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Dedicated to Steven Zucker in recognition of his contributions to Hodge theory,

on the occasion of his 65th birthday.

Abstract. We describe two approaches to classifying the possible monodromy

cones C arising from nilpotent orbits in Hodge theory. The first is based upon the

observation that C is contained in the open orbit of any interior point N ∈ C under

an associated Levi subgroup determined by the limit mixed Hodge structure. The

possible relations between the interior of C and its faces are described in terms of

signed Young diagrams.

The second approach is to understand the Tannakian category of nilpotent orbits

via a category D introduced by Deligne in a letter to Cattani and Kaplan. In

analogy with Hodge theory, there is a functor from D to a subcategory D̂ ⊂ D of

SL2-orbits. We prove that these fibers are, roughly speaking, algebraic. We also

give a correction to a result [16] of K. Kato.

1. Introduction

The object of Steven Zucker’s first published paper [28] was the study of normal

functions arising from algebraic cycles and the Hodge conjecture. More precisely, let

X ⊂ Pm be a smooth projective variety of dimension 2d and ζ be a primitive Hodge

class of type (d, d) on X. Let Y be a smooth hyperplane section of X. Then, the

long exact sequence for relative cohomology of the pair (X, Y ) gives

· · · → H2d−1(X)
i∗

↪→ H2d−1(Y )→ H2d(X, Y )→ H2d(X)→ · · ·
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where i : Y ↪→ X is inclusion. Letting H2d−1
van (Y ) denote the cokernel of i∗ and pulling

back the above sequence along the morphism of Hodge structure Z(−d) → H2d(X)

defined by ζ determines an extension

0→ H2d−1
van (Y )→ E → Z(−d)→ 0

in the category of mixed Hodge structures. The set of all such extensions is the

intermediate Jacobian J(H2d−1
van (Y )).

Applying the construction of the previous paragraph to the smooth fibers of a

Lefschetz pencil of hyperplane sections of X yields the prototypical example of a

normal function νζ . Moreover, in this context, there is a 1-1 correspondence ζ ↔ νζ

between normal functions and primitive, integral Hodge classes on X.

More precisely, Zucker proved [29] using L2 methods that if S is a curve with

smooth completion j : S ↪→ S̄ and V → S is a variation of Hodge structure of weight

k then H i(S̄, j∗V) carries a functorial Hodge structure of weight i + k (Theorem

(7.12)). Furthermore (Theorem (9.2), op. cit.), if V is pure of weight 2p− 1 then the

cohomology classes of normal functions on S surject onto the integral (p, p) classes in

H1(S̄, j∗V).

One of the key tools in Zucker’s proofs are W. Schmid’s orbit theorems [24].

Roughly speaking, the nilpotent orbit theorem asserts that a variation of Hodge

structure V → S admits a local approximation near a point in the boundary of any

normal crossing compactification S ↪→ S̄ by a nilpotent orbit

(1.1) θ(z1, . . . , zr) = exp(
∑
j

zjNj)F∞

determined by the local monodromy logarithms N1, . . . , Nr and limit Hodge filtration

F∞ of V . The SL2-orbit theorem [24, 4] further asserts that θ can be approximated

by an auxiliary nilpotent orbit which is governed by a representation ρ of SL2(R)r.

In this way, the norm of a flat multivalued section σ of V is determined by it weights

with respect to ρ. The SL2-orbit theorem also implies that the limit Hodge filtration

F∞ is part of a limit mixed Hodge structure (F∞,W ).

Moving beyond families of smooth projective varieties, Deligne conjectured that

given a surjective, quasiprojective morphism f̄ : X̄ → S̄ there should exist a Zariski
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open subset S ⊂ S̄ over which f̄ restricts to give a variation of mixed Hodge struc-

ture [7] on the cohomology of the fibers. Furthermore, there should be a category

of good variations of mixed Hodge structure which contains every variation of mixed

Hodge structure of geometric origin, and has all of the salient features of the pure

case.

In [27], Steenbrink and Zucker defined a category of admissible variations of mixed

Hodge structure over a curve S, and proved that in this category one had limit mixed

Hodge structures. Moreover, if V → S is an admissible variation of graded-polarized

mixed Hodge structure over S and j : S ↪→ S̄ is a smooth completion of S then

the cohomology groups H i(S̄, Rk j∗V) carry functorial mixed Hodge structures (cf.

Theorem (4.1) [27]). In [15], Kashiwara defined a category of admissible variations of

graded-polarized mixed Hodge structure in several variables using a curve test, and

christened the associated nilpotent orbits infinitesimal mixed Hodge modules.

In particular, the category of infinitesimal mixed Hodge modules (IMHM) in a

fixed number of variables is an abelian tensor category (4.3.3 and 5.2.6 [15]) which

becomes a neutral Tannakian category when equipped with the functor ω which takes

an IMHM to the underlying R-vector space. The category of IMHM has a natural

subcategory corresponding to nilpotent orbits with limit mixed Hodge structure which

is split over R. The Tannakian Galois group of the category of split orbits in one

variable is described by the first two authors in [1].

In the case of nilpotent orbits of pure Hodge structures in one variable, a split

orbit is the same thing as SL2-orbit: If D is a period domain upon which the Lie

group GR acts transitively by automorphisms then a nilpotent orbit θ(z) with values

in D is an SL2-orbit if there exists a representation ρ : SL2(R)→ GR such that

(1.2) θ(g.
√
−1) = ρ(g).θ(

√
−1)

for all g ∈ SL2(R). A classification of such orbits may be deduced from (i) Lemma

(6.24) of [24], and (ii) the classification of nilpotent N ∈ gR = Aut(VR, Q) (which

is reviewed in §2.3). A full classification in the case of orbits into a Mumford–Tate

domain is given in [22].
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One of the intricacies of the SL2-orbit theorem [4] in several variables is the

construction of the system

(1.3) (N̂1, H1, N̂
+
1 ), . . . , (N̂r, Hr, N̂

+
r )

of commuting SL2-triples attached to the nilpotent orbit (1.1). In [8], Deligne gave

a purely linear algebraic construction of (1.3) via an iterative construction which

ensures that each Nj is a sum of N̂j and a collection of highest weight vectors for

(N̂j, Hj, N̂
+
j ). Published accounts of the resulting Deligne systems appears in [25, 14,

1].

The data of an IMHM consists of a set of commuting nilpotent endomorphisms

N1, . . . , Nr together with Hodge and weight filtrations which satisfy a number of com-

patibility conditions. In [16], Kato observed that for each non-negative real number

a, the substitution

Nj 7→ φa(Nj) =

j−1∑
k=0

ak

k!
Nj−k

defines a functor φa : IMHM→ IMHM such that φa ◦φb = φa+b and φ0 is the identity.

Moreover, the functor φ extends to a category DH of Deligne–Hodge systems which

contains IMHM as a subcategory. Kato further claimed that for any object θ of DH

there exists an a ≥ 0 such that φb θ belongs to IMHM for all b > a.

As Kato explains in the introduction to [16], one of his motivations to study

Deligne–Hodge systems was to have a framework to study degenerations of Hodge

structure which are not polarizable. Such a framework could potentially be very

useful in the study of degenerations of motives over non-archimedean local fields.

However, in §6.2 we construct an explicit example of a two variable Deligne–Hodge

system θ which violates Kato’s assertion (i.e. φb θ is never an IMHM). In §6.4 we

show that Kato’s claim is true for Deligne–Hodge systems which satisfy a suitable

graded-polarization condition.

Accordingly, one can study IMHM in several variables by using the results of [22]

to classify the possible several variable SL2-orbits with data (1.3), and then impose

the representation theoretic conditions required to extend N̂j to a candidate Nj. This

second step can be done in the category DH. Application of φb for b sufficiently large
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then produces the required IMHM. In §6.5 we show that the set of all Deligne systems

with fixed data (1.3) forms an algebraic variety.

The approach outlined in the previous paragraph attempts to construct the mon-

odromy cone

(1.4) C =

{
r∑
j=1

ajNj | a1, . . . , ar > 0

}
of an IMHM starting from the edges of the closure of C. Alternatively, one can try an

construct orbits starting from an element of the interior of C. This second approach,

for nilpotent orbits of pure Hodge structure, is the subject of §3–5.

A rough outline is as follows: Without loss of generality we can pass to the case

where (1.1) is a nilpotent orbit with limit mixed Hodge structure split over R. For

any N ∈ C, it then follows that ezNF∞ is an SL2-orbit by the results of Cattani,

Kaplan and Schmid [2, 4]. The results of [22] classify the possible pairs (N,F∞).

To reverse this process, select an SL2-orbit ezNF∞ with associated representation

ρ : SL2 → GR. Let G0,0
R be the connected subgroup of GR consisting of elements

which preserve the limit mixed Hodge structure of ezNF∞. Let N denote the orbit

of N under the adjoint action of G0,0
R . Then, by Lemma (3.5) and Corollary (3.6) it

follows that if C is the cone (1.4) of a several variable nilpotent orbit with limit Hodge

filtration F∞ and N ∈ C then C ⊂ N . Sections 4 and 5 implement this process for a

number of examples related to period domains of weight 2.

Section 2 is of a different nature: The set Nilp(gR) of nilpotent elements in a real

semisimple (or reductive) Lie algebra is a classical, and very well understood, object

of study in representation theory; for an excellent introduction see [6] and the refer-

ences therein. In particular, there is a great deal of Hodge theoretic information that

one can glean from the representation theorists’ understanding of Nilp(gR). In §2 we

review the classification of nilpotent N ∈ gR by signed Young diagrams. Particularly

noteworthy here are (i) D̄oković’s Theorem 2.21 characterizing a partial order on the

Ad(GR) conjugacy classes of nilpotent elements N ∈ gR, and (ii) the description in

§2.5 of the signed Young diagram associated to a polarized mixed Hodge structure

(F,W ): as illustrated in §5.2 together these provide representation theoretic con-

straints on the degenerations associated with the faces of a nilpotent cone underlying

a nilpotent orbit on a period domain D.
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2. Classification of nilpotent endomorphisms

The nilpotent elements N in a classical Lie algebra gR are classified by partially

signed Young diagrams. This classification is up to the action of Ad(GR); so what

is really being classified are the Ad(GR)–orbits in Nilp(gR), of which there are only

finitely many.1 Collingwood and McGovern’s [6] is an excellent reference for the

material in this section.

It is convenient to begin with the classification of nilpotent endomorphisms over C
by (unsigned) Young diagrams; the basic idea is that (i) the Young diagram encodes

the Jordan normal form of N ∈ gC, and (ii) the Jordan normal form determines N

up to the action of Ad(GC). Before reviewing the classifications over R/C we need to

recall the notion of a standard triple.

2.1. Standard triples. Let g be a Lie algebra defined over k = R or C. A standard

triple in g is a set of three elements {N+, Y,N} ⊂ g such that

[Y,N+] = 2N+ , [N+, N ] = Y and [Y,N ] = −2N .

Note that {N+, Y,N} span a 3–dimensional semisimple subalgebra (TDS) of g iso-

morphic to sl(2,k). We call Y the neutral element, N the nilnegative element and

N+ the nilpositive element, respectively, of the standard triple.

Theorem 2.1 (Jacobson–Morosov). Every nilpotent N ∈ g can be realized as the

nilnegative of a standard triple.

1In contrast, there are infinitely many Ad(GR) semisimple orbits in gR.
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Example 2.2. The matrices

(2.3) n+ =

(
0 1

0 0

)
, y =

(
1 0

0 −1

)
and n =

(
0 0

1 0

)
form a standard triple in sl(2,R); while the matrices

(2.4) e = 1
2

(
i 1

1 −i

)
, z =

(
0 i

−i 0

)
and e = 1

2

(
−i 1

1 i

)
form a standard triple in su(1, 1).

2.2. Nilpotents over C. The classification of the nilpotent elements in classical,

complex, semisimple Lie algebras (which is due to Gerstenhaber [11], and Springer

and Steinberg [26]) is given by partitions or, equivalently, Young diagrams.

Let VC be a C–vector space of dimension n and fix a nilpotent element N ∈
End(VC). Let sl2C ⊂ End(VC) be the TDS spanned by a standard triple containing

N as the nilnegative element (§2.1). Let

(2.5) VC =
⊕
`≥0

V (`)

be the sl2C–decomposition of VC; here each V (`) ' (Sym`C2)m` is the direct sum of

m` irreducible sl2C–modules of dimension `+ 1. In particular, V (`) admits a basis of

the form

{Navi | 1 ≤ i ≤ m` , 0 ≤ a ≤ `} .

Here N `vi 6= 0 and N `+1vi = 0. Each

{Navi | 0 ≤ a ≤ `}

is an N–string of length ` + 1 and we think of V (`) as spanned by m` of these

N–strings. Let

P (`) := spanC{vi | 1 ≤ i ≤ m`} ⊂ V (`)

be the subspace of highest weight vectors. (In Hodge–theoretic language, this is the

vector space of N–primitive vectors in V (`).)

Note that
∑
m`(`+ 1) = n. So we may associate to the nilpotent N a partition

d = [di] = [(`+ 1)m` ]0≤`∈Z
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of n; here (`+1)m` indicates that the part di = `+1 occurs m` times. The partition d

is identified with the Young diagram whose i–th row contains di boxes. For example,

the partition d = (4, 2, 2, 1) of n = 9 is identified with the Young diagram

.

We think of each row of the Young diagram as representing an N–string. In this

example, we have

u Nu N2u N3u

v Nv

w Nw

x

and VC = V (3)⊕ V (1)⊕ V (0) with m3 = 1 = m0 and m2 = 2.

2.2.1. GC = Aut(VC). The Jordan normal form for elements of gC = End(VC) implies

that two nilpotents N1, N2 ∈ gC lie in the same Ad(GC)–orbit if and only if the

corresponding partitions d1 and d2 are equal. That is, the Aut(VC)–orbits N in

Nilp(End(VC)) are indexed by partitions of n = dimV ; equivalently, they are indexed

by Young diagrams of size n.

Example 2.6. The nilpotent Aut(VC)–conjugacy classes N ⊂ End(VC) for n = 5 are

indexed by

◦ Given a nilpotent N ∈ N in the conjugacy class indexed by the Young diagram

, V admits a basis of the form {v,Nv, . . . , N4v} with N5v = 0.

◦ Given a nilpotent N ∈ N in the conjugacy class indexed by the Young diagram

, V admits a basis of the form {u ; v,Nv, . . . , N3v} with Nu = 0 and

N4 = 0.
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◦ And so on.

Remark 2.7. Note that the trivial nilpotent conjugacy class N = {0} is indexed by

the vertical partition [1n].

2.2.2. GC = Aut(VC, Q). Fix w ∈ Z and let Q be a nondegenerate bilinear form on

VC satisfying

Q(u, v) = (−1)wQ(v, u) .

Set GC = Aut(VC, Q) and gC = End(VC, Q). Given a nonzero N ∈ Nilp(gC), we may

assume that the TDS is contained in gC (cf. Jacobson and Morosov’s Theorem 2.1).

Then

Q`(u, v) := Q(u,N `v)

defines a non–degenerate bilinear form on P (`).

◦ If w + ` is even, the Q` is symmetric.

◦ If w+ ` is odd, then Q` is skew–symmetric. This implies that m` is even. So, if w

is even/odd, then the even/odd parts of d must occur with even multiplicity.

Theorem 2.8 (Symplectic algebras (w odd)). Let Q be a skew-symmetric bilinear

form on a complex vector space VC, and set GC = Aut(VC, Q) with Lie algebra gC =

End(VC, Q). Then the Ad(GC)–orbits in Nilp(gC) are indexed by the partitions of

2m = dimVC in which the odd parts occur with even multiplicity.

Example 2.9. Suppose that GC = Sp(6,C). The nilpotent conjugacy classes in gC are

enumerated by the partitions

[6] , [4, 2] , [4, 12] , [32] , [23] , [22, 12] , [2, 14] , [16] .

The corresponding Young diagrams are

We say that a partition is very even if all parts di are even and occur with even

multiplicity.
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Theorem 2.10 (Orthogonal algebras (w even)). Let Q be a symmetric bilinear form

on a complex vector space VC, and set gC = End(VC, Q).

