up to a non-canonical isomorphism.

On the other hand, suppose X as in Definition 49 is connected. Pick any
point q ∈ X \ Y . Given a good neighborhood U of x relative to Y , we can
find a point p ∈ U \ Y and a path γ from p to q. From this, we get a group
homomorphism

ϕγ : π1(U \ Y, p)→ π1(X \ Y, q).

Changing γ has the effect of conjugating ϕγ by an element of π1(X \ Y, q). So
the conjugacy class of the subgroup ϕγ(π1(U \ Y, p)) is independent of γ.

Proposition 50. Suppose f : X ′ → X is a morphism of complex analytic spaces
admitting a section ε : X → X ′. Let Y be a closed, nowhere dense, analytic
subspace of X containing x ∈ X, and set Y ′ := f−1Y . Then the local homotopy
type of X \ Y at x is a retract of the local homotopy type of X ′ \ Y ′ at ε(x).
In particular, if X and X ′ are complex manifolds, then the local fundamental
group of X \ Y at x is a retract of the local fundamental group of X ′ \ Y ′ at
ε(x).
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Proof. Pick a good neighborhood U of x. Then find a good neighborhood V of
ε(x) contained in f−1U . Finally, find a good neighborhood U ′ of x contained in
ε−1V . We then have a composition

U ′ \ Y ε→ V \ Y ′ f→ U \ Y

which is a homotopy equivalence. The result follows.

5.4 Local systems and local invariant cycles

Suppose X is a CW complex containing a closed subcomplex Y which contains a
point x, and L is a local system of complex vector spaces on X \Y . For any two
good neighborhoods U1 and U2 of x and any integer k, the sheaf cohomology
groups Hk(Ui \ Y,L), i = 1, 2 are canonically isomorphic. To see this, take a
good neighborhood V ⊂ U1 ∩ U2, and note that the restriction maps Hk(Ui \
Y,L) → Hk(V \ Y,L) are isomorphisms. So we write Hk(x,L) for the group
Hk(U \ Y,L) where U is any good neighborhood of x. It is isomorphic to the
group colim Hk(U \Y,L) where the colimit is taken over all open neighborhoods
of x. The group H0(x,L) is called the space of local invariants.

If X is a complex manifold and Y is a nowhere dense analytic subspace,
then U \ Y is connected for any good neighborhood of x relative to Y . Pick a
basepoint p ∈ U \ Y . Then the data of the local system L defines an action of
π1(U \ Y, p) on the fiber Lp at p. Moreover, via Corollary 40, the space of local
invariants is given by the invariants of the action:

H0(x,L) = Lπ1(U\Y,p)
p . (51)

Corollary 52. Suppose X is smooth and B is any connected neighborhood of
x contained in a good neighborhood U . Then H0(x,L) = H0(B \ Y,L).

Proof. Pick a point b ∈ B \ Y . We have H0(B \ Y,L) = Lπ1(B\Y,b)
b . But

π1(U\Y, b) is a retract of π1(B\Y, b). So Lπ1(B\Y,b)
b = Lπ1(U\Y,b)

b = H0(x,L).

We can also describe the space Hk(x,L) sheaf theoretically. Write j : X \
Y → X for the inclusion. Then the group Hk(x,L) is naturally isomorphic to
(Rkj∗L)x; i.e., to the stalk at x of the kth higher direct image Rkj∗L.

The following is certainly well known, but we sketch a short proof.

Lemma 53. Suppose X is a connected complex manifold and Y is a nowhere
dense closed analytic subspace. Then, for p ∈ X \Y , the homomorphism π1(X \
Y, p)→ π1(X, p) is surjective.

Sketch. Let π : X̃ → X denote the universal cover of X. Then π−1(X \ Y ) =
X̃ \ π−1(Y ) is connected because X̃ is a complex manifold and π−1(Y ) is a
closed, nowhere dense, complex analytic subspace [18, p. 133]. It follows that
π1(X \ Y, p) acts transitively on π−1(p). If we pick a point p̃ in π−1(p), we
get an identification of π−1(p) with π1(X, p). Moreover, the action of π1(X, p)
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on π−1(p) corresponds to the left regular action of π1(X, p) on itself. From
this, we see that the action of π1(X \ Y, p) on π1(X, p) induced by the group
homomorphism π1(X \ Y, p) → π1(X, p) is transitive. Therefore the map of
fundamental groups is surjective.

Now, suppose X is a connected, complex manifold, Y is a closed, nowhere
dense, analytic subspace, L is a local system on X \ Y , x ∈ Y and q ∈ X \ Y .
The monodromy group of L is the image M of the group homomorphism π1(X \
Y, q) → GL(Lq). By Lemma 53, M is unchanged if we replace Y by a larger
closed, nowhere dense analytic subset Y ′. That is, if Y ′ contains Y (but not q),
then the image of the homomorphism π1(X \ Y ′, q) is also M .

Suppose U is a good fundamental neighborhood of x relative to Y and p ∈
U \ Y . Then the local monodromy group of L at y is the image H = H(y) of
the composition

π1(U \ Y, p) ϕγ→ π1(X \ Y, q)→M

where γ is a path from p to q. It depends on the choice of U , γ and p, but only
up to conjugacy by an element of M . Like M itself, H is independent of Y in
the sense that enlarging Y does not change H.

6 Palindromic Betti numbers and the local in-
variant cycle theorem

6.1 Main Theorems

A crucial tool in our argument is the local invariant cycle theorem of Beilinson,
Bernstein, and Deligne (BBD), which we state here in the generality relevant to
this paper.

Theorem 54 ([4, Corollaire 6.2.9]). Suppose f : X → Y is a proper morphism
of smooth, separated, irreducible complex schemes. Let y ∈ Y (C), and set Xy :=
f−1(y). Suppose that U is a Zariski dense, Zariski open subset of Y such that
the restriction of f to f−1U is smooth. Then, for every sufficiently small ball
B = B(y) centered at y as in Theorem 48, the natural map

Hi(Xy,C) −→ H0(B(y) ∩ U,Rif∗C) (55)

is a surjection. Moreover, B(y) ∩ U is nonempty, and we have

H0(B(y) ∩ U,Rif∗C) = Hi(Xz)
π1(B(y)∩U,z) (56)

for any z ∈ B(y) ∩ U .

The vector space H0(B(y) ∩ U,Rif∗C) is called the space of local invariant
cycles, and we call the map in (55) (which we will explain in some detail below)
the local invariant cycle map. The assumption that f is smooth and proper over
U implies that the sheaves Rif∗C restrict to local systems on U . It follows from
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Corollary 52 that, for a fixed U , the spaces H0(B(y)∩U,Rif∗C) are canonically
isomorphic for B(y) sufficiently small. Moreover, as BBD point out, up to a
canonical isomorphism, (55) is independent of U .

When Z is a scheme, we write dZ := dimZ to save space. This notation is
useful in the main result of this section, which is the following.