(a) Let GC = Aut(VC, Q). The Ad(GC)–orbits in Nilp(gC) are indexed by the

partitions of n = dimVC in which the even parts occur with even multiplicity.

(b) Let G◦C = SO(n,C) ⊂ GC. The Ad(G◦C)–orbits in Nilp(gC) are indexed by

partitions d = [di] of n in which the even parts occur with even multiplicity, and with

the caveat that a very even partition is associated with two distinct orbits.

Example 2.11. Suppose that GC = O(7,C). The nilpotent conjugacy classes in gC =

so(7,C) are enumerated by the partitions

[7] , [5, 12] , [32, 1] , [3, 22] , [3, 14] , [22, 13] , [17] .

The corresponding Young diagrams are

2.3. Nilpotents over R (signed Young diagrams). Let VR be a real vector space

of dimension n. Given w ∈ Z, fix a nondegenerate bilinear form Q : VR × VR → R
satisfying Q(u, v) = (−1)wQ(v, u). Set

GR = Aut(VR, Q) .

The classification of Ad(GR)–conjugacy classes of nilpotent N ∈ gR is due to Springer

and Steinberg [26], and is given by (partially) signed Young diagrams. A signed Young

diagram is a Young diagram in which the boxes of a fixed row are either labeled with

alternating ± signs, or are left blank. For the real forms GR under consideration, the

blank rows occur with even multiplicity.

Theorem 2.12 (Symplectic algebras (w odd)). Let Q be a skew-symmetric bilin-

ear form on a real vector space VR of dimension 2m, and set GR = Aut(VR, Q) '
Sp(2m,R) with Lie algebra gR = End(VR, Q) ' sp(2m,R). Then the Ad(GR)–orbits

in Nilp(gR) are indexed by the signed Young diagrams of size 2m in which (i) the rows
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of even length are signed, and (ii) the rows of odd length are unsigned and occur with

even multiplicity.

Example 2.13. Suppose that GR = Sp(4,R). The nilpotent conjugacy classes in

gR = sp(4,R) are enumerated by the signed Young diagrams

+ − + − − + − +
+ −
+ −

− +
+ −

− +
− +

+ − − +

Given a signed Young diagram, let b± be the number of boxes labeled with a

±, and let 2b0 be the number of unlabeled boxes. The signature of a signed Young

diagram is sig Y = (s+, s−) where s+ = b+ + b0 and s− = b− + b0.

Remark 2.14. The signed Young diagrams of Theorem 2.12 are all of signature (m,m).

Theorem 2.15 (Orthogonal algebras (w even)). Let Q be a symmetric bilinear form

on a real vector space VR, and set gR = End(VR, Q) and GR = Aut(VR, Q) ' O(a, b).

The Ad(GR)–orbits in Nilp(gR) are indexed by signed Young diagrams of size n =

dimVR and signature (a, b) in which (i) the rows of odd length are signed, and (ii) the

rows of even length are unsigned and occur with even multiplicity.

Remark 2.16. For the analog of Theorem 2.10(b) with G◦R the connected identity

component of SO(a, b), see [6, Theorem 9.3.4]: In the case that the unsigned Young

diagram characterizing the Ad(GR)–orbit N of N is very even, the orbit N decom-

poses into two Ad(G◦R)–orbits.

Example 2.17. Suppose that GR = O(3, 3). The nilpotent conjugacy classes in gR =

so(3, 3) are enumerated by the signed Young diagrams

+ − + − +
−

− + − + −
+

+ − +
− + −

+ − +
+
−
−

− + −
+
+
−

+
−

+
+
+
−
−
−
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Example 2.18. Suppose that GR = O(4, 2). The nilpotent conjugacy classes in gR =

so(4, 2) are enumerated by the signed Young diagrams

+ − + − +
+

+ − +
+ − +

+ − +
+
+
−

− + −
+
+
+

+
+

+
+
+
+
−
−

Example 2.19. Suppose that GR = O(5, 1). The nilpotent conjugacy classes in gR =

so(5, 1) are enumerated by the signed Young diagrams

+ − +
+
+
+

+
+
+
+
+
−

Remark 2.20. The Lie algebras gR of compact Lie groups GR contain no nilpotent

elements other than the trivial N = 0.

2.4. Partial order on conjugacy classes. Given two nilpotent elements N1, N2 ∈
gR, let Ni = Ad(GR)Ni denote the associated conjugacy classes. We define a partial

order on the set of conjugacy classes by

N1 ≤ N2 if N1 ⊂ N 2 .

D̄oković’s Theorem 2.21 characterizes the partial order in terms of the signed Young

diagram classifying the conjugacy classes.

Given a signed Young diagram Y , let Y ′ be the signed Young diagram obtained

by removing the last (right-most) box from each row of Y . Inductively define Y (k)

by Y (0) = Y and Y (k+1) = (Y (k))′. Given two signed Young diagrams Y1 and Y2 of

signatures s1 = (s+1 , s
−
1 ) and s2 = (s+2 , s

−
2 ), respectively, we write s1 ≤ s2 if s+1 ≤ s+2

and s−1 ≤ s−2 . Then we put a partial order the signed Young diagrams by Y1 ≤ Y2

if sig Y
(k)
1 ≤ sig Y

(k)
2 for all k. We write Y1 < Y2 when Y1 ≤ Y2 but Y1 6= Y2. The

following is [10, Theorem 5].

Theorem 2.21 (̄Doković). Let N1,N2 ⊂ gR be two nilpotent Ad(GR)–conjugacy

classes, and let Y1 and Y2 be the associated signed Young diagrams (§2.3). Then

N1 ⊂ N 2 if and only if Y1 ≤ Y2.
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Remark 2.22. The analogous partial order on Ad(GC)–conjugacy classesNC ⊂ Nilp(gC)

was characterized by Gerstenhaber [11, 12].

Example 2.23. If we write N ′ → N to indicate N ′ < N , then the partial order on

the nilpotent conjugacy classes of Example 2.13 is given by

+ −
+ −

+ −
+ − + −

− +
+ −

− +
− + − +

− +
− +

with the remaining relations given by transitivity.
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Example 2.24. Likewise the partial order on the nilpotent conjugacy classes of Ex-

ample 2.17 is given by

+ − +
+
−
−

+ − + − +
−

+
+
+
−
−
−

+
−

+ − +
− + −

− + −
+
+
−

− + − + −
+

with the remaining relations given by transitivity.

Remark 2.25. In the event that N decomposes into two Ad(G◦R)–orbits N1 and N2

(cf. Remark 2.16), the orbits are not comparable; that is, Ni 6⊂ N j, for i 6= j.

2.5. Polarized mixed Hodge structures and signed Young diagrams. Let

D = GR/G
0
R be a period domain parameterizing weight w, Q–polarized Hodge struc-

tures, so that

GR = Aut(VR, Q) .

Let (F,N) be an R–split nilpotent orbit on D, and let

N := Ad(GR) ·N

be the corresponding conjugacy class.

Let W•(N) be the monodromy filtration of N ; then (F,W•(N)) is a polarized

mixed Hodge structure. Let

VC =
⊕

V p,q

be the associated Deligne bigrading. Without loss of generality we assume that

(F,W•(N)) is R–split. The associated Hodge diamond is the configuration of points

in the pq–plane for which V p,q 6= 0. In this section we explain how to construct
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the signed Young diagram indexing N from the Hodge diamond. (This, along with

D̄oković’s Theorem 2.21, will give constraints on the degenerations associated with

the faces of a nilpotent cone σ 3 N underlying a nilpotent orbit on D. See §5 for an

illustration.)

Fix p, q and define ` by w + ` = p+ q. Suppose ` ≥ 0 and let

P p,q := ker {N `+1 : V p,q → V p−`−1,q−`−1}

be the N–primitive subspace. (Recall that N ` : V p,q → V p−`,q−` is an isomorphism.)

By our hypothesis that the polarized mixed Hodge structure is R–split, we have

P p,q = P q,p. Moreover,

Q`(·, ·) := Q(·, N `·)

is a nondegenerate bilinear form on (P p,q + P q,p) ∩ VR satisfying the symmetry

Q`(u, v) = (−1)w+`Q`(v, u) .

First suppose that p = q. Then P p,q is real and admits a basis of Q`–orthogonal

real vectors. Given one such basis vector v ∈ VR,

v , Nv , · · · , N `v

is an N–string, and the polarization conditions assert

0 < Q(v,N `v) = Q`(v, v) .

In the lexicon of D̄oković’s [10], the “isomorphism class” of this N–string is the rank

`+ 1 gene

g+(`+ 1) ,

{
if w is even and ` ≡ 0 mod 4, or

if w is odd and ` ≡ 1 mod 4;

g−(`+ 1) ,

{
if w is even and ` ≡ 2 mod 4, or

if w is odd and ` ≡ 3 mod 4.

Pictorially the positive gene g+(`+1) is identified with a row of `+1 boxes, labeled with

alternating signs and beginning with +; that is, g+(`+ 1) is visualized as + − + − · · ·.
The negative gene g−(`+ 1) is depicted as − + − + · · ·.
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Next suppose that p 6= q. Fix ξ = u+ iv ∈ P p,q, with u, v ∈ VR. The polarization

conditions assert that Q`(ξ, ξ) = 0; equivalently,

Q`(u, u) = Q`(v, v) ,

and

Q`(u, v) = 0 if w + ` is even.

The polarization conditions also impose ip−qQ`(ξ, ξ̄) > 0 for all 0 6= ξ. Equivalently

we have the following:

If p− q ≡ 0 mod 4, then 0 < Q`(u, u) ;

if p− q ≡ 2 mod 4, then 0 > Q`(u, u) ;

if p− q ≡ 1 mod 4, then 0 = Q`(u, u) and 0 < Q`(u, v) ;

if p− q ≡ 3 mod 4, then 0 = Q`(u, u) and 0 > Q`(u, v) .

(Note that p−q is even if and only if p+q = w+ ` is even.) Again, in the language of

[10], a chromosome is a formal linear combination of genes with non-negative integral

coefficients. (A chromosome is just a signed Young diagram.) The two N–strings

{u, . . . , N `u} and {v, . . . , N `v} in VR correspond to the chromosome

2g(`+ 1) , if w + ` is odd;

2g+(`+ 1) ,


if w is even and `, p− q ≡ 0 mod 4, or

if w is even and `, p− q 6≡ 0 mod 4, or

if w is odd, ` ≡ 1 mod 4 and p− q ≡ 0 mod 4, or

if w is odd, ` ≡ 3 mod 4 and p− q 6≡ 0 mod 4;

2g−(`+ 1) , otherwise.

The unpolarized gene g(`+ 1) is indicated by a row of `+ 1 boxes, without labels.

Definition 2.26. The partially signed Young diagram Y (F,N) (or chromosome) asso-

ciated with the R–split polarized mixed Hodge structure (F,N) is the union of genes

obtained from the N–string decomposition of the standard representation VR.

Note that GR acts on R–split polarized mixed Hodge structures by g · (F,N) =

(gF,AdgN), for g ∈ GR. It follows from the classification results of §2.3 that Y (F,N)

depends only on the GR–conjugacy class of (F,N).
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Example 2.27 (Period domain for h = (3, 3, 3)). This example was studied by Cattani

and Kaplan in [5, §4]. We have GR = O(3, 6), and there are five conjugacy classes of

R–split PMHS.

-

6rr rrr rr
+
−
−
−
−

I

-

6rr r rr
− + −
+
+
−
−
−
−

II

-

6rrr rrr rrr
− + −

−
−

III

-

6rr r rr
− + −
− + −
+
−
−

IV

-

6r r r
− + −
− + −
− + −

V

D̄oković’s Theorem 2.21 yields

NI < NII < NIII < NIV < NIV .

Example 2.28 (Period domain for h = (1, 1, 1, 1, 1, 1)). We have GR = Sp(3,R) there

are seven (conjugacy classes of) R–split PMHS.

-

6r r r r r r
+ −

A
-

6r r r
r r r

− +
− +

B
-

6r r r r r r
+ −
+ −

C
-

6r r
r r

r r
+ −
+ −
+ −

D

-

6r r r
r r r
E

-

6r
r r r r

r
− + − +

F
-

6

r r r r r r
+ − + − + −

G

From Theorem 2.21 we find

NA < NC , NF ; NB < NE , NF ; NC < ND , NE ; ND , NE , NF < NG .

where the relations obtained by the transitivity of the partial order are omitted.

3. Nilpotent cones

The goal of this section is to describe one approach to identifying the nilpo-

tent cones that underlie nilpotent orbits on a period domain (or, more generally, a

Mumford–Tate domain [13]). We begin in §3.1 by reviewing the definition of nilpotent
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orbits; in §3.1 we outline the strategy. The approach will be worked out for weight

two period domains in §4, and illustrated in the case of Hodge numbers h = (2,m, 2)

in §5.

3.1. Nilpotent orbits. Let VR be a real vector space of dimension n with a Q–

structure defined by a lattice VZ ⊂ VR. Fix w ∈ Z and let Q be a nondegenerate

(−1)w–symmetric bilinear form on VR defined over Q. Fix Hodge numbers h =

{hp,q | p + q = w}. Let D denote the period domain parameterizing Q–polarized

Hodge structures on VQ with Hodge numbers h. Let Ď denote the compact dual

of D. A (m–variable) nilpotent orbit on D consists of a pair (F ;N1, . . . , Nm) such

that F ∈ Ď, the Ni ∈ gR are commuting nilpotents and NiF
p ⊂ F p−1, and the

holomorphic map ψ : Cm → Ď defined by

(3.1) ψ(z1, . . . , zm) =
∑

i exp(ziNi)F

has the property that ψ(z) ∈ D for Im(zi)� 0. The associated (open) nilpotent cone

is

(3.2) σ = {tiNi | ti > 0} .

Recall that the monodromy filtration W•(N) is independent of our choice of N ∈ σ;

so W•(σ) is well-defined. Given a nilpotent orbit we will assume, without loss of

generality, that the polarized mixed Hodge structure (F,W•(σ)) is R–split. Let

VC = ⊕V p,q and gC = ⊕ gp,q

denote the Deligne bigradings [4, (2.12)]. Recall that

σ ⊂ g−1,−1R .

3.2. Identification of cones underlying nilpotent orbits. Observe that

mC := ⊕p gp,p ⊂ gC

is the subalgebra of gC preserving the subspaces

(3.3) Vm :=
⊕
q−p=m

V p,q ⊂ VC , m ∈ Z.
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Visually, m corresponds to the dots on the diagonal p = q in the Hodge diamond.

Because the PMHS is R–split, the subalgebra m is defined over R. Let M0
R ⊂ GR be

the connected Lie subgroup with (Levi) Lie algebra

m0
R := g0,0R .

It will be convenient to note that

(3.4) the real form m0
R = g0,0R is the subalgebra of gR preserving the V p,q.

Lemma 3.5. Let (F,N) be an R–split nilpotent orbit on D = GR/G
0
R with Deligne

bigrading gC = ⊕gp,q. Let M0
R ⊂MR be as defined above.

(a) The orbit

N 0 := Ad(M0
R) ·N

is open in g−1,−1R .2

(b) Suppose that W◦N is the connected component of

WN := {N ′ ∈ g−1,−1R | W (N) = W (N ′)}

containing N . Then W◦N = N 0.

The lemma is well-known; the proof is included in the appendix for completeness.

The key points are that (i) WN is preserved under the adjoint action of M0
R, and (ii)

the orbit Ad(M0
R) · N ′ is open in g−1,−1R for every N ′ ∈ WN . Thus WN is a disjoint

union of open Ad(M0
R)–orbits.

From Lemma 3.5(b) we obtain:

Corollary 3.6. Assume the hypotheses of Lemma 3.5. If a nilpotent cone σ contain-

ing N underlies a nilpotent orbit, then

σ ⊂ N 0 = Ad(M0
R) ·N ⊂ g−1,−1 and Ni ∈ N

0
.

Remark 3.7. Together Theorem 2.21 and Corollary 3.6 gives us representation the-

oretic constraints on the degenerations associated with the faces of a nilpotent cone

underlying a nilpotent orbit. See §5.2 for an illustration.