Theorem 57. Suppose that f : X → Y is a projective morphism between
smooth, separated, irreducible complex schemes; and let y be a closed point of Y .
Set d = dX − dY . Then the local invariant cycle map (55) is an isomorphism
for all i ∈ Z if and only if

dim Hi(Xy,C) = dim H2d−i(Xy,C) (58)

for all i.

The rest of this section is devoted to a proof of Theorem 57. Our proof uses
the ideas behind the proof of Theorem 54 extensively. Somewhat unfortunately
for us, in [4], the proof of Theorem 54 in the case of complex varieties is more
or less left to the reader to construct using the proof given earlier in the book
of the `-adic analogue of the theorem for schemes of finite type over a finite
field. While it is probably fairly clear how to do this for anyone who has made
it to the last few pages of [4] where Theorem 54 appears, it makes it difficult
for us to cite passages in the text where specific results we need are proved.
In the original arXiv version of this paper [6], we handled this essentially by
assuming that the reader was familiar with the proof of Theorem 54. However,
we realized that this approach has serious disadvantages. So, to help make our
proof of Theorem 57 as clear and precise as possible, we have decided to include
a proof of Theorem 54 in the complex case.

One advantage of this is that we are able to use the Kashiwara conjecture
for semisimple perverse sheaves [25], which has been proved by T. Mochizuki
and independently by combining work of A.J. de Jong, Drinfeld, Gaitsgory, and
Böckle–Khare [31, 32, 9, 13, 15, 5]. This allows us to point out strong forms of
Theorems 54 and Theorem 57. See Theorem 84 and Theorem 102 below.

6.2 The local invariant cycle map

6.2.1 Geometric definition

The map (55) in the statement of Theorem 54 can be defined in two equiva-
lent ways, geometrically and sheaf theoretically. We start with the geometric
component of the definition. To explain it, write XS for f−1S when S ⊂ X,
and write fS for the map XS → S coming from the restriction of f . Then, for
B = B(y) a sufficiently small ball, the restriction morphism

Hi(XB ,C)→ Hi(Xy,C) (59)

is an isomorphism. This follows from proper base change. On the other hand,
we have a map

Hi(XB∩U ,C)→ H0(B ∩ U,Rif∗C) (60)
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coming from the edge homomorphism in the Leray–Serre spectral sequence ap-
plied to the fibration fB∩U : XB∩U → B ∩U . Composing the map in (60) with
the inverse of the map in (59) gives the local invariant cycle map (55).

6.2.2 General definition

Theorem 54 is proved (and even stated) in [4] in a much more general sheaf-
theoretic context. This allows for greater generality in the statements, but it also
allows for more flexibility in the proof. As we will use this generality to prove
Theorem 57, we now explain how to generalize the local invariant cycle map for
complexes of sheaves on Y . This essentially involves unwinding the definition
of the edge homomorphism in the hypercohomology spectral sequence.

Suppose Y is any scheme of finite type over C. We write Db
c Y for the

bounded derived category of sheaves of complex vector spaces on Y with con-
structible cohomology. Given a complex K ∈ Db

c Y and an integer i, we write
HiK for the ith cohomology sheaf of K. For j ∈ Z, we write K[j] for the shift
of K by j units to the left. So HiK[j] = Hi+jK. If y ∈ Y (C) and F is a
sheaf on Y , then, as usual, Fy denotes the stalk of F over y. Similarly, if K is
a complex, Ky denotes the object in the derived category of C vectors spaces
obtained by taking stalks. Since taking stalks is exact, we have a canonical
isomorphism Hi(Ky) = (HiK)y. Usually, we simply write HiKy for this vector
space.

Now, let j : U ↪→ Y denote the inclusion of a Zariski open subset and let
y ∈ Y (C) be a closed point. Adjunction then gives us maps

λ : HiK → j∗j
∗HiK (61)

λ(y) : HiKy → (j∗j
∗HiK)y (62)

which we call the (generalized) local invariant cycle maps. Here we get (62)
from (61) by taking stalks, and j∗ denotes the pushforward of sheaves (not the
derived pushforward as it often does in [4]). The functor j∗ is just the restriction
to U . So for M ∈ Db

c Y , j∗M is synonymous with M|U .

When K = Rf∗C as in Theorem 54, then HiKy = Hi(Xy,C) by proper base
change, and (j∗j

∗HiK)y = (j∗j
∗Rif∗C)y which is equal to H0(B(y)∩U,Rif∗C)

for B(y) sufficiently small by the constructibility of the sheaves involved. (Com-
pare with the statement of the local invariant cycle theorem in [4, Corollaire
6.2.9]). Moreover, it is easy to see that λ(y) agrees with the geometric descrip-
tion of (55) in §6.2.1.

Note that λ and λ(y) are natural in K. To make this explicit, write Shvc Y
for the category of constructible sheaves of C vector spaces on Y . Then K  
HiK and K  j∗j

∗HiK are both additive functors from Db
c Y to Shvc Y , and

λ is a natural transformation from the first to the second (as it comes from the
adjunction, which is itself natural). So write λiK for the map in (61) to keep track

of the index and the complex. Then, λiK[j] = λi+jK , and, for K1,K2 ∈ Db
c Y ,

λiK1⊕K2
= λiK1

⊕ λiK2
. Similar remarks hold obviously for λ(y).
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Following [4], we are going to isolate a class of objects K in Db
c Y on which λ,

and thus λ(y), turn out to be surjections. However, it might help to start out
with a trivial example along with a trivial non-example.

Example 63. Let Y = A1
C, the affine line and let j : U ↪→ Y denote the inclusion

of the complement of the origin. Consider the sheaves F = j!CU and G = CY
as objects in Db

c Y . For i 6= 0, both the source and target of λ are 0 for both F
and G. So there is nothing interesting happening. For i = 0, λ is an isomorphism
for G. But for F it is the inclusion of j!CU in CY , which is not a surjection (in
Shvc Y ): we have F0 = 0 while (j∗j

∗F)0 = C.

6.3 Recollections concerning Perverse Sheaves

The definition of the class of objects in Db
c Y we are looking for is tied up with

the theory of perverse sheaves. So we will explain the part of that theory that
we need here.

For the rest of this subsection, we fix a scheme Y which is reduced and
of finite type over C. We point out that everything we are going to do goes
on in Db

c Y and is essentially topological with respect to Y (C). So we do not
really need the assumption that Y is reduced: if W is a scheme of finite type
over C, then Db

c W is the same as Db
c Wred. But it makes it slightly more

convenient to say certain things. On the other hand, while we do not require Y
to be separated, this is mostly to conform to the setup of [4]. In the end, the
theorems we are really interested in are local near a closed point in Y . So we
could just as well assume that Y is separated (or even affine).

We write Perv Y for the category of perverse sheaves on Y (for the middle
perversity). This is a full subcategory of the derived category Db

c Y . For K ∈
Db

c Y and i ∈ Z, we write pH iK for the ith perverse cohomology sheaf. So,

while HiK is a usual sheaf on Y , pH iK is an object in Perv Y . We have
pH iK[j] = pH i+j K.

Suppose j : V ↪→ Y is a (locally closed) immersion of schemes, and K is
a perverse sheaf on V . Then we write j!∗K for the intermediate extension of
K to Y , a perverse sheaf on Y supported on the Zariski closure of V . The
intermediate extension is an extension of K in the sense that there is a natural
isomorphism j∗j!∗K = K. In other words, the restriction of the intermediate
extension to V is just K. In fact, we have the following characterization of the
intermediate extension.

Theorem 64 (BBD). The intermediate extension j!∗K is the unique exten-
sion of K in Perv Y supported on V with no nontrivial sub or quotient object
supported on V \ V .

Proof. This follows from [4, Corollaire 1.4.25].

Proposition 65. Suppose V is a (locally closed) subscheme of Y and K is a
perverse sheaf on V . Then

Hi(j!∗K) = 0 for i /∈ [−dV , 0]. (66)
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Moreover, if we write j : V ↪→ Y for the inclusion, then

H−dV (j!∗K) = j∗H
−dVK. (67)

Proof. Since K is perverse, so is j!∗K, and it is supported on the Zariski closure
V of V . Therefore Hij!∗K = 0 for i > 0 by [4, Definition 2.1.2]. But, by the
discussion in the two paragraphs just after Definition 2.1.2, Hij!∗K = 0 for
i < −dV . So (66) is proved.

Since j!∗K is an extension of K supported on V , j∗H−dV (j!∗K) = H−dVK.
So adjunction gives a natural morphism H−dV (j!∗K) → j∗H

−dVK. Now (67)
follows easily from Deligne’s formula [4, Proposition 2.1.11], which computes
j!∗K in terms of a series of derived pushforwards and truncations.

If V is smooth and irreducible and L is a local system on V , then L[dV ]
is a perverse sheaf on V . So the intermediate extension ICL := j!∗L[dV ] is
a perverse sheaf on Y , which is colloquially called the IC sheaf or the inter-
section cohomology sheaf. For dV > 0, Deligne’s formula actually implies that
Hi IC(L) = 0 for i /∈ [−dV , 0). So we get a slightly stronger vanishing statement
than (66). Note that, if V ′ is a Zariski dense, Zariski open subset of V , then
IC(L|V ′) = ICL, i.e., the two perverse sheaves are canonically isomorphic [4,
Lemme 4.3.2].

By [4, Theorem 4.3.1], a perverse sheaf K on Y is simple (as an object in
the abelian category Perv Y ) if and only if it is isomorphic to ICL where L
is an irreducible local system on a smooth, irreducible subscheme V as above.
So, a perverse sheaf K is semisimple if and only if it is a direct sum of such
sheaves. (Such a direct sum is necessarily finite because the category of perverse
sheaves is artinian.) Suppose Z is a closed subvariety of Y (that is, Z is an
integral, closed subscheme). Following M. Saito’s notation from [40], we say
that a perverse sheaf K has strict support Z if it is supported on Z and has
no proper sub or quotient object supported on a proper subscheme of Z. We
write PervZ Y for the full subcategory of Perv Y consisting of perverse sheaves
with strict support Z. By Theorem 64, if L is a local system on a non-empty,
smooth, Zariski open subscheme V of Z, then ICL has strict support Z. It
follows that any semisimple perverse sheaf K on Y can be written as a direct
sum

K = ⊕ZKZ (68)

where Z ranges over all closed subvarieties of Y and KZ ∈ PervZ Y (with
KZ = 0 for all but finitely many Z). This decomposition is easily seen to be
unique (as there are no nonzero morphisms between objects in PervZ Y and
PervZ′ Y for Z 6= Z ′).

Obviously, if K is simple, then we must have KZ = 0 for all but one ir-
reducible closed subscheme Z of Y . We call this subscheme the strict support
of K.

Lemma 69. Suppose K is a perverse sheaf on a scheme Y of finite type over
C, and let j : V ↪→ Y denote the inclusion of a Zariski dense, Zariski open
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subset. Then j∗K is perverse on V . If K is simple with strict support equal to
an irreducible component of Y , then

K = j!∗j
∗K. (70)

Proof. If j is an open immersion (or even an étale morphism), then j∗ always
takes perverse sheaves to perverse sheaves [4, Corollaire 2.2.6 (ii)]. This proves
the first assertion.

Now suppose K is simple with strict support equal to an irreducible compo-
nent Z of Y . Then K is an extension of j∗K with no non-trivial sub or quotient
object supported on Z \ V . Since, by Theorem 64, j!∗j

∗K is the unique such
extension, it follows that K = j!∗j

∗K.

Lemma 71. Suppose Y is a scheme of finite type over C and let {F}ni=1 be a
finite collection of sheaves on Y . If F := ⊕Fi is a local system, then each Fi is
as well.

Proof. Any idempotent p ∈ EndF is locally constant on F . In particular, p has
locally constant rank. So ker p and ker 1− p are local systems. The result then
follows by induction.

Definition 72. Suppose U is a Zariski open subset of Y and K ∈ Db
c Y . We

say that U is a mollifying subset for K if U is Zariski dense in Y and, for all
i ∈ Z, HiK|U is a local system on U .

Lemma 73. Suppose K ∈ Db
c Y . Then K has a mollifying subset. In fact, we

can even find one which is smooth.

Proof. This follows from generic smoothness and the definition of a constructible
sheaf.

Remark 74. It turns out that we will not really need the existence of smooth
mollifying subsets, and in [4, Corollaire 6.2.9], BBD do not use it.

Proposition 75. Suppose K is a simple perverse sheaf on Y with strict support
Z, and j : U ↪→ Y is the inclusion of a mollifying subset for K.

1. If Z is an irreducible component of Y , then K|U = M[dZ ] where M :=

H−dZK|U , and K = j!∗M[dZ ]. Moreover, j∗j
∗HiK = 0 for i 6= −dZ and

the local invariant cycle map λ−dZK is an isomorphism.

2. Otherwise j∗K = 0. Therefore j∗j
∗HiK = 0 for all i.

Proof. Suppose V is an irreducible component of U . If Z does not contain V ,
then, for each i, HiK|V is a local system on V supported on the closed, proper
subscheme Z ∩ V of V . Since V is connected, it follows that HiK|V = 0 for
all i. This proves (2).

So assume Z is an irreducible component of Y and let V = Z ∩ U . Since
U is dense in Y , V is dense in Z. So dV = dZ . We then have HiK = 0
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for i /∈ [−dZ , 0] by Proposition 65. On the other hand, if i > −dZ , then
dim suppHiK|V ≤ −i < dZ . So again HiK|V = 0 as it is a local system.
Therefore HiK|U = 0 for all i 6= −dZ , and it follows that K|U =M[dZ ] where

M = H−dZK|U . This shows that j∗j
∗HiK = 0 for i 6= −dZ .