2The superscript of 0 in N 0 is meant to distinguish these nilpotent Ad(M0
R)–conjugacy classes

from the Ad(GR)–conjugacy classes N of §2.3.
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For the converse to Corollary 3.6, recall Cattani and Kaplan’s [3, Theorem 2.3]

Theorem 3.8 (Cattani–Kaplan). Fix F ∈ Ď and a nilpotent cone (3.2) with the

properties that:

(i) NiF
p ⊂ F p−1 for every i;

(ii) Nk+1
i = 0, where k is the level of the Hodge structures on D; and

(iii) the filtration W•(N) does not depend on the choice of N ∈ σ.

Then (F ;N) is a limiting mixed Hodge structure for some N ∈ σ, if and only if

(F ;N1, . . . , Nm) is an m–variable nilpotent orbit.

This, along with Lemma 3.5(b), yields the converse to Corollary 3.6:

Proposition 3.9. Given an R–split PMHS (F,N) on D, let M0
R and N 0 be as defined

above. If σ ⊂ N 0 is a nilpotent cone, then σ underlies a nilpotent orbit at F .

The upshot of this discussion is

Remark 3.10. The cones σ underlying a multivariable nilpotent orbit on a domain D

may be identified as follows. Begin with an R–split PMHS (F,W•(N)) on D. The

Deligne bigrading determines the diagonal Levi subgroup M . Any nilpotent cone

σ ⊂ N 0 will underlie a nilpotent orbit, and all such cones arise in this fashion. So

to identify the nilpotent cones underlying a nilpotent orbit we must have a good

enough/explicit enough geometric description of N 0 to understand how the nilpotent

cones can “fit” inside. So the strategy proceeds in three steps:

Step 1: Enumerate the R–split PMHS (F,N) on D. For an arbitrary Mumford–Tate

domain D = GR/G
0
R, with GR connected, these are given (up to the action of GR)

by [22]. As Cattani has pointed out, if D is a period domain and GR is the full

automorphism group Aut(VR, Q), then the R–split PMHS are enumerated (again,

up to the action of GR) by the Hodge diamonds.

Step 2: Determine the Ad(M0
R)–orbit N 0 of N ∈ g−1,−1R . This will require a good

description of g−1,−1R as a M0
R–module. In the case of weight two period domains

this description is given in §4.

Step 3: Understand the nilpotent cones σ ⊂ N 0, by which we mean that we should

have a good enough/explicit enough geometric description of N 0 (from Step 2)
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to understand how the nilpotent cones can “fit” inside. In practice this involves

identifying the abelian subalgebras of g−1,−1R and their intersections with N 0.

Also, in the context of “understanding the cones,” it should be noted that a theorem

of D̄oković’s can help us understand, given a nilpotent on a period domain, constraints

on the degenerations coming from the faces of the cone; this is discussed in §5.2.

3.3. The CKS commuting SL(2)’s. To a nilpotent cone σ underlying a nilpotent

orbit on a Hodge domain D, Cattani, Kaplan and Schmid [4] associate a set of

commuting sl(2)’s. When the nilpotent orbit is R–split the sl(2)’s are contained in

mR by construction, and therefore in mss
R = [mR,mR].

Given a Cartan decomposition mss
R = k⊕ k⊥, the real rank of mss

R is the dimension

of a maximal subspace of k⊥ consisting of commuting semisimple elements.

Lemma 3.11 (Nilpotent cones versus commuting sl(2)’s). The number of (nontrivial)

commuting sl(2)’s is bounded by the real rank of the semisimple factor mss
R = [mR,mR].

Proof. To see this, let Y1, . . . , Y` denote the neutral elements of the commuting sl(2)’s.

They are linearly independent and so span an `–dimensional abelian subspace of mR

consisting of semisimple elements. It remains to show that we may choose a Cartan

decomposition mss
R = k ⊕ k⊥ so that Yi ∈ k⊥; for then s ≤ rankR m

ss
R . To see this,

let si = span{N+
i , Yi, Ni} ⊂ mss

R denote the i–th sl(2). Then ki = spanR{N+
i − Ni}

and k⊥i = spanR{Yi, N+
i +Ni} defines a Cartan decomposition of si. Taking the sum

yields a Cartan decomposition of s1⊕ · · · ⊕ s` ⊂ mss
R . This Cartan decomposition can

be extended to one of mss
R [20, Theorem 6]. �

3.4. Two special cases. We finish §3 with discussions of two special cases that we

will encounter in these notes.

3.4.1. The Hermitian case. We say that a simple factor m′ ⊂ m is Hermitian if any

of the following equivalent conditions hold:3

(a) m′ = (m′ ∩ g1,1)⊕ (m′ ∩ g0,0)⊕ (m′ ∩ g−1,−1);

(b) m′ ∩ gp,p = 0 when |p| ≥ 2;

(c) m′ ∩ g−1,−1 is abelian.

3Equivalence requires that we assume the horizontal distribution is bracket–generating.
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When m is Hermitian there will exist nilpotent cones N ∈ σ ⊂ N 0 underlying

nilpotent orbits that are open in g−1,−1R .

3.4.2. The contact case. We say that a simple factor m′ ⊂ m is contact if dimm′ ∩
g2,2 = 1 and m′ ∩ gp,p = 0 for all |p| ≥ 3. In this case the maximal abelian subspaces

of g−1,−1 are the Lagrangian subspaces Λ of a symplectic form ν on g−1,−1 that is

invariant under the reductive (Levi) subalgebra g0,0. The symplectic form is defined

(up to scale) by choosing a nonzero z in the one–dimensional g−2,−2R and setting

[x, y] =: ν(x, y)z for any x, y ∈ g−1,−1.

4. Weight two period domains

Suppose that D is a period domain parameterizing effective weight two Hodge

structures (Hodge numbers h = (h2,0, h1,1, h0,2)). Our goal in this section is to address

Steps 2 and 3 in the strategy (outlined in Remark 3.10) to identify the nilpotent cones

underlying nilpotent orbits on D. Section 4.1 provides the necessary descriptions

of both M0
R and g−1,−1R as an M0

R–representation to explicitly describe the orbits

N 0. Section 4.2 describes a decomposition of the orbits N 0 into simpler objects,

culminating in an explicit description of N 0 by Proposition 4.18.

4.1. The representation theory. We assume given an R–split nilpotent orbit (F,N)

on D. The Hodge diamond of the Deligne bigrading VC = ⊕V p,q is contained in

-

6rrr rrr rrr
In particular,

V0 = V 0,0 ⊕ V 1,1 ⊕ V 2,2 , V1 = V 1,0 ⊕ V 2,1 and V2 = V 2,0 .

Our first goal in this section is to describe the subgroup

(4.1) MR = {g ∈ GR | g(Vm) ⊂ Vm , ∀m}

of GR preserving the subspaces (3.3). Note that mR is the Lie algebra of MR. In an

abuse of notation, we let GR ∩Aut(Vm) denote the subgroup of elements g ∈ GR that
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preserve Vm (and therefore also preserve V−m) and act trivially on V` for all ` 6= ±m.

Let

Q0 := Q|V0

denote the restriction of Q to V0. Define a nondegenerate skew-Hermitian form Q∗1

on V1 by

Q∗1(u, v) := iQ(u, v̄) ,

and a nondegenerate Hermitian form Q∗2 on V2 by

Q∗2(u, v) := −Q(u, v̄) .

Let

a := dimV 2,2 , a+ b := dimV 1,1 , c := dimV 1,2 and d := dimV 0,2 .

Then Q0 has signature (a+ b, 2a), so that

Aut(V0,R, Q0) ' O(a+ b, 2a) .

Next note that g ∈ Aut(V1) stabilizes the skew-Hermitian Q∗1 if and only if it stabilizes

the Hermitian iQ∗1; as will be noted in Remark 4.5, the latter has signature (c, c) so

that

Aut(V1, Q
∗
1) = Aut(V1, iQ

∗
1) ' U(c, c) .

Finally, we note that the Hermitian form Q∗2 is positive definite, so that

Aut(V2, Q
∗
2) ' U(d) .

Proposition 4.2. Let (F,N) be an R–split nilpotent orbit on a period domain pa-

rameterizing effective weight two Hodge structures. The diagonal subgroup is

(4.3)

MR = (GR ∩ Aut(V0)) × (GR ∩ Aut(V1)) × (GR ∩ Aut(V2))

= Aut(V0,R, Q0) × Aut(V1, Q
∗
1) × Aut(V2, Q

∗
2)

' O(a+ b, 2a) × U(c, c) × U(d) .

Remark 4.4. For the groups MR of Proposition 4.2, the subalgebra mss
R has real rank

c+ min{2a, a+ b}, cf. [19].
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Proof. From (4.1) and Vm = V−m we see that

MR = GR ∩ {Aut(V0) × Aut(V1) × Aut(V2)} .

From the facts that (i) GR = Aut(VR, Q) and (ii) the subspaces Vm+V−m, m = 0, 1, 2,

are all pairwise orthogonal we see that the first equation of (4.3) holds. It remains

to identify the factors GR ∩Aut(Vm), m = 0, 1, 2. As V0 is defined over R, and Q|V0,R
is nondegenerate of signature (a+ b, 2a), it follows directly that

GR ∩ Aut(V0) = Aut(V0,R, Q) ' O(a+ b, 2a) .

Next consider GR ∩ Aut(V2). From the polarization condition 0 < −Q(u, u) for

all 0 6= u ∈ V 2,0 = V2, we see that we may pick a basis {zs = xs + iys | s = 1, . . . , d}
so that Q(zs, z̄t) = −δst and xs, ys ∈ VR for all s, t. Next observe that:

(i) From −δst = Q(zs, z̄t) and 0 = Q(zs, zt) we may deduce that −1
2
δst = Q(xs, xt) =

Q(ys, yt) and 0 = Q(xs, yt) for all s, t.

(ii) Given an element g ∈ GR preserving V2, we may define a real 2d × 2d matrix

A = A(g) = (Aij) by g(xs) =: Arsxr + Ad+rs yr and g(ys) =: Ard+sxr + Ad+rd+syr.

(Here we employ the Einstein summation convention: any index appearing as a

subscript and superscript is summed over. In partiuclar, in the previous, we sum

over r.) From the observations of (i) we see that g preserves Q if and only if A

is orthogonal, At = A−1. Moreover, g preserves V2 if and only if Ars = Ad+rd+s and

Ard+s = −Ad+rs . Consequently, g(zs) = Br
szr, where Br

s := Ars + iArd+s, defines a

complex d×d matrix B = (Br
s) satisfying B

t
= B−1. That is, g ∈ Aut(V2, Q

∗
2) '

U(d).

(iii) Conversely, reversing the argument of (ii), we see that any g ∈ Aut(V2, Q
∗
2)

defines an element of GR ∩ Aut(V2).

From (ii) and (iii) we deduce that

GR ∩ Aut(V2) = Aut(V2, Q
∗
2) .

It remains to show that GR ∩ Aut(V1) = Aut(V1, Q
∗
1).

(iv) If {ws}cs=1 is a basis of V 2,1, then {ws}cs=1, {Nws}cs=1 and {Nws}cs=1 are bases

of V 1,2, V 1,0 and V 0,1, respectively. The polarization condition iQ(u,Nū) > 0,

and the fact that Q(V p,q, V r,s) = 0 when either p + s 6= 2 or q + r 6= 2, imply
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that we may choose the basis {ws}cs=1 of V 2,1 so that Q∗1(ws, Nwt) = δst and

Q∗1(ws, wt) = 0 = Q∗1(Nws, Nwt) for all s, t. That is, Q∗1 is represented by the

matrix

J :=

(
0 Ic

−Ic 0

)
,

where is Ic the c × c identity matrix, with respect to the basis {ws, Nws}cs=1 of

V 1.

Remark 4.5. The Hermitian form iQ∗1(·, ·) = −Q(·, ·̄) is represented by the matrix

2

(
Ic 0

0 −Ic

)
with respect to the basis {ws + iNws , ws − iNws}cs=1 of V1.

(v) Define us, vs ∈ VR by ws = us + ivs. Then

0 = Q(us, ut) = Q(us, vt) = Q(vs, vt) ,

0 = Q(Nus, Nut) = Q(Nus, Nvt) = Q(Nvs, Nvt) ,

0 = Q(us, Nut) = Q(vs, Nvt) ,

1
2
δst = Q(us, Nvt) = −Q(vs, Nut) .

(vi) Given an element g ∈ GR preserving V1, we may define a real 4c × 4c matrix

A = A(g) = (Aij) by

g(us) =: Arsur + Ac+rs vr + A2c+r
s Nur + A3c+r

s Nvr ,

g(vs) =: Arc+sur + Ac+rc+svr + A2c+r
c+s Nur + A3c+r

c+s Nvr ,

g(Nus) =: Ar2c+sur + Ac+r2c+svr + A2c+r
2c+sNur + A3c+r

2c+sNvr ,

g(Nvs) =: Ar3c+sur + Ac+r3c+svr + A2c+r
3c+sNur + A3c+r

3c+sNvr .

(Again, the Einstein summation convention is in effect and we sum over r.) From

the observations of (v) we see that g preserves Q if and only if AtJA = J , where

J :=


0 0 0 Ic

0 0 −Ic 0

0 −Ic 0 0

Ic 0 0 0
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is the 4c×4cmatrix representing Q|V1⊕V1 with respect to the basis {us, vs, Nus, Nvs}cs=1;

here Ic is the c × c identity matrix. As in (ii) we see that g preserves V1 if and

only if

Ars = Ac+rc+s Arc+s = −Ac+rs

A2c+r
s = A3c+r

c+s A2c+r
c+s = −A3c+r

s

Ar2c+s = Ac+r3c+s Ar3c+s = −Ac+r2c+s

A2c+r
2c+s = A3c+r

3c+s A2c+r
3c+s = −A3c+r

2c+s .

Consequently, g(ws) = Br
swr + Bc+r

s Nwr and g(Nws) = Br
c+swr + Bc+r

c+sNwr,

where Br
s = Ars + iArc+s, B

c+r
s = A2c+r

s + iA2c+r
c+s , Br

c+s = Ar2c+s + iAr3c+s and

Bc+r
c+s = A2c+r

2c+s + iA2c+r
3c+s defines a 2c × 2c complex matrix B = (Bi

j) satisfying

B
t
JB = J. That is, g ∈ Aut(V1, Q

∗
1) ' U(c, c).

(vii) Conversely, reversing the computation of (vi), we see that any g ∈ Aut(V1, Q
∗
1)

defines an element of GR ∩ Aut(V1).

From (vi) and (vii) we see that GR ∩ Aut(V1) = Aut(V1, Q
∗
1). �

Remark 4.6. It will be helpful to select a basis for V0,R. The polarization condition

0 < Q(u,N2u) for all 0 6= u ∈ V 2,2
R implies that we may pick a basis {es | 1 ≤ s ≤ a}

of V 2,2
R so that Q(es, N

2et) = δst. Note that {N2es}as=1 is a basis of V 0,0
R , and that

the {Nes}as=1 ⊂ V 1,1
R are linearly independent. Moreover, Q(Nes, Net) = −δst, and

we may complete the {Nes} to a basis {Nes, fj | s = 1, . . . , a , j = 1, . . . , b} of V 1,1
R

so that Q(Nes, fj) = 0 and Q(fj, fk) = δjk for all s, j, k. It then follows that, relative

to the basis {es , Nes, fj , N2es} of V0,R, the polarization Q is given by

Q|V0,R =

 0 0 1a

0 1a,b 0

1a 0 0

 , where 1a,b =

(
−1a 0

0 1b

)
.

Proposition 4.7. Let (F,N) be an R–split nilpotent orbit on a period domain pa-

rameterizing effective weight two Hodge structures. The subgroup M0
R ⊂ MR is the
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connected identity component of

G0,0
R := {g ∈ GR | g(V p,q) ⊂ V p,q ∀ p, q}

=
(
G0,0

R ∩ Aut(V0)
)
×
(
G0,0

R ∩ Aut(V1)
)
×
(
G0,0

R ∩ Aut(V2)
)

(4.8)

'
(
GL(a,R) × O(b, a)

)
× GL(c,C) × U(d) .

Proof. The proof is very like that of Proposition 4.2, so we will merely sketch the

argument. To see that M0
R is the connected identity component of G0,0

R , it suffices to

observe that G0,0
R is the maximal subgroup of GR with Lie algebra m0

R = g0,0R , and to

recall that M0
R is connected.