By Lemma 69, we then get that K = j!∗M[dZ ]. Then, by Proposition (67),
H−dZK = H−dZ (j!∗M[dZ ]) = j∗H

−dZ (M[dZ ]) = j∗j
∗H−dZK. So the local

invariant cycle map λ−dZK is an isomorphism.

Corollary 76. Suppose K is a simple perverse sheaf on Y , and j : U ↪→ Y is
the inclusion of a mollifying open subset for K.

1. The local invariant cycle map λiK : HiK → j∗j
∗HiK is a surjection for

all i.

2. Suppose every irreducible component of Y has dimension dY and suppose
i is an integer not equal to −dY . Let y ∈ Y (C) be a closed point of Y ,
and write λiK(y) for the map in (62). Then λiK(y) is an isomorphism if
and only if HiKy = 0.

3. If Y is equidimensional as in (2), then λ−dYK is an isomorphism.

Proof. Proposition 75 shows that either λiK is an isomorphism or j∗j
∗HiK = 0.

So (1) holds, because, in either case, λiK is a surjection. Similarly, (3) holds

because, in case (1) of Proposition 75, λ−dZK = λ−dYK was proven to be an
isomorphism and, otherwise, H−dYK = 0 by Proposition 65, which, by (1),
trivially implies that λ−dYK is an isomorphism.

For (2), suppose i 6= −dY . Then j∗j
∗HiK = 0, again by Proposition 75.

Therefore, λiK(y) is an isomorphism if and only if HiKy = 0.

Corollary 77. Suppose K is a simple perverse sheaf on Y and U and V are
two mollifying open subsets for K with inclusions jU (resp. jV ) into Y . Then
the local invariant cycle maps for U and V are canonically isomorphic. More
precisely, U ∩ V is also a mollifying subset, and, if we let jU∩V : U ∩ V ↪→ Y
denote the inclusion, then, for each i ∈ Z, we have have a commutative diagram

jU∗j
∗
UH

iK

Res

((
HiK

λiK

99

λiK %%

λiK // j(U∩V )∗j
∗
U∩VH

iK

jV ∗j
∗
VH

iK

Res
66

where Res denotes restriction. Moreover, each map labeled Res is an iso-
morphism.
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Proof. It is obvious that U ∩V is a mollifying subset, and it is also very easy to
see that the diagram above commutes. So, let Z be the strict support of K. If
Z is not an irreducible component of Y or if i 6= −dZ , then, by Proposition 75,
the right three vertices are all 0. So there is nothing to prove.

Otherwise, all of the arrows labeled λiK are isomorphisms. So the commuta-
tivity of the diagram shows that the maps labeled Res are all isomorphisms.

Definition 78. Suppose Y is a scheme of finite type over C. An object K ∈
Db

c Y is said to be semisimple if K ∼= ⊕i∈Z(pH iK)[−i] with each summand a
semisimple perverse sheaf.

Remark 79. If K ∈ Db
c Y , then it is not hard to see (directly from the definitions

in [4]) that pH iK = 0 for all but finitely many i ∈ Z.

Lemma 80. Suppose K is a semisimple object in Db
c Y and U is a Zariski

dense, Zariski open subset of Y . Then U is mollifying for K if and only if it
is mollifying for every sub perverse sheaf of every perverse cohomology sheaf
pH iK.

Proof. Since the direct sum of local systems is a local system, it is obvious that,
if U mollifies all the pH iK, it mollifies K as well. This proves one direction of
the assertion. The converse direction follows from Lemma 71.

Theorem 81. Suppose K is a semisimple object in Db
c Y and let U be mollifying

for K. Then, for each i, the local invariant cycle map λiK is a surjection.

Proof. Using Lemma 80 along with the naturality of λ explained in §6.2.2, we
can assume that K is a simple perverse sheaf. Then the result follows from
Corollary 76 (1).

Theorem 81 and the decomposition theorem, [4, Théorème 6.2.5], are the
main ingredients in the proof of Theorem 54. Analogously, the main ingredients
of the proof of Theorem 57 are the decomposition theorem, the perverse hard
Lefschetz theorem and the next result.

Theorem 82. Suppose that Y is equidimensional and K is a semisimple object
in Db

c Y . Let y ∈ Y (C) be a closed point, and let j : U ↪→ Y be the inclusion of
a mollifying subset for K. Then the following are equivalent.

1. λ(y) : HiKy → (j∗j
∗HiK)y is an isomorphism for all i.

2. For all j and all i 6= −dY , Hi(pH j K)y = 0.

Proof. By shifting and passing to direct summands via 80, we can assume that
K is a simple perverse sheaf. The theorem is then a direct consequence of
Corollary 76 (2) and (3).
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6.4 Proof of the Local Invariant Cycle Theorem

Suppose now that X is a reduced scheme of finite type over C and K ∈ Db
c X. If

i : W → X is the inclusion of a subscheme, we write Hj(W,K) := Hj(W, i∗K).
Suppose Y is another reduced scheme of finite type over C and y ∈ Y (C) is

a closed point. Then by a ball centered at y, we mean any open neighborhood
of y in Y (C) which is obtained by intersecting an affine open neighborhood V
of y embedded in AnC with a ball in Cn.

Remark 83. We have to distinguish this notion of a ball from the notion of a
ball as in Theorem 48 which we use when Y is smooth. The issue is that, if Y
is singular, then we can not necessarily find an open neighborhood of y which
is homeomorphic to an actual ball in CdY .

In the proof of the next theorem, we are going to use the Kashiwara conjec-
ture. As we mentioned above in §6.1, this is now a theorem owing to the work
of many authors. We will not cite these authors again here, but we point out
that Drinfeld’s paper [13] is short and has a very efficient statement of the part
of the conjecture having to do with perverse sheaves (which is the part that
we use).

Theorem 84. Suppose f : X → Y is a proper morphism of reduced schemes of
finite type over C, and let K be a semisimple object in Db

c X. Let y ∈ X(C) be
a closed point and set Xy = f−1(y). Let U ⊂ Y be a mollifying open subset for
the complex Rf∗C. Then, for every sufficiently small ball B(y) centered at y,
the local invariant cycle map induces a natural surjection

Hi(Xy,K)� H0(B(y) ∩ U,Rif∗K). (85)

Moreover, the target of (85) is independent of the mollifying open subset U .

Proof. First note that, since the whole theorem is a Zariski local statement
near y, we can easily reduce to the situation where Y (and, therefore, X) are
separated. For example, we can replace Y with an affine Zariski open neighbor-
hood of y and X with the inverse image of that neighborhood. So we assume
X and Y are separated. (We do this in order to freely use work on Kashiwara’s
conjecture.)

The source of (85) is naturally isomorphic to HiKy by proper base change.
The target is naturally isomorphic to (j∗j

∗HiK)y for B(y) sufficiently small.
Since K is semisimple, it follows from the Kashiwara conjecture that Rf∗K is
semisimple. Therefore the surjectivity result follows from Theorem 81.

The independence of U follows from Corollary 77.