The subgroup G0,0
R ⊂MR is determined as follows: First, note that the argument

establishing the first equality of (4.3) also yields the equality of (4.8). The factor

GR ∩ Aut(V2) = Aut(V2, Q
∗
2) ' U(d) of MR preserving V2 = V 2,0 necessarily lies in

G0,0
R . Next, from observations (v) and (vi) in the proof of Proposition 4.2, we see that

(4.9) G0,0
R ∩ Aut(V1) '

{(
(Dt)−1 0

0 D

) ∣∣∣∣∣ D ∈ GL(c,C)

}
.

Likewise, working with the basis of Remark 4.6 we see that

(4.10) G0,0
R ∩ Aut(V0) '


 E−11 0 0

0 E2 0

0 0 Et
1


∣∣∣∣∣∣∣
E1 ∈ GL(a,R)

E2 ∈ O(b, a)

 .

�

Next we describe g−1,−1R as a M0
R–representation.

Proposition 4.11. Let (F,N) be an R–split nilpotent orbit on a period domain pa-

rameterizing effective weight two Hodge structures. As a G0,0
R –representation

(4.12) g−1,−1R ' Hc ⊕ HomR(Ra,Ra+b) ,

where Hc is the set of c× c Hermitian matrices. More precisely:

(i) The factor U(d) ' G0,0
R ∩ Aut(V2) acts trivially on g−1,−1R .

(ii) If g ∈ G0,0
R ∩ (Aut(V1)×Aut(V0)) ' GL(c,C)×(GL(a,R)×O(b, a)) is represented

by (D;E1, E2) as in (4.9) and (4.10), then the action of g on (X, Y ) ∈ Hc ⊕
HomR(Ra,Ra+b) is (X, Y ) 7→ (DXDt, E2Y E1).
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Proof. The key observation is that g−1,−1R decomposes as

g−1,−1R =
(
g−1,−1R ∩ End(V1)

)
⊕
(
g−1,−1R ∩ End(V0)

)
.

From the characterization of GR ∩Aut(V1) in the proof of Proposition 4.2 (items (v)

and (vi)) we see that the the first summand is

(4.13) g−1,−1R ∩ End(V1) '

{(
0 0

X 0

) ∣∣∣∣∣ X = X t a Hermitian c× c matrix

}
.

Likewise, relative to the basis of Remark 4.6, the second summand is

(4.14) g−1,−1R ∩ End(V0) '


 0 0 0

Y 0 0

0 −Y t1a,b 0


∣∣∣∣∣∣∣ Y a (a+ b)× a matrix

 .

This establishes (4.12).

To complete the proof it remains to check that the adjoint action of g ∈ G0,0
R on

g−1,−1R is as described. Making use of the identifications (4.9) and (4.10), this is an

exercise in matrix multiplication that we leave to the reader. �

4.2. Orbit decomposition. Assume the hypotheses of Proposition 4.11 and use the

decomposition (4.12) to write N = N1 +N0 with

N1 ∈ Sym2Rc and N0 ∈ HomR(Ra,Ra+b) .

Note that

• N0 6= 0 if and only if V 2,2 6= 0 (equivalently, a 6= 0), and

• N1 6= 0 if and only if V 2,1 6= 0 (equivalently, c 6= 0).

Propositions 4.7 and 4.11 imply

(4.15) N 0 = N 0
0 × N 0

1

where

• N 0
0 is the orbit of N0 under GL(a,R) × O(b, a), and

• N 0
1 is the orbit of N1 under GL(c,C).
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Note that the two summands in (4.12) commute. In particular, [N 0
0 , N 0

1 ] = 0.

Consequently, any maximal σ will be of the form

(4.16) σ = σ0 × σ1 ,

with σi = σ ∩ N 0
i . From Proposition 4.2 we see that the second and third factors,

U(c, c) and U(d), of MR, are always Hermitian (§3.4.1). The third factor we disregard

as it acts trivially on g−1,−1R , and we have

(4.17) max dimR σ1 = 1
2
c(c+ 1) .

The first factor O(a + b, 2a) is Hermitian if and only if a = 0, 1. In this case

max dimR σ0 = a(a + b). The first factor is contact (§3.4.2) if and only if a = 2,

and in this case max dimR σ0 = (2 + b). To summarize, with max dimR σ denoting

the maximal possible dimension of a nilpotent cone σ ⊂ N 0 underlying a nilpotent

orbit:

• If a = 0, 1, then max dimR σ = a(a+ b) + 1
2
c(c+ 1).

• If a = 2, then max dimR σ = (2 + b) + 1
2
c(c+ 1).

For the cases a = 0, 1, 2, the maximal nilpotent cones σ underlying a nilpotent orbit

all have the same dimension. This will not be the case when a > 2. However, one

may use [23] to identify the dimensions of the maximal cones.

It remains to describe the orbits N 0
0 and N 0

1 .

Proposition 4.18. Let (F,N) be an R–split nilpotent orbit on a period domain pa-

rameterizing effective weight two Hodge structures. Let N = N0 + N1 be the decom-

position given by (4.12).

(a) The orbit N 0
1 = GL(c,R) ·N1 is the set

X :=
{
X ∈ g−1,−1R ∩ End(V1) | 0 < iQ(u,Xū) ∀ 0 6= u ∈ V 2,1

}
.

Under the identification of (4.13), this orbit is parameterized by the positive,

Hermitian c× c matrices X = DDt with D ∈ GL(c,C).

(b) The orbit N 0
0 = (GL(a,R)×O(a, b))◦ ·N0 is the connected component Y◦ of

Y :=
{
Y ∈ g−1,−1R ∩ End(V0) | Q(Y u, Y u) < 0 , ∀ 0 6= u ∈ V 2,2

R
}
.
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containing N0. Under the identification of (4.14), Y is parameterized by the

(a+ b)× a matrices Y =

(
αE1

βE1

)
with α an a× a matrix and β a b× a matrix

such that αtα− βtβ = Ia, and E1 ∈ GL(a,R).

The proofs of N 0
1 = X and N 0

0 = Y◦ are variations on the argument establishing

Lemma 3.5, and will extend to more general situations in a fairly straightforward

manner.

In the proof below, it will be helpful to keep in mind that

g−1,−1R ∩ End(V1) = End(VR, Q) ∩ Hom(V 2,1, V 1,0) ,

g−1,−1R ∩ End(V0) = End(VR, Q) ∩
(
Hom(V 2,2, V 1,1)⊕ Hom(V 1,1, V 0,0)

)
.

Proof. By Lemma 3.5, we know that N 0 is open in g−1,−1R . From Proposition 4.11

and (4.15), we see that this is equivalent to the two conditions that N 0
i is open in

g−1,−1R ∩ Hom(Vi), i = 0, 1.

To establish N 0
1 = X , observe that X is open, convex and preserved under the

action of M0
R. By definition N1 ∈ X . Since X is preserved under the action of M0

R,

it is immediate that N 0
1 ⊂ X . It remains to show that equality holds. An argument

analogous to that establishing Lemma 3.5 shows that X is a union of open M0
R–orbits.

The equality X = N 0
1 then follows from the convexity of X .

Under the identification (4.13), N1 is represented by X = 1c. (View this as

indicating that N1 gives us a specific isomorphism V 2,1 ' V 1,0.) So the action of

g = (D;E1, E2) ∈M0
R on N1 is 1c 7→ DDt, by Proposition 4.11.4

We briefly sketch the argument establishing N 0
0 = Y◦ which is very like that

above for N 0
1 = X . Again we observe that Y is open and preserved under the action

of M0
R (but not convex5). As above N 0

0 ⊂ Y , and one may show that Y is a union of

open M0
R–orbits.

4The Cholesky decomposition yields a factorization of every element X ′ ∈ X of the form X ′ =

DDt.
5This is a feature of the non-classical case that D is not Hermitian symmetric.
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Under the identification (4.14), N0 is represented by Y = (1a 0b,a)
t, where 0b,a is

the b× a zero matrix. Decompose E2 ∈ O(b, a) as

E2 =

(
α ∗
β ∗

)
,

with α an a× a matrix and β a b× a matrix. Then Proposition 4.11 asserts that the

action of g = (D;E1, E2) ∈M0
R on N0 is(

1a

0b,a

)
7→

(
αE1

βE1

)
.

Since E2 ∈ O(b, a), we have αtα− βtβ = Ia.

This completes the proof of the proposition. As a final remark, and keeping the

identification (4.14) in mind, we note that (g ·N0)
2 : V 2,2

R → V 0,0
R is represented by 0 0 0

0 0 0

Et
1(α

tα− βtβ)E1 0 0

 =

 0 0 0

0 0 0

Et
1E1 0 0

 .

�

5. Example: period domain for h = (2, ∗, 2)

The goal of this section is to illustrate how the material of §§2–4 can be applied to

study nilpotent orbits on the period domain D for Hodge numbers

h = (2, h1,1, 2) .

In §5.1 we identify the R–split polarized mixed Hodge structures on D (“Step 1” of

Remark 3.10). Section 5.2 describes representation theoretic constraints on the degen-

erations coming from the faces of a cone underlying a nilpotent orbit. In §5.3 we see

that these are the only constraints: one may construct nilpotent cones, that underlie

nilpotent orbits, from commuting sl(2)s exhibiting all remaining degenerations.

5.1. The PMHS. Set

m+ 8 = 4 + h1,1 so that VR = Rm+8 .

We have

GR = Aut(VR, Q) ' O(4,m+ 4) and gR = End(VR, Q) ' so(4,m+ 4) .
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Table 5.1. Hodge diamonds and signed Young diagrams

I II III IV V

-

6rr rrr rr -

6rr r rr -

6r rrr r
-

6rr rrr rr
-

6r r r

−
−
+...

}
m+ 2
boxes

− + −
−
−
+...

}
m+ 3
boxes +...

}
m

boxes

− + −

+...

}
m+ 1
boxes

− + −
− + −
+...

}
m+ 2
boxes

Table 5.2. The diagonal group MR

M ss
R rankR max dimRσ

I O(m+ 2)× U(1, 1) 1 1

II O(m+ 4, 2) 2 m+ 4

III O(m)× U(2, 2) 2 3

IV O(m+ 2, 2)× U(1, 1) 3 m+ 3

V O(m+ 4, 4) 4 m+ 4

Modulo the action of GR there are at most five polarized R–split PMHS on D. The

Hodge diamonds (HD) for these PMHS are depicted in Table 5.1, where they are

denoted I, . . . ,V. As one can see from the table, we need m ≥ 0 to get all five

degenerations; we assume this to be the case.

By Lemma 3.11, the number of commuting sl(2)’s obtained from the Cattani,

Kaplan and Schmid construction [4] is bounded by the real rank of M ss
R . The sub-

groups, which are determined by Proposition 4.2, are listed in Table 5.2. In the table

the maximal dimension of the nilpotent cones σ ⊂ N 0 underlying a nilpotent orbit

are taken from §4.2.

5.2. Degenerations coming from the faces of the cone. Together Theorem 2.21

and Corollary 3.6 provide representation theoretic constraints on the degenerations

associated with the faces of a nilpotent cone underlying a nilpotent orbit on a pe-

riod domain D. While illustrated with examples in weight two period domains, the

discussion of this section is general and applies to arbitrary period domains.
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Given a polarizing nilpotent N ∈ gR, let

N = Ad(GR) ·N

denote the conjugacy class. As discussed in §2.5, these orbits are enumerated by

(partially) signed Young diagrams, a.k.a. D̄oković’s chromosomes, and the diagrams

are determined by the Hodge diamond of VC. Recall that if σ = {λiNi | λi > 0} is a

nilpotent cone underlying a nilpotent orbit, then Corollary 3.6 yields

(5.1) N ∈ σ =⇒ σ ⊂ N and Ni ⊂ N .

In particular, every nilpotent in σ is of the same type as N . (E.g. if N is of type II,

then every element of the cone is of type II.) So we can speak of the “type of σ,” and

there are five types of cones on the period domains for h = (2, h1,1, 2).

Given two nilpotents N1 and N2 we write N1 ≤ N2 if N1 ⊂ N2, and N1 < N2

when N1 ≤ N2 but N1 6= N2. D̄oković’s Theorem 2.21 characterizes this partial

ordering; for the conjugacy classes N of the polarizing N in Table 5.1 we have

(5.2) NI <

{
NII

NIII

}
< NIV < NV .

Given (5.1), and the dimension constraints listed in Table 5.2, this tells us something

about the degenerations corresponding to the faces of the cone. For example,

(a) Any face of type I is necessarily one–dimensional.

(b) If σ is of type II, then the faces of σ are either of type I or type II — because

only NI,NII ≤ NII.

(c) Likewise, if σ is of type III, the faces of σ are either of type I or type III.

(d) Any face of type III is of dimension at most three.

(e) If σ is of type IV, then no face is of type V.

5.3. Commuting horizontal SL(2)s. The representation theoretic constraints (b),

(c) and (e) above are the only restrictions on the degenerations coming from faces of
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the cone.6 In fact, we may construct cones from commuting sl(2)s whose faces realize

all a priori possible degenerations.7 The details are as follows.

Fix a basis {e1, . . . , e4 , f1, . . . , fm , e5, . . . , e8} of VR, so that

Q(ea, eb) = δ9a+b , Q(fj, fk) = δjk

and all other pairings zero. Then

H2,0
ϕ := spanC{(e1 − e8)− i(e3 − e6) , (e2 − e7)− i(e4 − e5)}

defines a point ϕ ∈ D. Let {e1, . . . , e4 , f 1, . . . , fm , e5, . . . , e8} denote the dual basis of

V ∗R , and set ek` := e`⊗ ek ∈ End(VR). Define subspaces si := spanR{N+
i , Yi, Ni} ⊂ gR,

for i = 1, . . . , 4, by

N1 = e68 − e13 , Y1 = (e11 − e88) − (e33 − e66) , N+
1 = e86 − e31

N2 = e57 − e24 , Y2 = (e22 − e77) − (e44 − e55) , N+
2 = e75 − e42

N3 = e16 − e38 , Y3 = (e11 − e88) + (e33 − e66) , N+
3 = e61 − e83

N4 = e25 − e47 , Y4 = (e22 − e77) + (e44 − e55) , N+
4 = e52 − e74 .

It is straightforward to confirm that the si ' sl(2,R) are commuting sl(2)’s in gR, and

are horizontal at the point ϕ. Given I = {i1, . . . , i`} ⊂ {1, . . . , 4}, let sI = si1⊕· · ·⊕sis
denote the corresponding sum of sl(2)’s. Set |I| = `. Each horizontal sI determines

an R–split PMHS, and the corresponding Hodge diamonds are

I Hodge diamond

|I| = 1 I

I = {1, 3}, {2, 4} II

I 6= {1, 3}, {2, 4} III

|I| = 3 IV

|I| = 4 V

In particular, σ = spanR>0
{N1, . . . , N4} is a 4–dimensional nilpotent cone whose faces

realize every combination of degeneration not ruled out by §5.2.

6This fails for more general period domains: there are additional constraints, essentially imposed

by horizontality [18].
7The resulting degenerations correspond to those of [17, §6] obtained from Cayley transforms cα

in non-compact imaginary roots.
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6. Deligne systems

In this section, we give a counterexample to the following assertion of Kato [16,

Theorem 1.4], and provide a corrected statement:

Theorem 6.1. Let (V,W,N1, . . . , Nn, F ) be a Deligne–Hodge system of n variables.

Then for N ′j =
∑j

k=1 aj,kNk (1 ≤ j ≤ n) with aj,k > 0 (1 ≤ k ≤ j ≤ n) such that

aj,k/aj,k+1 � 0 (1 ≤ k < j ≤ n), (V,W,N ′1, . . . , N
′
n, F ) is an IMHM of n variables.

In a nutshell, the problem is that one needs a polarizability condition on the

original Deligne-Hodge system to guarantee that some modification is an IMHM.

More precisely, the flaw in the proof, which starts on page 857 of [16] appears to be

the following: The second sentence of the third paragraph of the proof says, “on grWw ,

put the bilinear form in Proposition 3.2.7.” We’ve added the emphasis here because

the key problem with the proof appears to be the word “the.” To every object

V = (V,W,N1, . . . , Nr, F ) in DHr, one can associate an SL2-orbit or, equivalently, an

object V̂ in D̂Hr. Any V̂ can be polarized by a bilinear form Q. But Q is not unique.