Proof of Theorem 54. SinceX is smooth, the constant sheaf C = CX is semisim-
ple. In fact, we even assumed that X is irreducible, so C[dX ] is the IC sheaf of
the simple local systems CX . Therefore C[dX ] is a simple perverse sheaf. Since
f is smooth and proper over U , U is a mollifying subset for Rf∗K. So take
K = C in Theorem 84. This proves that (55) of Theorem 54 holds.

Since a ball B(y) as in Theorem 48 is homeomorphic to an open ball in CdY ,
B(y) ∩ U is non-empty and connected. This follows from Fact 47 in the case
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dY > 0 and it is obvious otherwise. Then (56) follows from proper base change
and Corollary 40.

Remark 86. In [4], BBD prove Theorem 84 for K semisimple of geometric ori-
gin. (These are essentially the complexes that can be obtained from the constant
sheaf by the standard operations of sheaf theory, e.g., Grothendieck’s six opera-
tions.) The reason for the restriction was that they were only able to prove the
decomposition theorem [4, Théorème 6.2.5] for such complexes.

BBD also state Theorem 84 for arbitrary schemes of finite type (without the
restriction that X or Y be reduced). But, as we mentioned at the beginning of
§6.3, there is actually no loss in generality in assuming that the schemes involved
are reduced.

6.5 The Palindromicity Theorem

It will be convenient to introduce some notation concerning palindromic poly-
nomials.

Definition 87. Suppose p ∈ R[t, t−1] is a Laurent polynomial. We say that p
is palindromic if p(t) = p(t−1).

Lemma 88. Suppose p ∈ R[t, t−1] is palindromic. Then p′(1) = 0.

Proof. By palindromicity and the chain rule,

p′(t) =
d

dt
p(t−1) = −p′(t−1)t−2.

So p′(1) = −p′(1). Therefore, p′(1) = 0.

If p is any Laurent polynomial, we think of p′(1) as the center of mass of p.

Lemma 89. Suppose q =
∑
`≥0 p`t

` where the p` are palindromic Laurent poly-
nomials with real coefficients. Assume that, for ` > 0, the coefficients of the p`
are non-negative. Then

q′(1) ≥ 0. (90)

Moreover, the following are equivalent:

1. We have equality in (90).

2. p` = 0 for all ` > 0.

3. q is palindromic.

Proof. Since the p` are all palindromic, we have p′`(1) = 0 for all ` ≥ 0. Therefore

q′(1) =
∑
`>0

`p`(1). (91)

Since the coefficients of the p` are non-negative for ` > 0, (91) implies (90).
From (91), it is also immediate that (1) implies (2). Then (2)⇒ (3) is obvious,
and (3)⇒ (1) follows from Lemma 88.
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Theorem 92. Suppose Y is a scheme of finite type over C and K ∈ Db
c Y is a

semisimple complex. Assume that

pH−iK ∼= pH iK (93)

for all i ∈ Z. Fix y ∈ Y (C) and r ∈ Z, and suppose that

Hj(pH iK)y = 0 for i, j ∈ Z such that j < r. (94)

Set
q(t) :=

∑
k∈Z

tk dimHk(K[r])y. (95)

Then q′(1) ≥ 0. Moreover, the following are equivalent:

1. q′(1) = 0.

2. We have
Hj(pH iK)y = 0 for j 6= r. (96)

3. q is palindromic.

Proof. Since K is semisimple, we have

K = ⊕(pH iK)[−i]. (97)

Here we sum over i ∈ Z, but, since this is clear from the context, we leave this
out of summation notation to save clutter (as we will do in the rest of the proof
as well).

Substituting in (97) for K in (95), we get

q(t) =
∑

tk dimHk(K[r])y

=
∑
k∈Z

tk
∑
i∈Z

dimHk
(

(pH iK)[r − i]
)
y

=
∑

tk dimHk+r−i(pH iK)y (98)

=
∑
`,i∈Z

ti+` dimH`+r(pH iK)y, (99)

=
∑
`

t`
∑
i

ti dimH`+r(pH iK)y. (100)

where here we go from (98) to (99) by substituting k = i+ `.
Now, for ` ∈ Z, set

p` :=
∑
i∈Z

ti dimH`+r(pH iK)y. (101)

By (94), p` = 0 for ` < 0. So, by 99, q =
∑
`≥0 t

`p`. But, by (93), each p` is
palindromic. The theorem now follows from Lemma 89.
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Theorem 102. Suppose f : X → Y is a projective morphism of reduced
schemes of finite type over C with Y equidimensional. Let y ∈ Y (C) be a
closed point and let K be a semisimple complex in PervX. Set

q(t) :=
∑
k∈Z

tk dim Hk−dY (Xy,K). (103)

Then q′(1) ≥ 0. Moreover, the following are equivalent:

1. q′(1) = 0.

2. The local invariant cycle maps in (85) are isomorphisms for all i.

3. q is palindromic.

Proof. As in the proof of Theorem 84, we can (and do) assume that Y is
separated. Then, by Kashiwara’s conjecture, Rf∗K is a semisimple complex
and, for each i, we have an isomorphism pH−iRf∗K ∼= pH iRf∗K. (This
is the “Hard Lefschetz” part of the Kashiwara conjecture, Item 2 in Drin-
feld’s statement [13].) On the other hand, we have a canonical isomorphism
Hk−dY (Xy,K) = Hk(Xy, Rf∗K[−dY ]) = Hk(Rf∗K[−dY ])y. Finally, for any

complex C on Y , we have Hj(pH i C) = 0 for j < −dY by Proposition 65. So,

in particular, Hj(pH iRf∗K)y = 0 for j < −dY .

Now, by Theorem 82 we have Hj(pH iRf∗K)y = 0 for all j 6= −dY for all j if
and only if the local invariant cycle maps are all isomorphisms. So the theorem
now follows from Theorem 92.

Proof of Theorem 57. Since X is smooth and irreducible, C[dX ] is semisimple
perverse. So let K = C[dX ] in Theorem 102. Set

q(t) =
∑
i∈Z

ti dim Hi(Xy,C[d]) =
∑
i∈Z

ti dim Hi(Xy,C[dx − dY ]).

Then q is palindromic if and only if (58) holds. So the result follows from
Theorem 102.

7 Galois covers

The purpose of this section is to prove a lemma about the local monodromy
groups of Galois covers. We use the concepts of §5, but we have changed some
of the notation (partially to avoid running out of capital letters towards the end
of the alphabet).

7.1 Covers and monodromy

Suppose U is a smooth, connected, complex, quasi-projective variety and G is
a finite group acting freely on U . Let V = U/G, and write π : U → V for the
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quotient morphism. (It is well known that U/G is a scheme. See, for example,
[46, Tag 0725].)