If V̂ is irreducible, then Q is unique up to non-zero scalar multiple. But, in general,

there is no unique Q even up to scalar multiple. This becomes a problem because the

condition that the Ni be infinitesimal isometries of Q is non-trivial, and they impose

(possibly contradictory) conditions on what Q can be.

Before proceeding to give the counterexample in §6.2, we first provide a short

account of Deligne systems in §6.1. In §6.3 we revisit the counterexample from a

categorical point of view. In §6.4 we show that Kato’s theorem holds in the presence of

a suitable graded-polarization condition which can be stated in terms of the associated

SL2-orbit. In §6.5, we discuss the geometry of Deligne systems with a given underlying

SL2-orbit.

The definition of infinitesimal mixed Hodge module appears in §4 of [15], and the

notion of Deligne system will be defined in the next section. For completeness, we

record the definition of an IMHM here:

Definition 6.2. An infinitesimal mixed Hodge module consists of

(1) A finite dimensional real vector space VR equipped with an increasing filtration

W and a collection of non-degenerate bilinear forms Qk : GrWk ⊗GrWk → R of

parity (−1)k;
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(2) A decreasing filtration F of VC = VR ⊗ C;

(3) Nilpotent endomorphisms N1, . . . , Nr of VR which preserve W and act by in-

finitesimal isometries on GrW .

such that

(a) Nj(F
p) ⊂ F p−1 for all j and p;

(b) e
∑

j zjNjF induces a nilpotent orbit of pure Hodge structure of weight k on

GrWk which is polarized by Qk;

(c) For any subset J of {1, . . . , r} there exists a relative weight filtration M(J)

such that (i) NjMk(J) ⊂ Mk−2(J) for all j ∈ J and (ii) M(J) is the weight

filtration of
∑

j∈J Nj relative to W .

In particular, if W is pure of weight k (i.e. GrW` = 0 unless ` = k) then an IMHM

is the same thing as a nilpotent orbit of pure Hodge structure of weight k. [Condition

(c) follows from the results of Cattani and Kaplan].

6.1. Preliminary Remarks. Fix a field K of characteristic zero, and let W be an

increasing filtration of a finite dimensional K-vector space V . Then, a grading of W

is a semisimple endomorphism Y of V with integral eigenvalues such that

(6.3) Wk =
⊕
j≤k

Ej(Y )

where Ej(Y ) is the j-eigenspace of Y .

Let N be a nilpotent endomorphism of V which preserves W , i.e. N(Wk) ⊆ Wk.

There exists at most one relative weight filtration M = M(N,W ) (cf. [27]) such that

(a) N(Mk) ⊆Mk−2 for all k;

(b) If GrWk is non-zero and ` ≥ 0 then the induced map

N ` : GrMk+`Gr
W
k → GrMk−`Gr

W
k .

is an isomorphism for each non-negative integer `.

In the case of interest, W is the weight filtration of an admissible variation of

mixed Hodge structure over the punctured disk and N is the local monodromy loga-

rithm. In this setting N is a (−1,−1)-morphism of the limit mixed Hodge structure
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(F,M) where M = M(N,W ). Let

(6.4) V =
⊕
p,q

Ip,q

be the associated Deligne bigrading of (F,M) ([4, (2.12)]) and Y = Y(F,M) be the

grading of M which acts as multiplication by p+ q on Ip,q. Then,

(6.5) [Y,N ] = −2N

since N is a (−1,−1)-morphism. Moreover, Y preserves W since (F,M) induces a

mixed Hodge structure on each Wk by (3.13) of [27].

Definition 6.6. A 1-variable Deligne system over K consists of the following data:

• An increasing filtration W of a finite dimensional K-vector space V ;

• A nilpotent endomorphismN of V which preservesW such thatM = M(N,W )

exists;

• A grading Y of M which preserves W and satisfies [Y,N ] = −2N .

A morphism of Deligne systems (W,N, Y ) → (W̃ , Ñ , Ỹ ) is an endomorphism T of

the underlying K-vector spaces such that T (Wi) ⊂ W̃i and

Ỹ ◦ T − T ◦ Y = 0, Ñ ◦ T − T ◦N = 0 .

Example 6.7. By the remarks of the previous paragraphs, if (ezNF,W ) is an admissible

nilpotent orbit then (W,N, Y ) is a Deligne system where Y = Y(F,M) and M =

M(N,W ).

To continue, we recall the following: An sl2-pair consists of a nilpotent endomor-

phism N of a finite dimensional K-vector space V and grading H of the monodromy

weight filtration W (N) such that [H,N ] = −2N . Moreover, there is a 1-1 correspon-

dence between sl2-pairs and representations ρ of sl2(K) on V such that

N = ρ

(
0 0

1 0

)
, H = ρ

(
1 0

0 −1

)
That such a representation determines an sl2-pair follows from the structure of the

irreducible representations of sl2(K). Conversely, given an sl2-pair, the elements of

the kernel of N : E−k(H)→ E−k−2(H) are lowest weight vectors for ρ.
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In particular, given a 1-variable Deligne system (W,N, Y ) let Y ′ be a grading of

W which commutes with Y and

(6.8) N = N0 +N−1 +N−2 + · · ·

be the decomposition of N into eigencomponents relative to ad(Y ′). Then, N0 and

H = Y −Y ′ induce the action of an sl2-pair on each GrWk . Let ρk be the corresponding

representation of sl2(K) on GrWk and ρ be the representation of sl2(K) which acts as

ρk on Ek(Y
′) via isomorphism Ek(Y

′) ∼= GrWk . Let

(6.9) N+
0 = ρ

(
0 1

0 0

)
Accordingly, given a Deligne system (W,N, Y ), each choice of grading Y ′ of W

which commutes with Y determines a corresponding sl2-triple. Moreover, a short

calculation shows that since both N0 and H = Y − Y ′ commute with Y ′ so does N+
0 .

Likewise, it is easy to see that each component N−k appearing in (6.8) is weight −2

for adY since [Y, Y ′] = 0.

Theorem 6.10 ([8]). Let (W,N, Y ) be a Deligne system. Then, there exists an

unique, functorial grading Y ′ = Y ′(N, Y ) of W which commutes with Y such that

(6.11) [N −N0, N
+
0 ] = 0 .

where N0 is determined by ad(Y ′) via (6.8).

Sketch. The outline of Deligne’s proof is as follows (cf. Theorem (4.4) in [21]): Let

gl−r(W ) = {α ∈ gl(V ) | α(Wk) ⊆ Wk−r }

and glY−r(W ) be the subalgebra of elements of gl−r(W ) which commute with Y . Then,

the set of all gradings of W which commute with Y is an affine space upon which the

group exp(glY−1(W )) acts simply transitively via the adjoint action.

Deligne now claims by induction that it is possible construct a sequence of grad-

ings Y ′0 , Y
′
1 , . . . , of W which commute with Y such that if (N0, Y −Y ′r , N+

0 ) is sl2-triple

associated to Y ′r then

(6.12) [N −N0, N
+
0 ] ∈ glY−r−1(W ) .

i.e. if N = N0 +N−1 + · · · relative to ad(Y ′r ) then [N+
0 , Nj] = 0 for j < 0.
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Given the finite length of W , this process terminates in the desired grading Y ′.

The induction base r = 0 is trivial since any grading Y ′0 of W which commutes with

Y will suffice. Suppose therefore that the required gradings Y ′1 , . . . , Y
′
k−1 have been

constructed.

Let N0, N−1, . . . be the components of N relative to adY ′k−1. Then, since Y ′k−1

commutes with (N+
0 , Y − Y ′k−1, N0) it follows that

(6.13) N−k = [N0, γ−k] +N ′−k

where N ′−k is highest weight k − 2 for (N+
0 , Y − Y ′k−1, N0) and

(6.14) γ−k ∈ Ek(ad(Y − Y ′k−1)) ∩ E−k(adY ′k−1) .

In particular, equation (6.14) implies that γ−k ∈ E0(adY ). A short calculation shows

that

Y ′k = Ad(1 + γ−k)Y
′
k−1

is a grading of W which commutes with Y and satisfies (6.12) for r = k. �

Regarding the functoriality of this construction, we recall the following from

Deligne’s appendix to [27]: Let n be the one dimensional Lie algebra over K with

generator N , and let N denote the category of nilpotent n-modules. If V1 and V2 ∈ N
then V1 ⊗ V2 ∈ N via the action

(6.15) N(v1 ⊗ v2) = N(v1)⊗ v2 + v1 ⊗N(v2)

Likewise, V1 and V2 ∈ N then HomK(V1, V2) ∈ N via

(6.16) N(A) = N ◦ A− A ◦N

Theorem 6.17 (A.4 [27]). Suppose that V1, V2 ∈ N carry finite increasing filtrations

W such that N acts as an admissible endomorphism of (Vi,W ) for i = 1, 2. Define,

Wk(V1 ⊗ V2) =
∑
i+j=k

(WiV1 ⊗WjV2)

Then, N ⊗ 1 + 1⊗N is an admissible endomorphism of V1 ⊗ V2 with relative weight

filtration

Mk(N,W (V1 ⊗ V2)) =
∑
i+j=k

(MiV1 ⊗MjV2)
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Lemma 6.18. A choice of Deligne system data on finite dimensional K-vector spaces

V1 and V2 determines a Deligne system on V1⊗ V2 with weight filtration W (V1⊗ V2),

nilpotent endomorphism

N(v1 ⊗ v2) = N(v1)⊗ v2 + v1 ⊗N(v2)

and grading

Y (v1 ⊗ v2) = Y (v1)⊗ v2 + v1 ⊗ Y (v2)

of M(N, V1 ⊗ V2). Moreover, the corresponding grading Y ′(N, Y ) of W (V1 ⊗ V2) is

given by

(6.19) Y ′(v1 ⊗ v2) = Y ′(v1)⊗ v2 + v1 ⊗ Y ′(v2)

Proof. Deligne’s Theorem A.4 asserts the existence of the relative weight filtration of

N and W . A short calculation shows that [Y,N ] = −2N . Likewise, the definition of

W (V1⊗V2) coupled with the fact that action of Y on Vj preserves W (Vj) implies that

the action of Y on V1 ⊗ V2 preserves W (V1 ⊗ V2). Therefore, the induced actions of

Y and N determine a Deligne system on V1 ⊗ V2 with weight filtration W (V1 ⊗ V2).
To complete the proof, we need to show that (6.19) is a grading of W (V1 ⊗ V2)

which satisfies the conditions of Theorem (6.10). To this end, we note that

N =

(∑
a≤0

Na

)
⊗ 1 + 1⊗

(∑
b≤0

Nb

)

relative to the action of adY ′ on gl(V1) and gl(V2). Direct calculation shows that

[Y ′, Na ⊗ 1 + 1⊗Nb] = (a+ b)(Na ⊗ 1 + 1⊗Nb)

and hence N0 = N0 ⊗ 1 + 1 ⊗ N0 is the zero eigencomponent of the action of N on

V1 ⊗ V2 relative to adY ′.

Setting N+
0 = N+

0 ⊗ 1 + 1⊗N+
0 and H = (Y − Y ′)⊗ 1 + 1⊗ (Y − Y ′) one easily

checks that (N0, H,N
+
0 ) is an sl2-triple for V1 ⊗ V2. Direct computation shows that

[Y, Y ′] = 0 on V1 ⊗ V2 and that

[N −N0, N
+
0 ] = 0

on V1 ⊗ V2. �
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An analogous argument proves that a Deligne system on V induces a Deligne

system on V ∗ = Hom(V,K) via (6.16) where K is equipped with the trivial Deligne

system W0 = K, N = 0 and Y = 0. Accordingly, a choice of Deligne systems on V1

and V2 determines a Deligne system on Hom(V1, V2).

Lemma 6.20 ([8]). If T : V1 → V2 is a morphism of Deligne systems then T com-

mutes with the associated grading Y ′ of the Deligne system Hom(V1, V2). Equivalently,

if T is a morphism of Deligne systems (W,N, Y )→ (W̃ , Ñ , Ỹ ) then

(6.21) T ◦ Y ′ = Ỹ ′ ◦ T

where Y ′ = Y ′(N, Y ) and Ỹ ′ = Y ′(Ñ , Ỹ ).

Proof. Since T preserves W (V1 ⊗ V2) it follows that

(6.22) T =
∑
j≤0

Tj, [Y ′, Tj] = jTj.

Moreover, since [Y, Y ′] = 0 and [Y, T ] = 0 it follows from the Jacobi identity that

[Y, Tj] = 0. In particular, [H,T0] = [Y −Y ′, T0] = 0. Likewise, [N, T ] = 0 and the fact

that N and T preserve WHom(V1, V2) implies [N0, T0] = 0. Therefore, [N+
0 , T0] = 0.

By equation (6.22), [H,Tj] = [Y − Y ′, Tj] = −jTj. Moreover, [N, T ] = 0 =⇒
[N0, T−1] = 0 since N−1 = 0. But, T−1 has weight 1 with respect to ad(H), and hence

T−1 = 0.

Assume by induction that Tj = 0 for j = −2, . . . , 1− k. Then,

[N, T ] = 0 =⇒ [N0, T−k] + [N−k, T0] = 0.

Accordingly, by the Jacobi identity,

[N+
0 , [N0, T−k]] = −[N+

0 , [N−k, T0]] = −[[N+
0 , N−k], T0]− [N−k, [N

+
0 , T0]] = 0.

Once again, this forces T−k = 0 since T−k is weight k > 0 for ad(H). Consequently,

T = T0. �

Remark 6.23. The definition of Deligne system given above is due to Kato. The orig-

inal (and equivalent) formulation in Christine Schwarz’s paper [25] is that a Deligne

system is given by the data (W,N, Y ′, Y ). Deligne’s theorem (6.10) is then stated

as the assertion that given (W,N, Y ) as above there is a unique choice of grading Y ′
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of W which completes (W,N, Y ) to a Deligne system. As outlined in (6.26) below,

Deligne also considered the several variable case. Axioms for the several variable

Deligne systems are given below in Definition 6.25 (see also [25]).

The origin of Deligne’s letter to Cattani and Kaplan is a question related to a

mysterious splitting operation which arises in Schmid’s SL2-orbit theorem. Namely

(Prop (2.20),[4]), given any mixed Hodge structure (F,W ) on V there exists a unique,

real element

δ ∈
⊕
p,q<0

gl(V )p,q

such that (e−iδF,W ) is a mixed Hodge structure which is split over R. On the other

hand (Lemma (6.60),[4]), by the SL2-orbit theorem, if ezNF is a nilpotent orbit of

pure Hodge structure then

eiyNF = eζ

(
1 +

∑
k>0

gky
−k

)
eiyNe−iδF

where ζ is given by universal Lie polynomials in the Hodge components of δ. In

particular, since ζ is real and depends only on the Hodge components of δ, it follows

that

F̂ = eζe−iδF

is another split mixed Hodge structure attached to an arbitrary mixed Hodge struc-

ture (F,W ). In [1] this operation (F,W ) 7→ (F̂ ,W ) is called the sl2-splitting of

(F,W ). In the work of Kato and Usui, this operation is called the canonical splitting.

For future reference we let Ŷ(F,W ) = Y(F̂ ,W ).

In [8], Deligne asserts that if (ezNF,W ) is an admissible nilpotent orbit with limit

mixed Hodge structure (F,M) which is split over R then

(6.24) Ŷ(eiNF,W ) = Y ′(N, Y(F,M))

A published proof was given by the first two authors in [1].

In the second part of his letter, Deligne focuses on applying his construction to

several variable systems.
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Definition 6.25. An r-variable Deligne system consists of data

(6.26)

(
W 0 W 1 · · · W r−1 Y r

N1 · · · Nr−1 Nr

)
where

— W 0, . . . ,W r are increasing filtrations a finite dimensional K-vector space V ;

— Y r is a grading of W r;

such that

(a) N1, . . . , Nr are commuting nilpotent endomorphisms of V which preserve W 0;

(b) M(Nj,W
j−1) exists and equals W j for j = 1, . . . , r;

(c) Let 1 ≤ j ≤ r, 0 ≤ k < j − 1, ` ∈ Z, and let U = W k
` . Then the restriction

W j|U of W j to U is the relative monodromy filtration of Nj|U with respect to

W j−1|U ;

(d) Nj(W
k
` ) ⊆ W k

` for any j, k, `, and Nj(W
k
` ) ⊆ W k

`−2 if k ≥ j;

(e) Y r preserves each W j and [Y r, Nj] = −2Nj for all j.