For each (closed) point u ∈ U , we get a surjective group homomorphism

ψu : π1(V, π(u))� G. (104)

If γ : [0, 1] → V represents an element of π1(V, π(u)) and γ̃ is a lift of γ to
U with γ̃(0) = u, then ψu(γ)u = γ̃(1). From this description, we see that, if
π(u′) = π(u), then ψu and ψu′ differ by conjugation by an element of π1(V, π(u)).
(See [24] for a complete discussion of these matters.)

Now, suppose that V is contained as a Zariski open subset of a smooth,
quasi-projective variety Y . Set Z = Y \V , and suppose z is a closed point of Z.
Let W be a good neighborhood of z in Y relative to Z, and let w be a point
in W \ Z. The choice of a path from w to π(u) gives us a sequence of group
homomorphisms

π1(W \ Z,w)→ π1(V, π(u))� G. (105)

Moreover, up to conjugation by an element of G, this map is independent of u,
the path from w to π(u), W and w. We call the image H(z) of the composition
in (105) the local monodromy subgroup at z. (The conjugacy class of H(z) is
independent of any choices.) Note that, if we replace V with any non-empty
Zariski open subset V ′ of V containing π(u) and we replace U with π−1(V ′),
then H(z) does not change. This follows from Lemma 53.

Proposition 106. Let G be a finite group acting on a smooth, quasi-projective
variety X, and suppose G acts freely on a Zariski dense open subset U of X.
Suppose π : X → Y is the quotient of X by G and let V = π(U). Pick a closed
point x ∈ X \ U , and suppose that Y is smooth. Then H(π(x)) is the stabilizer
Gx of the point x.

Proof. Take a good neighborhood B of y := π(x) with respect to Z := Y \ V .
Pick b ∈ B ∩ V and set A = π−1B. Let Ax denote the component of A
containing x. There exists a ∈ Ax such that π(a) = b. Let H denote the image
of the composition π1(B ∩ V, b)→ π1(V, b)� G, where the last homomorphism
is ψa. Then H = H(a). The group G acts transitively on the connected
components of A ∩ U , and the stabilizer of the component of A ∩ U containing
a is H. Since Ax ∩ U is connected, Ax ∩ U is this component. So the stabilizer
in G of this component is the same as the stabilizer of the Ax. But, by possibly
shrinking B, we can arrange that this is just Gx.

Remark 107. We use the assumption that Y is smooth because we have only
defined the local fundamental group in that case. However, since Y is a quotient
of a smooth variety, it is automatically normal. And good neighborhoods of nor-
mal quasi-projective varieties are connected. (See Chapter 3 of Mumford’s [33]).
It follows that the assumption that Y is smooth can be dropped.
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8 Geometry of Hessenberg Schemes

In this section, we study the geometry of the family of Hessenberg varieties over
the space of regular matrices. We also study the family of maximal tori defined
by centralizers of regular, semisimple matrices. Ngô’s paper on the Hitchin
fibration [34] significantly influenced our thinking about these matters, and we
have consequently borrowed Ngô’s notation.

8.1 Regular matrices

Fix a positive integer n and write g for the Lie algebra gln. Recall that a matrix
s ∈ g is regular if the Jordan blocks of s have distinct eigenvalues. A matrix s
is regular if and only if its centralizer has dimension n. As in §1, we say that s
is regular of type λ for a partition λ of n if the Jordan blocks of s are of sizes
λ1, . . . λr. We write gr for the subset of regular matrices and grλ for the subset
of regular matrices of type λ. We write grs for the subset of regular semisimple
matrices. This is a dense open subset of g.

8.2 Hessenberg schemes

Fix a Hessenberg function m = (m1, . . . ,mn−1) with m(i) := mi, and set
mn = n. Write X for the variety of complete flags in Cn, and set

H (m) := {(F, s) ∈X × g : sFi ⊆ Fmi for 1 ≤ i ≤ n}.

Note that the projection pr1 on the first factor makes H (m) into a vector
bundle of rank

∑n
i=1mi over X . So H (m) is a smooth, connected scheme

with

dim H (m) = dim X +

n∑
i=1

mi =
n(n− 1)

2
+

n∑
i=1

mi. (108)

Let π : H (m) → g denote the projection on the second factor. Then the
fiber of π over a matrix s ∈ g is simply the Hessenberg variety H (m, s). Note
that π is smooth over grs.

Theorem 109. The map π : H (m) → g is flat over the locus gr of regular
matrices.

Proof. Both H (m) and g are smooth over C, and, by Corollary 37, all fibers
of π over gr have the same dimension, |m|. It follows from the theorem which
is sometimes called “miracle flatness” that the restriction of π to the inverse
image of gr is flat. (See [23, Ex. III.10.9] for miracle flatness.)

8.3 Diagonal matrices and characteristics

Write G := GLn and write D for the diagonal subgroup of G. Write d for the
Lie algebra of D, and dr for the regular elements of d. The symmetric group
Sn acts on d = An in the obvious way: σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)).
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The quotient is the characteristic variety car = carG = d/Sn. We can view
car as the variety of monic polynomials tn +an−1t

n−1 + · · · a0 of degree n. The
Chevalley morphism χ : g→ car is the morphism sending a matrix s ∈ g to its
characteristic polynomial χ(s).

8.4 The smallest Hessenberg scheme

Let ` denote the Hessenberg function `(i) = i. Then the restriction H rs(`) →
grs of π : H (`) → g to the inverse image of grs is an étale cover of degree n!.
Since H (`) is connected and smooth, so is H rs(`). So, since grs is also con-
nected, H rs(`) → grs is an étale cover corresponding to an index n! subgroup
of the fundamental group of grs.

We call H (`) the smallest Hessenberg scheme because, for any Hessenberg
function m, there is a canonical inclusion H (`) → H (m) (which is a closed
immersion).

We have a morphism χ̃ : H (`) → d sending a pair (s, F ) to the diagonal
matrix with GrFi s in the (i, i)-entry. This gives rise to a commutative diagram

H (`)
χ̃ //

π

��

d

χ|d

��
g

χ // car,

(110)

which coincides with Grothendieck’s simultaneous resolution of χ. (For a discus-
sion of Grothendieck’s resolution, see Springer [45, §4.1] or Slodowy [44, §4.7].)
The restriction of (110) to the inverse image of carrs := dr/Sn is a pullback
diagram. In other words, H rs(`) = grs ×carrs dr. This shows that H rs(`) is a
(connected) Galois cover of grs with Galois group Sn.

We can describe this Galois covering a little bit more explicitly if we in-
troduce the closed subscheme Z of (Pn−1)n × grs consisting of ordered tu-
ples ([v1], . . . , [vn]; y) where the vi form a basis of eigenvectors of y. Given
a point z = ([v1], . . . , [vn]; y) in Z, we can define a complete flag F (z) by setting
Fi = 〈v1, . . . , vi〉. This defines a morphisms Z →H rs(`) given by z 7→ (F (z), y).
Using the fact that Z and H rs(`) are both étale covers of grs of the same degree,
it is easy to see that Z → H rs(`) is an isomorphism. Then Sn acts on Z by
permuting the vi: σ([v1], . . . , [vn]; y) = ([vσ−1(1)], . . . , [vσ−1(n)], y). It is easy to
see that the map χ̃ : H rs(`)→ dr is Sn-equivariant.