A morphism of Deligne systems

(6.27) T : (W,N1, . . . , Nr;Y )→ (W̃ , Ñ1, . . . , Ñr, Ỹ )

is a homomorphism of the underlying vector spaces such that

T (W j
i ) ⊂ W̃ j

i , T ◦Nj = Ñj ◦ T

for all j (and i), and T ◦ Y r = Ỹ r ◦ T .

Theorem 6.28. (Deligne [8]) Starting from Y r, the iterative application of the con-

struction Y j−1 = Y ′(Nj, Y
j) to a system (6.26) satisfying the conditions (a)–(e) yields

a system of commuting gradings such that if N̂j is the degree zero part of Nj with re-

spect to adY j−1 and Hj = Y j − Y j−1 then

(6.29) (N̂1, H1), . . . , (N̂r, Hr)

are commuting sl2-pairs.

By condition (b), the weight filtrations W 1, . . . ,W r are determined by W 0 and

N1, . . . , Nr. Therefore, following [25], we abuse notation and refer to any tuple of
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data (W,N1, . . . , Nr;Y
r) which generates a system (6.26) satisfying conditions (a)–

(e) with W 0 = W as a Deligne system. For future use, we define a pre-Deligne system

to consist of data (W,N1, . . . , Nr) as above which satisfy conditions (a)–(d).

Lemma 6.30. If (W 0, N1, . . . , Nr;Y
r) is a Deligne system with associated gradings

Y i then (W 0, N1, . . . , Nj;Y
j) is also a Deligne system.

Corollary 6.31. Let T be a morphism of Deligne systems (6.27) with associated

grading Y i and Ỹ i. Then,

(6.32) Ỹ i ◦ T = T ◦ Y i

Proof. Equation (6.32) is true for i = r by hypothesis. Likewise, we know that T is

a morphism of the Deligne systems

(W r−1, Nr, Y
r)→ (W̃ r−1, Ñr, Ỹ

r)

By Lemma (6.20), this implies (6.32) for i = r− 1. Accordingly, we have a morphism

of Deligne systems

(W 0, N1, . . . , Nr−1;Y
r−1)→ (W̃ 0, Ñ1, . . . , Ñr−1; Ỹ

r−1)

and hence (6.32) holds by downward induction. �

Lemma 6.33 (Deligne [8]). The set of systems (6.26) satisfying conditions (a)–(e)

forms an abelian category.

Sketch. Let T be a morphism of Deligne systems (6.27). Then, equation (6.32) holds

for all i by the previous Corollary. This forces T to be compatible with all of the

associated filtrations and representations of sl2. We leave the details to the reader. �

Returning to the splitting operation (6.24), suppose that θ(z) = exp(
∑

j zjNj)F

is a polarizable nilpotent orbit of pure Hodge structure of weight k on V with limit

mixed Hodge structure (F,W r). Then, (W,N1, . . . , Nr;Y
r) is a Deligne system where

Y r = Y(F,W r) and W pure of weight k on V . As shown in [1], in the case where

(F,W r) is split over R, the resulting sl2-pairs (6.29) generate the representation of

SLr2(R) occurring in the SL2-orbit theorem of Cattani, Kaplan and Schmid [4].

The construction of the previous paragraph motivates the following:
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Definition 6.34 (cf. [16]). A Deligne–Hodge system (W,N1, . . . , Nr;F ) consists of a

pre-Deligne system (W,N1, . . . , Nr) over K = C equipped with:

(i) A real structure V = VR ⊗ C to which W and N1, . . . , Nr descend;

(ii) A decreasing filtration F of V ;

such that

(f1) NjF
p ⊂ F p−1 for any 1 ≤ j ≤ n and p ∈ Z;

(f2) (F,W r) is a mixed Hodge structure. Furthermore, for 1 ≤ k < n, w ∈ Z and

for U = W k
w, (F |U ,W r|U) is a mixed Hodge structure.

Then, by the results of Kashiwara we have a forgetful functor

V→ (W,N1, . . . , Nr;F )

from IMHM to the category of Deligne–Hodge systems.

Let Dr denote the category of Deligne systems in r variables over K = C and

DHr denote the category of Deligne–Hodge systems in r-variables. Then, by setting

Y r := Y(F,W r) (the Deligne splitting), we have a forgetful functor

(6.35) (VR,W,N1, . . . , Nr;F ) 7→ (W,N1, . . . , Nr;Y
r)

from DHr to Dr.

In Proposition 5.6.2 of [15], Kashiwara shows that the category of IMHM is

abelian, and W , M(N1,W ), GrW , GrM(N1,W ), etc. are exact functors. In Proposi-

tion (1.8) of [16], Kato asserts that the category of Deligne–Hodge systems is abelian

via the embedding of Theorem (6.1) of Deligne–Hodge systems into the category of

IMHM. Since Theorem (6.1) is false, this invalidates Kato’s proof.

In §3.2.1 of [16], Kato defines a category of SL2-orbits. An alternative description

of this category is as follows: Let DHr → DHr be the functor defined by the rule

(6.36) (VR,W,N1, . . . , Nr;F ) 7→ (VR,W, N̂1, . . . , N̂r; F̂ )

where the N̂j are the degree zero part of Nj with respect to adY j−1 and (F̂ ,W r) is

the sl2-splitting of (F,W r). An object of DHr is an SL2-orbit if it is fixed by this

functor. The set D̂Hr of all SL2-orbits in DHr is a full subcategory.

Example 6.37. D̂H0 is the category of mixed Hodge structures which are split over R.

In the case where W is pure, D̂H1 is the set of nilpotent orbits with limit mixed Hodge
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structure split over R. In the case where W is mixed, D̂H1 consists of admissible

nilpotent orbits with limit mixed Hodge structures which are split over R and N = N0.

Lemma 6.38. The composite functor IMHM → D̂H is essentially surjective, i.e.

for any object V̂ ∈ D̂Hr there exist a choice of graded-polarizations relative to which

V̂ is an admissible nilpotent orbit with limit mixed Hodge structure split over R and

Nj = N̂j for each j.

Sketch. This is Proposition 3.2.7 in Kato. For D̂H0, this is just the statement that any

R-split mixed Hodge structure admits a graded-polarization. For D̂H1 this statement

follows from Lemma (6.24) of [24] which asserts that a horizontal sl2(R) representation

determines a polarizable nilpotent orbit of Hodge structure (the choice of polarizing

form is defined up to scale on each irreducible Hodge subrepresentation of sl2(R). See

Kato paper for the several variable case. �

Definition 6.39. Let V = (N1, . . . , Nr;W,F ) be an object of DHr with underlying

vector space V . If V is pure of weight w then Q : V ⊗ V → R(w) polarizes V if

(a) Each Nj is an infinitesimal isometry of Q;

(b) Q polarizes the associated SL2-orbit V̂ obtained by the application of (6.36)

to V, i.e. V̂ satisfies the axioms of an IMHM with Q as the polarizing form.

If V is not pure then V is said to be graded-polarizable if there exists a polarization

for each of the induced Deligne–Hodge systems on GrW .

6.2. A Counterexample. In this section we construct an explicit counterexample

to Kato’s theorem (6.1) in the case where V is not graded-polarizable.

Define

(6.40) (V,W,N1, N2;F )

as follows:

— V is the four dimensional real vector space with ordered basis (e1, f1, e2, f2);

— N1 and N2 are the nilpotent endomorphisms

N1(e1) = f1, N1(f1) = 0, N1(e2) = f2, N1(f2) = 0

N2(e1) = f2, N2(f1) = 0, N2(e2) = 0, N2(f2) = 0
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— W is the increasing filtration on V , with grWk V = 0 for k 6= 1;

— F is the decreasing filtration on VC with grkF V = 0 for k 6∈ [0, 1] and with

F 1 = 〈e1, e2〉.

Proposition 6.41. The data (6.40) defines an object V of DH2.

Proof. We need to check conditions (a)–(d) and (f).

(a) Clearly N1N2 = N2N1 = N2
1 = N2

2 = 0. So the the Ni commute and are

nilpotent. They also obviously respect W because W is trivial.

(b) Set W 0 = W . Then W 1 := M(N1,W
0) exists and is split by the endomor-

phism

(6.42) Y 1(e1) = 2e1, Y 1(f1) = 0, Y 1(e2) = 2e2, Y 1(f2) = 0.

Since N2(W
1
k ) ⊂ W 1

k−2, the filtration W 2 := M(N2,W
1) exists and is equal

to W 1. In fact, the mixed Hodge structure, (V,W 2, F ) is split over R with

Y 1 = Y 2 = Y(W 2,F ) the Deligne splitting. (Y 2v = (p + q)v for v ∈ I(p,q)(W 2,F ).)

For this Hodge structure, we have I(1,1) = 〈e1, e2〉 and I(0,0) = 〈f1, f2〉.
(c) This is the condition that, if 0 ≤ k < j− 1 ≤ n− 1 and U = W

(k)
w for some w,

then W
(j)
U is the relative monodromy filtration of Nj|U with respect ot W (j−1.

That is trivial in this case, because we have to have k = 0 and j = 2, and

W (0) is trivial.

(d) Also trivial in this case.

(f.1) This is the horizontality condition which is trivial for the given F .

(f.2) The requirement here is that, for 0 ≤ k < n,w ∈ Z and U := W
(k)
w ,

(W (n)|U , F |U) is a mixed Hodge structure. When k = 0 we just have to

check that (V,W (n), F ) is a mixed Hodge structure. That is fairly obvious. It

is also clear when k = 1, because W 1 = W 2.

�

Suppose now that Theorem 6.1 holds for (6.40). Then there exists an a ∈ R+

such that upon setting N ′1 = N1 and N ′2 = aN1 +N2 the data

(6.43) (V,N ′1, N
′
2,W, F )

underlies an IMHM.
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For z = (z1, z2) ∈ C2, set N ′(z) =
∑2

i=1 ziN
′
i and F ′(z) = eN

′(z)F . For i = 1, 2,

set ei(z) = exp(N ′(z))ei. Then F
′1(z) = 〈e1(z), e2(z)〉.

Since (V,W,N ′1, N
′
2, F ) is an IMHM, there exists a skew-symmetric form

Q : V ⊗ V → R(−1)

respecting the N ′i and polarizing (V, F ′(y)) for y = (y1, y2) ∈ R2 with y1, y2 � 0.

Fix this Q. (Here, when we say that Q respects the N ′i , we mean that the N ′i are

infinitesimal isometries of Q.)

Lemma 6.44. Both N1 and N2 respect Q.

Proof. Since N1 = N ′1, and N ′1 respects Q, N1 respects Q. So N2 = N ′2 − aN ′1 also

respects Q. �

Lemma 6.45. We have

(a) Q(f1, f2) = 0.

(b) Q(e1, e2) = 0.

(c) Q(e2, f2) = 0.

Proof. (a) Since N1 respects Q,

0 = Q(N1e1, f2) +Q(e1, N1f2) = Q(f1, f2) + 0 = Q(f1, f2).

(b) Set q(z) := Q(e1(z), e2(z)) and note that q(z) is a polynomial in the variables

z1, z2. Since Q polarizes F ′(y) for y = (y1, y2) with y1, y2 � 0, q(y) = 0 for y1, y2 � 0.

But, since q is a polynomial, this implies that q = 0 identically. So q(0) = Q(e1, e2) =

0.

(c) Since N2 respects Q, we have 0 = Q(N2e1, e2) + Q(e1, N2e2) = Q(f2, e2). So

Q(e2, f2) = 0 as well. �

Proposition 6.46. Contrary to Lemma (6.45)(c), Q(f2, e2) > 0. Consequently, the

Deligne system (V,N ′1, N
′
2,W, F ) from (6.43) does not admit a form Q making it into

a IMHM.

Proof. Suppose (V,N ′1, N
′
2,W, F ) is an IMHM polarized by Q. Assume y1, y2 � 0

so that (V, F (y)) is a pure Hodge structure of weight 1 polarized by Q. Moreover,

assume y1 and y2 are positive.
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Let C(y) denote the Weil operator on the pure Hodge structure (V, F (y)). It is

given on V pq by multiplication by ip−q. (We are using the sign conventions from §1.2

of Kashiwara [15].)

Since Q is a polarization on (V, F (y)), the form Q(Cu, v̄) is positive definite. It

follows that Q(Ce2(y), ē2(y)) > 0. So we compute

0 < Q(Ce2(y), ē2(y)) = Q(C(e2 + i(y1 + ay2)f2), e2 − i(y1 + ay2)f2)

= iQ(e2 + i(y1 + ay2)f2, e2 − i(y1 + ay2)f2)

= 2(y1 + ay2)Q(e2, f2)

Since y1, y2 and a are positive, it follows that Q(e2, f2) > 0. �

6.3. Categorical Comments. An IMHM V is split if V ∼= ⊕GrWk V. The category

of split infinitesimal Hodge modules is, more or less by definition, polarizable Tan-

nakian in the sense of Saavedra-Rivano (see, for example, page 169 of [9]). It follows

that the category IMHMs of split infinitesimal mixed Hodge modules is semi-simple

(by Proposition 4.11 on page 169 of [9]).

However, we have the following.

Proposition 6.47. The example in (6.40) is not a semi-simple object.

Proof. Let H = 〈e2, f2〉. By restriction of (W,N1, N2, F ) to H we obtain a sub-object

H of V. (The restriction of N2 to H is zero). But this sub-object is clearly not a

direct summand. �

The proposition gives another way to see that Theorem (6.1) fails for V: Since

split objects in IMHM are semi-simple, the theorem would imply that split objects

in DHr are also semi-simple.

6.4. Graded Polarizability. On the other hand, the result of Kato’s paper [16]

holds once the polarization is added in. In other words, every graded-polarizable

Deligne–Hodge system gives rise to an IMHM:

Theorem 6.48. Let (V,W,N1, . . . , Nn, F ) be a graded polarizable DH system of n

variables. Then for N ′j =
∑j

k=1 aj,kNk (1 ≤ j ≤ n) with aj,k > 0 (1 ≤ k ≤ j ≤ n)

such that aj,k/aj,k+1 � 0 (1 ≤ k < j ≤ n), (V,W,N ′1, . . . , N
′
n, F ) is an IMHM of n

variables.
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Essentially, Kato’s proof goes though word for word upon addition of this polar-

izability hypothesis: Suppose (Qw) is a fixed polarization of the graded of V. Write

D for the mixed period domain corresponding to Qw. It sits in the so-called compact

dual Ď. Write G for the group of isometries of Q preserving W . Then G(C) acts on

the algebraic variety Ď, while G(R) acts on the open complex submanifold D. The

Ni and Hi are all in the Lie algebra g of G and, most importantly, the function β

constructed by Kato lies in G(R). On the other hand, note that, without Q, there

really is no period domain D (or Ď).

Now, Kato’s proof shows that β(y)F (y) converges to

I = exp(
∑
j

iN̂j)F̂

as long as yi/yi+1 � 0 for all i. In particular, β(y)F (y) lies in D for such y. Since

β(y) ∈ G(R), it follows that F (y) lies in D as well.

6.5. Geometric Structure. By Theorem (6.48), the question of when a given Deligne–

Hodge system gives rise to an IMHM for an appropriate substitution Nj → N ′j reduces

to a question about the polarizability of the underlying SL2-orbit. Accordingly, we

make the following definition:

Definition 6.49. The sl2-type of a Deligne system (W,N1, . . . , Nr, Y
r) consists of the

weight filtration W and the associated sl2-pairs (N̂1, H1), . . . , (N̂r, Hr) of (6.29).

Remark 6.50. In the case where W is pure of weight k the sum

(6.51) Y r = k Id +H1 + · · ·+Hr

for any possible associated Deligne system. In particular, we can then recover the

intermediate gradings Y j and hence the elements Hj = Y j − Y j−1 via the iterated

application of Deligne construction Y j = Y ′(N̂j, Y
j+1). Thus, in the pure case, an

sl2-type is equivalent to (W, N̂1, . . . , N̂r, Y
r). In [16] (cf. Prop. 3.3.2), Kato calls such

Deligne systems an associated SL(2)-orbit.

The remainder of this section is devoted to proving that the set of all Deligne

systems with a given sl2-type forms an algebraic variety. We start with a series of

lemmata:
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Lemma 6.52. Let (W, N̂,H) be an sl2-type. Let Y(W, N̂,H) be the set of all gradings

of W which commute with N̂ and H. Define gl−1(W, N̂,H) to be the subalgebra of

gl−1(W ) consisting of elements which commute with N̂ and H. Then, Y(W, N̂,H) is

an affine space upon which the subgroup exp(gl−1(W, N̂,H)) acts simply transitively.

Proof. The set Y(W ) of all gradings of W is an affine space upon which the sub-

algebra W−1gl(V ) acts simply transitively by Y 7→ Y + β. Accordingly, let Y ∈
Y(W, N̂,H) and β ∈ W−1gl(V ). Then, clearly Y + β ∈ Y(W, N̂,H) if and only if

β ∈ gl−1(W, N̂,H). Thus, Y(W, N̂,H) is an affine space upon which gl−1(W, N̂,H)

acts simply transitively by Y 7→ Y + β.

On the other hand, as discussed in Proposition (2.2) of [4] the group exp(W−1gl(V ))

also acts simply transitively on Y(W ) via the adjoint action. Moreover, the relation

between α, β ∈ W−1gl(V ) defined by the equation

eadαY = Y + β

is given by universal Lie polynomials in the eigencomponents of α and β with respect

to adY . In particular, since Y commutes with N̂ and H, if β also commutes with N̂

and H then so do all of its eigencomponents, and hence α also has this property. �

Let (W, N̂,H) be an sl2-type. Define U(W, N̂,H) to be the set of pairs (Y 0, N−)

where Y 0 ∈ Y(W, N̂,H) and

N− =
∑
k≥2

N−k

where N−k is either 0 or an element of E−k(adY 0) which is of highest weight k − 2

for the representation of sl2 generated by (N̂ ,H). Let

π : U(W, N̂,H)→ Y(W, N̂,H)

denote projection (Y 0, N−)→ Y 0.

Lemma 6.53. π : U(W, N̂,H)→ Y(W, N̂,H) is an equivariant vector bundle in the

sense that for any α ∈ gl−1(W, N̂,H):

eα : π−1(Y 0)→ π−1(eα.Y 0)

is a linear isomorphism on the fibers, and the group exp(gl−1(W, N̂,H)) acts transi-

tively on the base.
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For future use, we record the following:

Lemma 6.54. Let W and W ′ be increasing gradings of a finite dimensional vector

space V over a field of characteristic zero, with respective gradings Y and Y ′. If

[Y, Y ′] = 0 then Y preserves W ′.

Proof. Mutually commuting semisimple endomorphisms can be simultaneously diag-

onalized over any field which contains all the eigenvalues of both endomorphisms.

Since Y and Y ′ have integral eigenvalues

V = ⊕p,qV (p, q), V (p, q) = Ep(Y ) ∩ Eq(Y ′)

Therefore, Y preserves W ′
k = ⊕q≤k V (p, q). �

Lemma 6.55. Let S denote the set of all Deligne systems with sl2-type (W, N̂,H).

Then, the map Ψ : S → U(W, N̂,H) which sends the Deligne system (W,N, Y 1) to

(Y 0, N−) where Y 0 = Y ′(N, Y 1) and N− =
∑

k≥2 N−k is the sum of components of

N of negative weight with respect to adY 0 is a bijection.

Proof. A Deligne system with sl2-type (W,N,H) produces an element of U(W, N̂,H)

via Ψ. Moreover, Ψ is injective since a Deligne system with sl2-type (W, N̂,H) is

recovered from its image under Ψ by the rule:

(6.56) N = N̂ +N−, Y 1 = Y 0 +H

It remains to prove that Ψ is surjective. Let (Y 0, N−) be an element of U(W, N̂,H),

and define N and Y 1 by (6.56). It is sufficient to show that (W,N, Y 1) is a Deligne

system, since by construction Ψ(W,N, Y 1) = (Y 0, N−).

Accordingly, let W 1 be the weight filtration determined by Y 1. We need to check

that (W,N, Y 1) satisfies Deligne system axioms (a)–(e).

(e) By construction, [Y 1, Y 0] = 0 and hence Y 1 preserves W 1 and W 0 by the

previous Lemma. Likewise,

(6.57) [Y 1, N ] = [Y 1, N̂ ] +
∑
k≥2

[Y 0 +H,N−k] = −2N

(a) By (e), N is nilpotent. Similarly, since N has weights less than or equal to

zero with respect to adY 0, it preserves W 0.
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(b) To verify that W 1 = M(N,W 0), we begin with the assertion that W 1 =

M(N̂ ,W 0): By construction,

(6.58) [Y 1, N̂ ] = [Y 0 +H, N̂ ] = −2N̂

so N̂ lowers W 1 by 2. It remains to show that

(6.59) N̂ ` : GrW
1

k+`Gr
W 0

k → GrW
1

k−`Gr
W 0

k

is an isomorphism. However, since H = Y 1 − Y 0 and [Y 1, Y 0] = 0 it follows

that

GrW
1

k+`Gr
W 0

k
∼= Ek+`(Y

1) ∩ Ek(Y 0) = E`(H) ∩ Ek(Y 0)

Accordingly, (6.59) is an isomorphism. Consequently, M(N,W ) = M(N̂ ,W )

since [Y 1, N ] = −2N and and changing N̂ → N does not change the induced

action of N on GrW .

(c) Since [Y 1, Y 0] = 0, it follows that the argument of (b) above holds for the

restriction of N to W 0
` .

(d) By (a)+(e) above, N preserves W 0 and lowers the weights of W 1 by 2.

�

Theorem 6.60. The set S of all r-variable Deligne systems (W,N1, . . . , Nr, Y
r) of

sl2-type

(6.61) (W, N̂1, H1, . . . , N̂r, Hr)

is an algebraic variety.

Proof. We induct on the number of variables. The case r = 1 is covered by the

previous Lemma.

To continue, we observe that if S = (W,N1, . . . , Nr;Y
r) is a point of S then

W j = M(N̂j,W
j−1), j = 1, . . . , r

and hence the weight filtrations W j attached to S are determined by the sl2-type

(6.61). Let Y denote the affine variety consisting of gradings of W r−1.
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Let S ′ denote the set of Deligne systems with sl2-type(W, N̂1, H1, . . . , N̂r−1, Hr−1).

Let S ′′ denote the set of Deligne systems with sl2-type (W r−1, N̂r, Hr). By the induc-

tion hypothesis, both S ′ and S ′′ are algebraic varieties, and hence so is the product

S ′ × S ′′. Let P ⊂ S ′ × S ′′ be the fiber product over Y defined by the maps

S ′ = (W,N1, . . . , Nr−1, Y
r−1) 7→ Y r−1

S ′′ = (W r−1, Nr, Y
r) 7→ Y ′(Nr, Y

r)

A point S ∈ S determines a point (S ′, S ′′) ∈ P by the rule

(6.62) S ′ = (W,N1, . . . , Nr−1, Y
r−1), S ′′ = (W r−1, Nr, Y

r)

such that:

(I) Y r commutes with the gradings Y r−1, . . . , Y 0 attached to S ′;

(II) Nr has only non-positive eigenvalues relative to adY j for 0 ≤ j ≤ r − 1;

(III) [Nr, Nj] = 0 for 1 ≤ j ≤ r − 1;

(IV) [Y r, Nj] = −2Nj for 1 ≤ j ≤ r;

Conversely, let (S ′, S ′′) ∈ P be a point of the form (6.62) which satisfies conditions

(I)–(IV ). Then,

(6.63) S = (W,N1, . . . , Nr;Y
r)

is a Deligne system:

(a) Since each Nj is part of a Deligne system, it is nilpotent. Similarly, since

(N1, . . . , Nr−1) are part of a Deligne system, they mutually commute. Con-

dition (III) implies the remaining commutativity conditions. Likewise, by

hypothesis, N1, . . . , Nr−1 preserve W 0. Condition (II) implies that Nr pre-

serves W 0.

(b) The fact that S ′ and S ′′ are Deligne systems implies the existence of all re-

quired relative weight filtrations.

(c) Since S ′ and S ′′ are Deligne systems, this condition is automatic except for

the extremal case: W r restricted to U = W k
` for k < r − 1 is the relative

weight filtration of W r−1|U and Nr|U . This follows from properties (I) and

(II).
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(d) Since S ′ and S ′′ are Deligne systems, the only unresolved cases are Nr(W
k
` ) ⊂

W k
` for k < r−1 (which follows from (II)) and Nj(W

r
` ) ⊂ W r

`−2 which follows

from (IV ).

(e) [Y r, Nj] = −2Nj is property (IV ). Property (I) implies that Y r preserves

each W j.

Let A be the algebraic subvariety of P defined by properties (I)–(IV ). Given

(S ′, S ′′) ∈ A, the corresponding Deligne system S has the same sl2-type as S ′ and S ′′,

i.e. S ∈ S. A simple check shows that the maps

S → A → S, A → S → A

are the identity, and hence S is isomorphic to the algebraic variety A. �

In the case where (N̂1, H1), . . . , (N̂r, Hr) are all infinitesimal isometries of bilin-

ear forms on GrW , we can ask that all Nj’s appearing above are also infinitesimal

isometries. This is again an algebraic condition. More generally, if the initial sl2-type

belongs a Mumford–Tate Lie algebra m then it is an algebraic condition for all the

Nj’s to belong to m. Likewise, the condition that each Nj be horizontal with respect

to a given Hodge filtration F is also algebraic.

As independent check of the compatibility of the next few examples with the

results of the earlier sections of this paper, we develop our examples starting from

Lemma (6.24) in Schmid [24]. Namely, if HC = HR ⊗C is Hodge structure of weight

k equipped with a horizontal action of sl2(C) then HC is a direct sum of irreducible

representations of the form S(n)⊗ R(m) and S(n)⊗ E(p, q) where

— S(n) = Symn(C2) where C2 is equipped with the standard matrix action of sl2

with respect to the basis e = (1, 0) and f = (0, 1) of C2. Relative to the limit

mixed Hodge structure e is type (1, 1) and f is type (0, 0). The polarization

is defined by

Q(ejfn−j, en−jf j) = (−1)n(−1)jj!(n− j)!

— E(p, q) = C2 equipped with the trivial action of sl2 and e+ if of type (p, q).

— R(m) is C equipped with a pure Hodge structure of type (−m,−m).
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Before proceeding with the examples, we note that in the case where W is pure of

weight k, equation (6.51) applies and we shall omit W from the data of the Deligne

system. If W pure of weight k, we also always have N1 = N̂1.

Example 6.64. Let (N1, N2;F ) generate a pure nilpotent orbit of odd weight 2m+ 1

of “vanishing cycle” type, i.e. there exist linearly independent elements α1 and α2 of

the underlying real vector space VR such that such that Q(α1, α2) = 0 and

Nj(γ) = Q(γ, αj)αj.

Let W j = W (
∑

i≤j Ni)[−(2m + 1)] and assume without loss of generality that

(F,W ) is split over R. In Schmid’s terminology, the corresponding horizontal sl2

action generated by N = N1 + N2 and the limit mixed Hodge structure (F,W 2)

decomposes the underlying vector space as

[S(1)⊗ R(−m)]⊕ [S(1)⊗ R(−m)]⊕K

where K is a pure Hodge structure of weight 2m+ 1 with trivial sl2-action. The two

S(1) factors correspond to the isotypical components of highest weight 1 for (N1, H1)

and (N2, H2), i.e. N̂j = Nj.

More concretely, there exist dual elements α′1 and α′2 of type (m+ 1,m+ 1) with

respect to (F,W 2) such that Q(α′j, αk) = δjk, and (F,W 2) has Deligne bigrading

Im+1,m+1 = span(α′1, α
′
2),

⊕
p

Ip,2m+1−p = K, Im,m = span(α1, α2).

The associated sl2-type is given by (N1, H1) and (N2, H2) where

E1(H1) = span(α′1), E0(H1) = K ⊕ span(α2, α
′
2), E−1(H1) = span(α1)

E1(H2) = span(α′2), E0(H2) = K ⊕ span(α1, α
′
1), E−1(H2) = span(α2)

.

To analyze the corresponding variety of Deligne systems via the process described

above, we start with the set S attached to W 0 and (N1, H1). Since W 0 is pure of

weight k, S is a point. This becomes the set S ′ at the next step, and we have to

consider the set S ′′ attached to W 1 and (N2, H2). By (6.51), Y 1 = Y 0 + H1 which

eliminates the freedom to pick a point in Y(W 1, N2, H2). The remaining freedom in

U(W 1, N2, H2) is to select an element which is weight −2 for adY 1 and highest weight
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0 for (N2, H2). This is exactly the space spanned by N1, and so the possible set of

Deligne systems consists of the triples

(6.65) (N1, N2 + aN1, Y
2)

where a is an arbitrary scalar.

Example 6.66. More generally, let (N1, N2;F ) generate a two variable sl2-orbit of

weight k polarized by Q, i.e. the limit mixed Hodge structure (F,W 2) split over R
and N̂j = Nj. Let Y 1 = k Id + H1 and Y 2 = Y 1 + H2. Then, the set of Deligne

systems with the same sl2-type consists of all triples

(N1, N2 + η, Y 2)

where η =
∑

`≥2 η−` and η−` is weight −` with respect to ad(Y 1) and highest weight

`− 2 for (N2, H2).

In particular, let Ω denote the set of all (−1,−1)-morphisms of (F,W 2) which

are lowest weight −2 for (N1, H1) and highest weight zero for (N2, H2). Note that

Ω 6= 0 since N1 ∈ Ω. Fix an inner product on Ω. Recall that Fo = eiN1+iN2F belongs

to the classifying space D. Moreover, since D is an open subset of the compact dual

Ď in the analytic topology, there exists an real number t > 0 such that if ω ∈ Ω has

norm 1 and |τ | < t then eiτωFo also belongs to D. The following argument shows

that (N1, N1 + tω,N2;F ) generates a nilpotent orbit: By assumption, the map

(6.67) θ(z1, z2, z3) = exp(z1N1 + z2(N1 + tω) + z3N2)F

is horizontal. Moreover ω commutes with N1 and N2 since it is lowest weight −2 for

(N1, H1) and highest weight zero for (N2, H2).

To see that θ takes values in D when the imaginary parts of zj = xj +
√
−1yj are

sufficiently large, observe that

y1N1 + y2(N1 + tω) + y3N2 = (y1 + y2) (N1 + τω) + y3N2

where τ = (y2t)/(y1 + y2) is positive and less than t. Therefore, since ω is lowest

weight −2 for (N1, H1) and highest weight zero for (N2, H2) it follows that

exp(iy1N1 + iy2(N1 + tω) + iy3N2)F = exp(i(y1 + y2)(N1 + τω) + iy3N2)F

= (y1 + y2)
−H1/2y

−H2/2
3 eiτωFo



58 BROSNAN, PEARLSTEIN AND ROBLES

Accordingly, since (y1 + y2)
−H1/2y

−H2/2
3 is a real automorphism of Q and eiτωFo ∈ D

it follows that (6.67) takes values in D provided the imaginary parts of z1, z2 and

z3 are positive. Likewise, if a is an abelian subalgebra of Ω and ω1, . . . , ω` are an

orthonormal basis of a then a similar type of argument shows that

(N1, N1 + t1ω1, . . . , N1 + t`ω`, N2;F )

generates a nilpotent orbit, provided |tj| < t for all j.

Example 6.68. Example (6.64) can be generalized to the weight 2m + 1 case where

there exist pairwise orthogonal, linearly independent sets of vanishing cycles {α11, . . . , α1p}
and {α21, . . . , α2q} such that Ni = 1

2

∑
` ω

``
i where

ωjki (u) = Q(u, αij)αik +Q(u, αik)αij

for j ≤ k. Then, the associated set of Deligne systems is

S(F) = {(N1, N2 +
∑
j≤k

cjkω
jk
1 , Y

2) | cjk ∈ F }

where F ⊆ C is the field of interest.