8.5 The fundamental groups

Suppose z = (F, y) ∈ H rs(`). We get a surjection ψz : π1(grs, y) � Sn corre-
sponding to the Galois covering H rs(`)→ grs with Galois group Sn. Similarly,
for a regular diagonal matrix u ∈ dr, we have a surjection ψu : π1(carrs, χ(u))→
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Sn. Since

H rs(`)
χ̃ //

��

dr

χ|dr

��
grs

χ // carrs.

is a pullback diagram of Galois étale covers with Galois group Sn, we have
ψz = ψχ̃(z) ◦ χ∗.

Definition 111. We say a polynomial p ∈ car is of type λ if p =
∏`
i=1(x−xi)λi

where x1, . . . , x` are distinct.

Lemma 112. Suppose p =
∏`
i=1(x− xi)λi is a polynomial of type λ. Then the

local monodromy subgroup H(p) of Sn at p for the Sn-cover dr → carrs is Sλ.

Proof. Let τ denote the diagonal matrix

diag(x1, . . . , x1, x2 . . . , x2, . . . , xr, . . . , xr).

Then the stabilizer in Sn of τ is precisely Sλ. The results then follows from
Proposition 106.

8.6 The Kostant section

The Kostant section is a morphism ε : car → gr which is a section of χ; i.e.,
χ ◦ ε = id. We give the definition of ε following Ngô’s paper [34, Theorem
2.1]. We remark, however, that, while the general definition makes sense for
any reductive Lie algebra, we only discuss it for gln.

Let x− (resp. x+) denote the n × n matrix with 1’s just below (resp. just
above) the diagonal and 0’s everywhere else. Then let gx+ denote the centralizer
of x+ in g. In [26], Kostant showed that the subspace x− + gx+ is contained
in gr. Moreover, he showed that the restriction of χ to x− + gx+ induces an
isomorphism onto car. The Kostant section is the inverse morphism ε : car→
x− + gx+ . In the case of gln,

x− + gx+ =




x0 x1 x2 . . . xn−2 xn−1
1 x0 x1 . . . xn−3 xn−2
0 1 x0 . . . xn−4 xn−3
...

...
...

. . .
...

...
0 . . . . . . 1 x0




.

From this, it is elementary to compute the Kostant section. For example, for
n = 2, it sends the characteristic polynomial p = x2 + a1x+ a0 to the matrix of
the form above with x0 = −a1/2, x1 = a21/4− a0.

Proposition 113. Suppose s ∈ gr is a regular matrix of type λ. Then the local
monodromy H(s) at s for the Sn-cover H rs(`)→ grs is conjugate to the Young
subgroup Sλ.
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Proof. We can assume that s = ε(p) for some p ∈ car. Then, by Proposition 50,
the local fundamental group at p is a retract of the local fundamental group at s.
Since the Sn-cover H rs(`) → grs is a pullback of the Sn-cover dr → carrs, it
follows that the local monodromy subgroup at s is equal to the local monodromy
subgroup at p. By Lemma 112, this subgroup is Sλ.

Remark 114. We could have used any (continuous) section of the map χ : g→
car to prove Proposition 113.

8.7 The commuting group scheme

Write I := {(g, x) ∈ G× g : Ad g(x) = x}. The projection p : I → g is a group
scheme in a more or less obvious way. Write prs : T → grs for the restriction
of p to the inverse image of grs. Then T is a torus bundle: the fiber over a
point y ∈ grs is the maximal torus in G centralizing y.

Identify the scheme Z from §8.4 with H rs(`) and form a pullback diagram

TZ
//

��

T

prs

��
Z

π // grs.

Then TZ is equipped with an isomorphism TZ → GnmZ to the split torus over Z.
To see this, suppose z = ([v1], . . . , [vn]; y) and g ∈ G is an element commuting
with y. Then g preserves the eigenspaces of y. So for each i = 1, . . . n, there is a
unique character ti ∈ X∗(TZ) such that gvi = ti(g)vi. The n-tuple of characters
~t := (t1, . . . , tn) : TZ → Gnm,Z is easily seen to give an isomorphism.

Over grs, the torus T is determined up to isomorphism by its group of char-
acters X∗(T ) viewed as a Z-local system over grs. Moreover, this local system is
canonically isomorphic to R1prs∗ Z. For any point y ∈ grs, the fundamental group
π1(grs, y) acts on the fiber of X∗(T ) lying over y by permuting the characters
t1, . . . , tn.

9 Monodromy and Tymoczko’s dot action

9.1 Fiberwise cohomology of BT

For each y ∈ grs(C), we have a torus Ty and its associated classifying space
BTy. The cohomology of BTy is naturally a polynomial ring C[t1, . . . , tn] =
C[X∗(Ty)] generated in degree 2 by the characters of Ty. As we vary y, these
glue together to form a local system A of polynomial algebras over grs. In fact,
since T is étale locally trivial, we can construct a fiber bundle a : BT → grs over
grs such that the fiber over each y ∈ grs is BTy. Then we have A = ⊕k≥0A k

where A k = R2ka∗C.
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Let y0 denote the regular semisimple matrices with diagonal entries 1, 2,
3, . . . , n (written in order). Let F 0 denote the standard flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · ·

where ei is the standard basis of Cn. Set z0 = (F 0, y0) ∈ H (`, y0). This gives
rise to a surjection

ψ : π1(grs, y0)→ Sn, (115)

where, for simplicity, we write ψ := ψz0 .
Let T denote the fiber of T over y0. So T is simply the diagonal subgroup

of G. Then, by the discussion in §8.7, π1(grs, y0) acts on X∗(T ) by permuting
the characters. Explicitly, if we let σ(ti) = tσ−1(i) for σ ∈ Sn, then γ(ti) =
(ψ(γ))(ti). Consequently, if we let A = Ay0 = C[t1, . . . , tn], then π1(grs, y0)
acts on the polynomials in A by γ(p) = (ψ(γ))(p), where Sn acts on A in the
standard way:

(σp)(t1, . . . , tn) = p(tσ(1), . . . , tσ(n)). (116)

9.2 Fiberwise equivariant cohomology of Hessenberg va-
rieties

Now, for each Hessenberg function m, the torus T acts on the Hessenberg
scheme H rs(m) → grs. So for each y ∈ grs, we can take the equivariant
cohomology groups H∗Ty (H (m), y) (with complex coefficients). By localiza-

tion, we know that H∗Ty (H (m), y)) is a free module of rank n! over Ay =

H∗(BTy). Moreover, the canonical inclusion H (`)→H (m) induces an inclu-
sion H∗Ty (H (m, y)) → H∗Ty (H (`, y)). (See Tymoczko’s paper [52] for results

on localization applied to Hessenberg varieties.) The modules H∗Ty (H (m, y))
glue together to form a local system L (m) over grs of A -modules. This can be
seen explicitly using Tymoczko’s description of the equivariant cohomology of
Hessenberg varieties in terms of moment graphs.