In Schmid’s terminology, the associated representation of sl2 for N = N1 +N2 is

a sum

[S(1)⊗ R(−m)]p ⊕ [S(1)⊗ R(−m)]q ⊕K

where two groupings of S(1) factors corresponding to the isotypical components of

highest weight 1 for (N1, H1) and (N2, H2), and K is a pure Hodge structure of weight

2m+ 1 with trivial sl2-action. As in Example (6.64), there are dual elements

α′11, . . . , α
′
1p, α

′
21, . . . , α

′
2q

of type (m + 1,m + 1) such that Q(α′ij, αk`) = δikδj`. Let Ai = span(αij) and

A′i = span(α′ij). Then, Deligne bigrading of (F,W 2) is given by

Im+1,m+1 = A′1 ⊕ A′2,
⊕
p

Ip,2m+1−p = K, Im,m = A1 ⊕ A2.

The corresponding sl2-type is (N1, H1) and (N2, H2) where

E1(H1) = A′1, E0(H1) = K ⊕ A2 ⊕ A′2, E−1(H1) = A1

E1(H2) = A′2, E0(H2) = K ⊕ A1 ⊕ A′1, E−1(H2) = A2
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Due to the short length of the monodromy weight filtrations, it follows by Exam-

ple (6.66) we are looking for infinitesimal isometries which are lowest weight −2 for

(N1, H1) and highest weight zero for (N2, H2). This subspace is spanned by the ele-

ments ωij1 for i ≤ j.8

The short length of the monodromy weight filtrations also forces commutativity

of all ωij1 , so we can form a new monodromy cone using the techniques described

at the end of Example (6.66) – just pick an inner product which makes all the ωij1

orthonormal and find the appropriate value of t.

Example 6.69. Turning now to §5, we consider a two variable example of the form

S(2)⊕ S(2)⊕ R(−1)

where the two S(2) factors are the isotypical components of highest weight 2 for

(N1, H1) and (N2, H2), and R(−1) is a factor of Hodge type (1, 1) on which both

copies of sl2 act trivially. The corresponding period domain has Hodge numbers

h2,0 = 2 and h1,1 = 3.

More concretely, we start with a real vector space VR with basis

{α2, α1, α0, β2, β1, β0, γ}

in which we think of αj = ejf 2−j and βj = ejf 2−j under the identification with

S(2) = Sym2(C2), and γ is the generator of R(−1). Accordingly, N1 annihilates

{β2, β1, β0, γ} and acts on αj = ejf 2−j by the rule N1(αj) = jαj−1. Likewise, N2

annihilates {α2, α1, α0, γ} and acts on βj = ejf 2−j by the rule N2(βj) = jβj−1. The

polarizing form is given by

Q(αj, α2−j) = Q(βj, β2−j) = (−1)jj!(2− j)!, Q(γ, γ) = 1

and all other pairings zero.

The limit Hodge filtration of (F,W 2) is

I2,2 = span(α2, β2), I1,1 = span(α1, β1, γ), I0,0 = span(α0, β0)

8Sketch: One first checks that the stated conditions imply that such an element γ vanishes on

A′
2 ⊕ K ⊕ A1 ⊕ A2 and γ(A′

1) ⊂ A1. Let γ(α′
1`) =

∑
k γ

k
` α1k. Then, the infinitesimal isometry

condition forces γij = γji .
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which is type (V ) in the setting of §5. The nilpotent orbit θ(z1) = ez1N1eiN2F is of

type (II) with limit Hodge numbers h2,2 = h2,0 = h0,2 = 1, h1,1 = 3 and h0,0 = 1.

The corresponding elements H1 and H2 are given by

E2(H2) = span(β2), E0(H2) = span(α2, α1, α0, β1, γ), E−2(H2) = span(β0)

E2(H1) = span(α2), E0(H1) = span(β2, β1, β0, α1, γ), E−2(H1) = span(α0)

To find the possible candidate deformations N2 7→ N2+η which preserve the underly-

ing sl2-orbit structure, we can start by first identifying all morphisms of type (−1,−1)

of (F,W 2) which are infinitesimal isometries. This space has basis {η1, η2, η3, η4, N1, N2}
where

η1(α2) = β1, η1(β1) =
1

2
α0

η2(α2) = γ, η2(γ) = −1

2
α0

η3(β2) = α1, η3(α1) =
1

2
β0

η4(β2) = γ, η4(γ) = −1

2
β0

and annihilate all other basis elements. A short calculation shows that only η2 and

η4 commute with N1 and N2 which is required for (N1, N2 + η, Y 2) to be a Deligne

system. However, η4 turns out to be a lowest weight vector of weight −2 for (N2, H2)

whereas for a deformation of Deligne systems (N1, N2 +η, Y 2), we would need η to be

a sum of highest weight vectors for (N2, H2). On the other hand, η2 is lowest weight

−2 for (N1, H1) and highest weight zero for (N2, H2). Thus, the set of all Deligne

systems with given sl2-type in this case is

(N1, N2 + aη2 + bN1, Y
2), Y 2 = 2Id +H1 +H2

where a and b are arbitrary scalars.

As in Example (6.66), we obtain an associated 3 variable nilpotent orbit with

data

(N1, N1 + tη2, N2;F )

Looking back to §5, it was predicted that for a degeneration of type (V ) with Hodge

numbers h2,0 = 2 and h1,1 = 3 the maximum possible dimension of a nilpotent cone

is 3, which is realized by this example.
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Example 6.70. As a “degenerate” case of the above, observe that we can always

augment a pure, 1-variable Deligne system (N, Y 1) of weight k to a 2-variable Deligne

system (N1, N2, Y
2) by setting N1 = N , N2 = 0 and Y 2 = Y 1. In this case, one finds

that any Deligne system deformation

(N1, N2 + η, Y 2)

of (N1, N2, Y
2) must have η of lowest weight −2 for the representation (N1, H1).

In the case where (N, Y 1) arises from a pure nilpotent orbit θ(z) = ezNF with

limit mixed Hodge structure (F,W 1) split over R, the method of Example (6.66)

shows that if η is also (−1,−1)-morphism of (F,W 1) then there exists a positive

number t such that (N,N + tη, F ) generates a pure nilpotent orbit.

A simple example of this type occurs when we start with a several variable pure

nilpotent orbit generated by (N1, . . . , Nr;F ) with limit mixed Hodge structure split

over R, and consider the 1-variable orbit θ generated by N =
∑

j Nj and F . Then,

all of the Nj’s are lowest weight −2 for the sl2-representation attached to θ.

In particular, let θ(z) = ezNF be a 1-variable pure nilpotent orbit with limit mixed

Hodge structure (F,W 1) split over R. Let GR = AutR(Q) and G0,0
R be the subset of

elements which preserve (F,W 1). Let N 0 be the orbit of N under the adjoint action

of G0,0
R . Then, any element of N which commutes with N will be of lowest weight

−2 for the representation attached to θ. More generally, we can construct several

variable nilpotent orbits in this way.

Example 6.71. Let D a period domain with Hodge numbers h2,0 = 1 and h1,1 = m+1.

Then, one possible type of 1-varaible sl2-orbit θ(z) = ezNF corresponds to the Schmid

form

S(2)⊕ [R(−1)]m

with αj = ejf 2−j for j = 0, 1, 2 spanning S(2) and [R(−1)]m generated by elements

γ1, . . . , γm. The polarization is

Q(αj, α2−j) = (−1)jj!(2− j)!, Q(γi, γj) = δij
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and all other pairings zero. The subspace of infinitesimal isometries which are (−1,−1)-

morphisms and lowest weight −2 for (N,H) is spanned by η1, . . . , ηm where

ηi(α2) = γi, ηi(γi) = −1

2
α0

and ηi annihilates all other basis elements. It is easy to see that [ηi, ηj] = 0 for all i

and j. Accordingly, there is a positive real number t such that

(N,N + t1η1 . . . , N + tmηm;F )

generates a pure nilpotent orbit provided |tj| < t for all j.

Example 6.72. To obtain an example where the deformation of a pure sl2-orbit (N1, N2;F )

with a Deligne system deformation (N1, N2 + η, Y 2) with η of weight −3 with respect

to Y 1, we consider an sl2-orbit of Schmid type

S(3)⊕ [S(1)⊗ R(−1)]

for N = N1 + N2 where S(3) is the isotypical component of highest weight 3 for N1

and S(1)⊗ R(−1) is the isotypical component of highest weight 1 for N2.

More concretely, we have a 6 dimensional real vector space VR with basis {α3, α2, α1, α0, β1, β0}
and sl2 action in which N1 annihilates {β1, β0} and acts on αj = ejf 3−j by the rule

N1(αj) = jαj−1. Similarly, N2 annihilates {α3, α2, α1, α0} and acts on βj = ejf 1−j by

the rule N2(βj) = jβj−1. The polarization is given by

Q(αj, α3−j) = −(−1)jj!(3− j)!, Q(β1, β0) = 1

and all other pairings equal to zero.

In this setting, the limit mixed Hodge structure of (F,W 2) is of Hodge–Tate type

with αj of type (j, j) and βj of type (j + 1, j + 1). For the mixed Hodge structure

(eiN2F,W 1) the Hodge type of αj remains unchanged but β1 + iβ0 is now of Hodge

type (2, 1). The linear map η which annihilates {α2, α1, α0, β1} and acts by

η(α3) = β1, η(β0) = −1

6
α0

is an infinitesimal isometry which is a morphism of type (−1,−1) for (F,W 2). It

is weight −3 with respect to adY 1 and commutes with N1. A bit more calculation

shows that it lowest weight −3 for (N1, H1) and highest weight 1 for (N2, H2). So
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(N1, N2 + η, Y 2) is a deformation of the Deligne system (N1, N2, Y
2) with the same

sl2-type. Since it is also polarizable, it follows that there is an a > 0 such that

(N1, N2 + η + aN1;F )

generates a polarizable nilpotent orbit. We also note that unlike the original orbit

(N1, N2, F ), the new orbit has maximal unipotent monodromy since now

GrW
2

4 = N1(Gr
W 2

6 ) + (N2 + η + aN1)(Gr
W 2

6 )

Let (N1, . . . , Nr;F ) generate a pure nilpotent of weight k which is polarized by

Q. Let W j = W (
∑

i≤j Ni)[−k] and assume that (F,W r) is split over R. Let (N̂j, Hj)

be the associated sl2-type, and GR = AutR(Q). Then, for any g ∈ GR the data

(6.73) (Ad(g)N1, . . . ,Ad(g)Nr; g(F ))

generates a nilpotent orbit of weight k which is polarized by Q.

Theorem 6.74. The nilpotent orbit generated by (6.73) has the same limit mixed

Hodge structure and sl2-type as the orbit generated by (N1, . . . , Nr;F ) if and only if

g preserves F and each sl2-pair (N̂j, Hj).

Proof. Suppose that g ∈ GR preserves F and each sl2-pair. Then, g preserves

(6.75) Y j = k Id +H1 + · · ·+Hj

and hence g preserves the weight filtrations W j. In particular, g preserves the mixed

Hodge structure (F,W r) and hence g preserves Y r = Y(F,W r). By the functoriality of

Deligne’s construction, it then follows that

Y (Ad(g)Nj,Ad(g)Y j) = Ad(g)Y (Nj, Yj) = Ad(g)Y j−1 = Y j−1

and so the corresponding chain of gradings remains the same. Likewise, the com-

ponent of Ad(g)Nj of degree 0 with respect to Y j−1 = Ad(g)Y j−1 is just Ad(g)N̂j.

By assumption Ad(g)N̂j = N̂j. Therefore (6.73) is a nilpotent orbit with the same

sl2-type as (N1, . . . , Nr;F ).

Conversely, suppose that (6.73) defines a pure nilpotent orbit with the same

sl2-type as the orbit generated by (N1, . . . , Nr;F ). Then, we must have the same
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associated weight filtrations

W (Ad(g)(N1 + · · ·+Nj))[−k] = g(W (N1 + · · ·+Nj)[−k])

= W (N1 + · · ·+Nj)[−k]

since we have the same associated set of gradings (6.75). As in the previous paragraph,

g must preserve the mixed Hodge structure (F,W r) and hence Ad(g)Y r = Y r. By

the functoriality of Deligne systems,

Y (Ad(g)Nr, Y
r) = Y (Ad(g)Nr,Ad(g)(Y r)) = Ad(g)Y r−1

Therefore

Ad(g)Y r−1 − Y r = Hr = Y r − Y r−1

which implies that Ad(g)Y r−1 = Y r−1. Repeating this argument down the chain of

gradings shows that g preserves each Hj. As in the first paragraph of the proof, the

component of Ad(g)Nj of degree 0 with respect to Y j−1 = Ad(g)Y j−1 is just Ad(g)N̂j.

To obtain the same sl2-type, we must therefore have Ad(g)N̂j = N̂j �

In summary, the set of Deligne systems with given sl2-type forms an algebraic

variety, and this remains so once we layer on the existence of a polarization and/or

a filtration F with respect to which all of the Nj’s are horizontal. Starting from

a pure nilpotent orbit with limit mixed Hodge structure which is split over R, the

real points of the algebraic group G consisting of isometries which preserve the limit

Hodge filtration and associated sl2-pairs acts upon the set of nilpotent orbits with

these properties.

Appendix A. Proof of Lemma 3.5

First note that N 0 ⊂ W◦N .

Note that Y ∈ m0,ss
R acts on g`,`R ⊂ mR by the scalar 2`.

Claim. Each N ′ ∈ WN may be realized as the nilnegative element of a standard triple

in mR containing Y as the neutral element.
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Remark. Malcev’s Theorem implies that N and N ′ are conjugate under the action of

Ad(M0
C). Unfortunately, Malcev’s Theorem does not hold over R.9

To prove the claim it suffices to construct N ′+ ∈ g1,1R with the property that [N ′+, N
′] =

Y . Given ` ≥ 0, it follows from the definition ofW(N) and properties of the filtration

W (N) that

(N ′)2` : g`,` → g−`,−` is an isomorphism.

Let

P2`(N
′) := ker{(N ′)2`+1 : g`,`R → g−`−1,−`−1R } .

Fix a basis {v1` , . . . , v
d`
` } of P2`(N

′). Then⋃
`≥0

{
(N ′)kvi` | 1 ≤ i ≤ d` , 0 ≤ k ≤ 2`

}
is a basis of mR, and we may define N ′+ ∈ End(mR) by

(N ′)kvi` 7→ k(2`− k + 1)(N ′)k−1vi` .

Then {N ′+, Y,N ′} is a standard triple in End(mR). Since both Y,N ′ ∈ mR ⊂ End(mR),

we necessarily have N ′+ ∈ mR. This proves the claim. �
From the proof of the claim we see that

m0
R =

⊕
`≥0

(N ′)`P2`(N
′) ,

and we deduce that the orbit

N ′ := Ad(M0
R) ·N ′ ⊂ g−1,−1R

has

dimN ′ = dimR m0
R − dimR P0 = dimR g

−1,−1
R .

In particular, N ′ is open in g−1,−1R , and this statement is independent of our choice

of N ′ ∈ WN . The lemma now follows from the connectedness of W◦N .

9As an example notice that N =

(
0 1

0 0

)
is not conjugate to −N in SL2R although they can

both be completed to a standard triple containing Y =

(
1 0

0 −1

)
as the neutral element.
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[4] Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid. Degeneration of Hodge structures. Ann.

of Math. (2), 123(3):457–535, 1986.

[5] Eduardo H. Cattani and Aroldo G. Kaplan. Horizontal SL2-orbits in flag domains. Math. Ann.,

235(1):17–35, 1978.

[6] David H. Collingwood and William M. McGovern. Nilpotent orbits in semisimple Lie algebras.

Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.

[7] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307,

1974.

[8] Pierre Deligne. Personal letter to E. Cattani and A. Kaplan. 1993.

[9] Pierre Deligne, James S. Milne, Arthur Ogus and Shih Kuang-Yen. Hodge cycles, motives, and

Shimura varieties. Lecture Notes in Mathematics, bf 900 (1982).
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