Proposition 117. Write πm : H rs(m)→ grs for the projection morphism, and
let A+ denote the sheaf of ideals in A generated by the positive degree elements.
Then we have an isomorphism of sheaves

L (m)/L (m)A+ → R∗πm∗C.

Proof. This follows from the fact that Hessenberg varieties are GKM spaces.
(See [52, §2 and Proposition 5.4]).

For each m, localization induces an inclusion L (m)→ L (`) of A -modules.
Write L(m) for the fiber, H∗T (H (m, y0)) of L (m) over y0. Then L(m) is free
as an A-module, and both A and L(m) are equipped with compatible actions
of π1(grs, y0). If we write A+ for the ideal of positive degree polynomials, then
we have

H∗(H (m, y0)) = L/A+L(m), (118)

and the monodromy action of π1(grs, y0) on both sides is compatible.
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Proposition 119. The action of π1(grs, y0) on L(m) factors through the ho-
momorphism ψ : π1(grs, y0)� Sn.

Proof. The pullback TZ of T to the Sn-cover Z → grs is a constant group
scheme, and the pullback of H rs(`) = Z to Z is disjoint union of copies
of Z indexed by elements of Sn. It follows that the action of π1(grs, y0) on
H∗T (H (`, y0)) is trivial on the image of the map π1(Z, z0) → π1(grs, y0). In
other words, the action of π1(grs, y0) on H∗T (H (`, y0)) factors through Sn.

Since L (m)→ L (`) is an inclusion of local systems, we have a π1(grs, y0)-
equivariant inclusion L(m)→ L(`). The result follows.

Corollary 120. The action of π1(grs, y0) on H∗(H rs(m, y0)) induced from the
local system R∗πm∗C factors through ψ : π1(grs, y0)� Sn.

Proof. This follows directly from Propositions 119 and 117.

Definition 121. The action of Sn on L(m) (resp. H∗(H rs(m, y0))) coming
from Proposition 119 (resp. Corollary 120) is called the monodromy action of Sn.

9.3 Monodromy action for H rs(`)

To make the monodromy action of Sn on L(`) explicit, recall from §9.1 that z0
denotes the element of Z0 := H (`, y0) corresponding to y0 with the standard
ordering of its eigenspaces. So z0 = ([e1], . . . , [en], y0). Given σ ∈ Sn, we
have σz0 = ([eσ−11], . . . , [eσ−1(n)]; y0). The cohomology group H∗ Z0 = H0 Z0

is simply the group of functions f : Z0 → C. If, for w ∈ Sn, we write δw for
the function taking wz0 to 1 and all other elements of Z0 to 0, then we have
(σδw)(z) = δw(σ−1z). From this it easily follows that σδw = δσw.

Lemma 122. As an A-module, L(`) is isomorphic to the module A|Sn| of func-
tions from the set Sn to A. The monodromy action of Sn on L(`) is given
by

((wp)(v))(t1, . . . , tn) = (p(w−1v))(tw(1), . . . , tw(n))

where v, w ∈ Sn, p ∈ A|Sn| and t1, . . . , tn are variables.

Proof. Under the identification Sn → Z0 given by w 7→ wz0, the δw form a
C-basis of H0(Z0). Moreover, the map H0

T (Z0) → H0(Z0) is an Sn-equivariant
isomorphism, and, under this identification, the δw freely generate H∗T (Z0) as
an A-module. The result now follows by direct verification using the fact that
Sn acts on A as in (116).

Corollary 123. The monodromy action of Sn agrees with Tymoczko’s dot ac-
tion of Sn on H∗T (H (`, y0)).

Proof. This follows immediately by comparing the description of the monodromy
action in Lemma 122 with Tymoczko’s description of the dot action [52, §3.1].

41



Theorem 124. Let m be a Hessenberg function. The monodromy action of Sn
on H∗T (H (m, y0)) is the same as Tymoczko’s dot action.

Proof. Under Tymoczko’s dot action, H∗T (H (m, y0)) is an Sn-equivariant A-
submodule of H∗T (H (`, y0)). The same is true of the monodromy action of Sn.
Therefore, by Corollary 123, the two actions must coincide.

Corollary 125. Tymoczko’s dot action of Sn on the non-equivariant cohomol-
ogy group H∗(H (m, y0)) coincides with the monodromy action.

Proof. Tymoczko defines the dot action on H∗(H (m, y0)) as the dot action
on the quotient L(m)/A+L(m). The monodromy action is also given by this
quotient.

Since Tymoczko’s dot action and the monodromy action of Sn coincide, we
will not distinguish between them from now on: it will be the only action of Sn
appearing in the remainder of the paper.

Theorem 126. Let s ∈ gr be a regular element of type λ and let π = πm :
H (m) → g. Let B(s) be a sufficiently small ball in g centered at s. Then, for
each k ∈ Z, there is a C-vector space isomorphism

H0(B(s) ∩ grs, Rkπ∗C) ∼= Hk(H (m, y0))Sλ .

Proof. By (51) applied with L = Rkπ∗C, we have

H0(B(s) ∩ grs, Rkπ∗C) = Hk(H (m, b))π1(B(s)∩grs,b)

where b is any point in B(s) ∩ grs. The last vector space is isomorphic to the
invariants of Hk(H (m, y)) under the local monodromy at s. The result then
follows from Proposition 113.

Theorem 127. Suppose s ∈ gr is a regular element of type λ. Then, for each
k ∈ Z,

dim Hk(H (m, s)) = dim Hk(H (m, y0))Sλ . (128)

Proof. We are going to apply Theorem 57 to the morphism π : H (m) →
g. Both the source and the target of π are smooth, quasi-projective varieties.
Moreover, π has relative dimension |m|. (One way to check this is to use the fact
that the projection pr1 : H (m) → X has relative dimension

∑n
i=1mi, while

dim X =
∑n−1
i=1 i. Another way to see it, is to use the fact that the regular

semisimple Hessenberg varieties have dimension |m|.)
By Corollary 36, we have

dim Hi(H (m, s),C) = dim H2|m|−i(H (m, s),C)

for all i.
It follows then from Theorem 57 that the local invariant cycle map

Hi(H (m, s))→ H0(B(s) ∩ grs, Riπ∗C)

is an isomorphism, where B(s) is any sufficiently small ball centered at s in g.
The result now follows from Theorem 126.
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Finally we can put all the pieces together to prove Conjecture 3.

Theorem 129. If χm,d denotes the dot action on the cohomology group H2d

of the regular semisimple Hessenberg variety H (m, s), then chχm,d equals the
coefficient of td in ωXG(m)(t).

Proof. By Theorem 35, the left-hand side of Equation (128) (in Theorem 127)
equals cd,λ(m) when k = 2d. On the other hand, by Proposition 10, the right-
hand side of Equation (128) equals the coefficient of mλ in chχm,d.
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